SlideShare ist ein Scribd-Unternehmen logo
1 von 94
Downloaden Sie, um offline zu lesen
This presentation will cover the following topics:
This presentation will cover the following topics:
1. Introduction
2.
2 Loading Pattern Generation
       di           G       i
3. Safety Calculations
4. Operational Calculations
5. Thermal Hydraulics
5 Thermal‐Hydraulics
6. Conclusions 
Section 01
Terminal Objective
           j
• Become familiar with codes and methods used to 
  generate core loading patterns and perform reload 
  design analysis
  d i        l i

Enabling Objectives
Enabling Objectives
• Develop an acceptable reload core loading pattern
• Perform safety and operational calculations on the
  Perform safety and operational calculations on the 
  designed LP along with thermal‐hydraulics analysis
• Provide an oral presentation and a written report
ANC: Advanced Nodal Code
• Multidimensional nodal code (3D, 2D, 1D)
• Licensed by the NRC in 1988 for PWR analysis
• Calculates
  –   Core reactivity
  –   Assembly power and burnups
      A     bl             db
  –   Rodwise power and burnups
  –   Reactivity coefficients
               y
  –   Core depletion
  –   Control rod and fission product worths
APA H code set used due to hexagonal geometry
APA‐H code set used due to hexagonal geometry
and consists of:
• ALPHA‐H
• PHOENIX‐H
• ANC H
  ANC‐H
These codes are the same in function as square
geometry codes but modified to use hexagonal
geometry.
Differences from square geometry versions:
Differences from square geometry versions:
• Both the assembly and the core are modeled 
  in 1/6 and full core geometry
  in 1/6 and full core geometry
• ANC‐H uses only one node per assembly as 
  compared to four nodes per assembly in ANC
           d f          d           bl i ANC

Inputs and outputs are virtually the same 
VVER‐1000
• PWR Design – 3000 MWt
           g
• Four‐Loop System
• Hexagonal Fuel Assemblies
  Hexagonal Fuel Assemblies

                                                                    http://www.nukeworker.com/pictures/displayimage‐28‐37.html




      http://www.elemash.ru/en/production/Products/NFCP/VVER1000/
• Inlet core temperature varies from 533.5 °F to 
     et co e te pe atu e a es o 533.5 to
  553.1 °F from 0% to 100% power
• Full Power Axial Offset (AO) band is ± 5%
• Control rods vary from 0 to 175 steps withdrawn
                        (    )
• Rod Insertion Limits (RILs) are a function of core 
  power
• Westinghouse ZrB2 integral fuel burnable 
  absorbers (IFBA) are used. Possible configurations 
  are 0, 18, 24, 30, 36, and 48 rods per assembly.
Section 02
•   Cycle Length
    Cycle Length
•   FΔH Peaking Factor
•   Moderator Temperature Coefficient (MTC)
        d                 C ffi i     ( C)
•   Feed Inventory
Parameter                  Limit

Cycle Length
Cycle Length               ≥ 308 EFPD (11329
                           ≥ 308 EFPD (11329 MWd/MTU)

ARO Peaking Factor (FΔH)   ≤ 1.532

HZP MTC
HZP MTC                    ≤ 0.00 pcm/ F
                           ≤ 0.00 pcm/°F

Feed Inventory             ≤ 42 Feeds
Customer plans to shut down cycle 4 at a cycle
Customer plans to shut down cycle 4 at a cycle
length of 308 EFPD. This value is used to 
calculate the EOC burnup:
  l l      h OC b
The EOC of the core is identified as when the boron concentration is equal
 to 10 ppm. The E‐SUM output edit from cyc4_depl.0949.out confirms that 
the designed loading pattern meets the limit of 308 EFPD which occurs at the 
11329 MWd/MTU burnup step.
11329 MWd/MTU burnup step
FΔH is literally defined as the normalized rise in enthalpy in a
               y                                         py
given subchannel. Since ANC‐H is a nodal based code based on
the fuel assemblies and not the subchannels, ANC uses
integrated rod power as the value for FΔH.
A portion of the input from 
03_anch_B1C4_depl.job is shown
to the right. This input was also 
         g           p
used to determine cycle length.
The maximum FΔH at each burnup step is included in the
E‐SUM output edit. The limit of 1.532 must not be
exceeded at any burnup step and is monitored at HFP ARO
conditions.
1.540


      1.530


      1.520


      1.510
F∆H




      1.500


      1.490


      1.480
                  Actual
                  Limit
      1.470


      1.460
              0    2000    4000         6000         8000   10000   12000

                                  Burnup [MWD/MTU]
                                  Burnup [MWD/MTU]
The F of each assembly for a particular
The FΔH of each assembly for a particular
burnup step is shown in the C‐FDH output edit.
MTC  change in core reactivity due to a change in
MTC – change in core reactivity due to a change in
moderator temperature (fuel temperature is held
constant) and is checked at HZP for all burnup steps.
constant) and is checked at HZP for all burnup steps
A portion of the input from 03_anch_B1C4_depl.job is:
The E SEQ output edit displays the MTC values
The E‐SEQ output edit displays the MTC values
for each burnup step.
The calculation from ANC is verified for the most 
limiting case (150 MWd/MTU burnup step).
limiting case (150 MWd/MTU burnup step).
0                                                                     1700


                 ‐2                                                                    1500

                                                                                       1300
                 ‐4




                                                                                                                    pm] 
                                                                                       1100




                                                                                                  n Concentration [pp
                 ‐6
MTC [pcm/°F] 




                                                                                       900
                 ‐8
                                                                                       700
                ‐10
                 10




                                                                                              Boron
                                                                                       500
                          MTC
                ‐12
                                                                                       300
                          MTC Limit
                ‐14                                                                    100
                          Boron Concentration
                          Boron Concentration

                ‐16                                                                    ‐100
                      0   2000            4000         6000         8000   10000   12000
                                                 Burnup [MWD/MTU]
Design Criteria     Target         Actual

Cycle Length       308 EFPD      308.8 EFPD

Maximum FΔH         1.532          1.514

Maximum MTC       0.00 pcm/°F   ‐1.056 pcm/°F

Feed Inventory        42             42
Section 03
Safety Calculations were performed using the
Safety Calculations were performed using the
Westinghouse Reactor Safety Analysis Checklist
(RSAC) which covers:
( S C) hi h
• Rodded FΔH
• Shutdown Margin
• Rod Ejection Accident
  Rod Ejection Accident
Since most reactors are permitted to operate
Since most reactors are permitted to operate
at full power with some control rods inserted
in the core, FΔH must also be checked with 
i h                    l b h k d ih
allowable control rods inserted. For this 
particular scenario, the calculation was 
performed with the lead control bank at its RIL.
performed with the lead control bank at its RIL
Input from roddedFDH.job
      p                  j




Xenon was skewed for conservatism
The rodded
The rodded FΔH is displayed in the E‐SUM output
               is displayed in the E SUM output 
edit from roddedFDH.0960.out.
C‐FDH output edit from roddedFDH.0960.out
Burnup [MWd/MTU]   Δ Axial Offset (%)   Rodded FΔH
      150                5.61             1.499
      500                5.30             1.496
      1000               5.19             1.507
      2000               5.16             1.518
      3000               5.32             1.514
      4000               5.39             1.510
      5000               5.49             1.508
      6000               5.66             1.504
      7000               4.79             1.500
      8000               5.86             1.494
      9000               6.04             1.485
     10000               6.22             1.477
     11000               6.43             1.470
     11329               6.49
                         6 49             1.467
                                          1 467
     11360               6.50             1.467
1.540


      1.530


      1.520


      1.510
Fdh




      1.500


      1.490


      1.480
                  Fdh

                  Rodded Fdh
                  Rodded Fdh
      1.470
                  Fdh Limit

      1.460
              0               2000   4000         6000         8000   10000   12000
                                            Burnup [MWD/MTU]
                                            Burnup [MWD/MTU]
Shows that in any circumstances the operator
will be able to safely shut down the core.

Technically defined as the amount by which the core would 
would be subcritical  (%Δρ) at hot shutdown conditions following
a reactor trip, assuming the highest worth control rod is stuck out.

Six cases in ANC:
• K1 B
    K1 – Base Case at Burnup of Interest (BOC or EOC)
              C     tB          fI t   t (BOC EOC)
• K2 – Rods are Inserted to RILs
• K3 – Over‐Power/ Over‐Temperature, Skew Power to              Top of Core 
    (
    (worst conditions for trip)
                             p)
• K4 – Trip to Zero Power
• K5 – Full Core at All Rods In (ARI) 
• K6 – Worst Stuck Rod Out
Calculation performed at both BOC and EOC
Calculation performed at both BOC and EOC

Total Power Defect‐ amount the core will 
    l           f              h          ill
  increase in reactivity due to the trip to HZP

Available SDM =
Calculated SDM – Rod Worth Uncertainty – Voids
E‐SUM output edit from sdownemBOC.0979.out
E‐SUM output edit from sdownemEOC.1004.out
Requirement                          BOC Worth (pcm)   EOC Worth (pcm)
Control Banks
   Power Defect                          1943.7            3152.6
   Void Effects                            50                50

(1) Total Control Bank Requirement
(1) Total Control Bank Requirement       1993.7
                                         1993 7            3202.6
                                                           3202 6

Control Rod Worth (HZP)

   All rods inserted less most  
                                          6867             7677.3
   reactive rod stuck out

(2) Less 10%                             6180.3            6909.6
Shutdown Margin

   Calculated Margin (2) – (1)           4186.6             3707

   Required Shutdown Margin               1300              1300
Purpose: Simulate the unlikely event of a single 
   p                           y             g
  control rod being ejected from the core due to 
  failure in the control rod pressure housing. Total 
  peaking factor, F and %Δρ must be below limit 
  peaking factor FQ ,  and %Δρ must be below limit
  for each condition.
Evaluated at Four Conditions:
1. BOC HFP
2. EOC HFP
3. BOC HZP
4. EOC HZP
Input sample from rodejectionHFP.job


Only control bank 10 is 
  j
ejected from core at HFP.
Since rod ejection is a 
              ,
fast transient, all 
feedback effects are 
frozen under an adiabatic 
assumption.
The E‐SUM output edit from 
The E SUM output edit from
rodejectionHFP.0963.out contains the total 
peaking factor and eigenvalues.
The rod ejection worth is calculated for each 
The rod ejection worth is calculated for each
case using the equation:
Rod Ejection at HFP
                                                         %Δρ (10%                    FQ (13% 
    Case        Eigenvalue    dk/k          %Δρ                            FQ
                                                         uncertainty)              uncertainty)
BOC Full Core   1.000000      ‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
BOC Bank 10     1.000128     0.000128    0.012799        0.014079        1.949       2.20237
EOC Full Core
EOC Full Core   0.999200
                0 999200      ‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
EOC Bank 10     0.999377     0.000177    0.017713        0.019484        1.811       2.04643
Approach is virtually same as
for HFP with the exception being
for HFP with the exception being
 the number of control rods ejected.
Now four locations are ejected
Now four locations are ejected
 individually.
BOC Rod Ejection at HZP
                                                        %Δρ (10%                        FQ (13% 
  Case      Eigenvalue     dk/k            %Δρ         uncertainty)          FQ       uncertainty)

Full Core   1.000001     ‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Bank 10     1.001415     0.001413       0.141300        0.158256          2.929         3.60267
 Bank 9     1.002729     0.002724       0.272428        0.305120          4.922         6.05406
 Bank 9 
            1.002328     0.002324       0.232429        0.260321          3.137         3.85851
(center)
 Bank 8     1.000479     0.000478       0.047789        0.053523          2.750         3.38250
EOC Rod Ejection at HZP
                                                        %Δρ (10%                        FQ (13% 
  Case      Eigenvalue     dk/k            %Δρ         uncertainty)          FQ       uncertainty)

Full Core   1.037299     ‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Bank 10     1.039348     0.001973       0.197337        0.221018          3.923         4.82529
 Bank 9     1.040963     0.003526       0.352603        0.394915          6.408         7.88184
 Bank 9 
            1.039740     0.002350       0.235046        0.263252          3.909         4.80807
(center)
 Bank 8     1.038825     0.001470       0.147005        0.164645          5.159         6.34557
Rod Ejection Overview
                       j
               Calculated               Calculated
Case (Bank)                 %Δρ Limit                FQ Limit
                  %Δρ                       FQ
  BOC HFP
  BOC HFP      0.014079       0.200      2.20237       5.8
  EOC HFP      0.019484       0.200      2.04643       6.5
BOC HZP (10)   0.158256       0.860      3.60267      13.0
BOC HZP (9
        (      0.305120       0.860      6.05406      13.0
BOC HZP (9c)   0.260321       0.860      3.85851      13.0
BOC HZP (8)    0.053523       0.860      3.38250      13.0
EOC HZP (10)   0.001018       0.900      4.82529      21.0
EOC HZP (9)    0.394915       0.900      7.88184      21.0
EOC HZP (9c)
EOC HZP (9c)   0.263252
               0 263252       0.900
                              0 900      4.80807
                                         4 80807      21.0
                                                      21 0
EOC HZP (8)    0.164645       0.900      6.34557      21.0
Section 04
Several Calculations must be performed before
Several Calculations must be performed before
the reactor can go back online after an outage:
• BOC HZP Rodworths
    OC         d    h
• Xenon Reactivity after Startup and Trip
• Differential Boron Worth
• Isothermal Temperature Coefficient
  Isothermal Temperature Coefficient
• BOC HZP Critical Boron Concentration
Rodworths of control banks are determined
             of control banks are determined 
  using the boron dilution method. 
Input sample from rodworth.job

                                 E SUM edit from rodworth.0981.out
                                 E‐SUM edit from rodworth.0981.out
Control Bank Worth Overview
Control Banks Inserted    CBC [ppm]   Bank No.       Bank Worth [ppm]
        ARO                 1872      ‐‐‐‐‐‐‐‐‐‐‐‐      ‐‐‐‐‐‐‐‐‐‐‐‐‐
         10                 1796          10                76
        10 + 9
        10 + 9              1656           9                140
      10 + 9 + 8            1563           8                93
    10 + 9 + 8 + 7          1480           7                83
Reactivity worth of xenon is calculated in ANC H 
Reactivity worth of xenon is calculated in ANC‐H
for the following cases:
• S
  Startup
  – BOC, MOC, EOC at 50% and 100% power
• Trip
  – BOC, MOC, EOC at 50% and 100% power
• Core is collapsed to 2‐D 
  for calculation
• Xenon reactivity found 
                  p
  over 100 hour period
• No change in burnup 
  after startup
  after startup
E‐SUM output edit from su_boc_fp.0983.out
0                                                                         0


                    500
                   ‐500                                                                      ‐500
                                                                                              500
                                                BOC Full Power                                                        MOC Full Power

             ‐1000                                                                          ‐1000
        ty [pcm]




                                                                         Reactivity [pcm]
                                                BOC Half Power                                                        MOC Half Power

              1500
             ‐1500                                                                          ‐1500
                                                                                             1500
Reactivit




             ‐2000                                                                          ‐2000


              2500
             ‐2500                                                                          ‐2500
                                                                                             2500


             ‐3000                                                                          ‐3000
                          0   20   40      60       80       100   120                              0   20   40      60       80       100   120
                                        Time [hr]
                                        Time [hr]                                                                 Time [hr]
                                                                                                                  Time [hr]




                                                     Reactivity after Startup
0



                    ‐500


                                                           EOC Full Power
                   ‐1000
                                                           EOC Half Power
Reactivity [pcm]




                   ‐1500



                   ‐2000



                   ‐2500



                   ‐3000
                           0   20    40      60       80             100    120
                                          Time [hr]



                                Reactivity after Startup
0                                                                           0

                    ‐500                                                                        ‐500

                   ‐1000                                                                       ‐1000

                   ‐1500                                                                       ‐1500




                                                                            Reactivity [pcm]
Reactivity [pcm]




                   ‐2000                                                                       ‐2000

                   ‐2500                                                                       ‐2500

                   ‐3000                                                                       ‐3000
                                                                                                                                 MOC Full Power
                                                     BOC Full Power
                   ‐3500                                                                       ‐3500
                                                                                                                                 MOC Half Power
                                                     BOC Half Power
                                                     BOC Half Power
                   ‐4000                                                                       ‐4000

                   ‐4500                                                                       ‐4500
                           0   20   40      60         80      100    120                              0   20   40      60         80      100    120
                                         Time [hr]
                                         Time [hr]                                                                   Time [hr]
                                                                                                                     Time [hr]




                                                            Reactivity after Trip
0

                    ‐500

                   ‐1000

                   ‐1500
            pcm]




                   ‐2000
Reactivity [p




                   ‐2500

                   ‐3000
                                                         EOC Full Power
                   ‐3500
                                                         EOC Half Power
                   ‐4000

                   ‐4500

                   ‐5000
                           0   20       40      60           80           100   120
                                             Time [hr]



                                    Reactivity after Trip
Necessary to understand the
Necessary to understand the
reactivity effect of boron in the
core under various conditions.
        d       i        di i
Obtained by varying the boron
concentration by ± 25 ppm
 throughout cycle.
 throughout cycle
                               Input sample from dbw_HFP.job
E‐SUM output edit from dbw_HFP.0998.out
E‐SUM edit from dbw_hzp.0999.out
‐6.5




                                ‐7
                      m/ppm]
    erential Worth [pcm




                               ‐7.5




                                ‐8
                                           HZP
Diffe




                                           HFP
                               ‐8.5




                                ‐9
                                      0   2000   4000         6000         8000   10000   12000
                                                        Burnup [MWd/MTU]
The isothermal temperature coefficient (ITC) is
The isothermal temperature coefficient (ITC) is
used to confirm the validity of the MTC 
prediction.
                ITC = MTC + DTC
Most limiting case occurs at BOC HZP where
the boron concentration is highest.
the boron concentration is highest
Input Sample from itc.job
                            E‐SUM edit from itc.0997.out
The value for ITC is not calculated in ANC H, 
The value for ITC is not calculated in ANC‐H
so it must be hand calculated:
Confirmation of the BOC critical boron
Confirmation of the BOC critical boron
concentration at HZP is one of the final steps 
required before startup can occur. 
    i db f




          E‐SUM output edit from hzp_cbc.1000.out
Section 05
Objective: perform realistic and conservative 
Objective: perform realistic and conservative
 calculations to determine the departure from 
 nuclear boiling (DNBR) at full power and the 
 nuclear boiling (DNBR) at full power and the
 power level at which a boiling crisis occurs.

Analysis performed using the COBRA‐IV PC code
for the hot typical cell and the hot thimble cell
• Applies numerical solutions to determine
  Applies numerical solutions to determine 
  thermal‐hydraulic parameters using 
  subchannel analysis method
  subchannel analysis method
• Capable of determining flow and enthalpy 
  distribution at various axial and radial 
  distribution at various axial and radial
  locations
• U
  Uses the Homogeneous Equilibrium Model 
         h H                E ilib i    M d l
  (HEM)
COBRA IV used to calculate:
COBRA‐IV used to calculate:
• fuel, clad, and coolant temperature 
  distributions
• flow quality and void fraction distributions
• pressure drop
• inter‐channel crossflow
• Calculated as a function of elevation
  Calculated as a function of elevation

• Typical and thimble cells calculated with 
     i l d hi bl        ll    l l d ih
  nominal and overpower cases directly 
  compared d
Mass Flux for Hot Typical Channel
                         3.05

                           3

                         2.95

                          2.9
        x (Mlb/hr/ft2)




                         2.85

                          2.8
Mass Flux




                         2.75

                          2.7
                                    Nominal Case
                         2.65
                                    Overpower Case
                                    Overpower Case
                          2.6

                         2.55
                                0       20           40        60                80       100   120   140
                                                                    Axial Location (in)
                                                                    Axial Location (in)
Mass Flux for Hot Thimble Channel
                          3


                         2.8


                         2.6
        x (Mlb/hr/ft2)




                         2.4
Mass Flux




                         2.2


                          2
                                   Nominal Case
                                   Overpower Case
                         1.8


                         1.6
                               0    20              40      60           80            100   120   140   160
                                                                 Axial Location (in)
                                                                 Axial Location (in)
Plotting coolant and cladding temperatures
Plotting coolant and cladding temperatures
illustrates different regions of the core that may
undergo:
    d
  – Forced Convection
  – Nucleate Boiling
  – Saturated Boiling
Hot Typical Cell Nominal                                                 Hot Typical Cell Overpower 
                                 Temperatures                                                              Temperatures
                  750                                                                      750
                             Coolant Temperature                                                        Coolant Temperature
                             Cladding Temperature
                                                                                                        Cladding Temperature
                  700                                                                      700
    erature (F)




                                                                         Temperature (F)
                  650                                                                      650
Tempe




                  600                                                                      600


                  550
                                                                                           550
                        0             50                     100   150
                                                                                                 0               50                     100   150
                                           Axial Location (in)
                                                                                                                      Axial Location (in)
Hot Thimble Cell Nominal                                                   Hot Typical Cell Overpower 
                                 Temperatures                                                                Temperatures
                  750
                              Coolant Temperature                                            750
                                                                                                          Coolant Temperature
                              Cladding Temperature
                                                                                                          Cladding Temperature
                  700                                                                        700
    erature (F)




                                                                           Temperature (F)
                  650                                                                        650
Tempe




                  600                                                                        600



                  550                                                                        550
                        0               50                     100   150                           0                50                     100   150
                                             Axial Location (in)                                                         Axial Location (in)
Since the onset of nucleate boiling can be
Since the onset of nucleate boiling can be
problematic for reactor kinetics, quality and
void fraction are evaluated.
   id f   i          l    d

Void Fraction: percentage of volume in a 
                p    y p
  channel occupied by vapor
Hot Typical Cell Quality                                             Hot Typical Cell Void Fraction
          0.16                                                                     0.45

          0.14                                                                      0.4
                                                                                               Nominal Void Fraction
                                                                                               Nominal Void Fraction
                       Nominal Quality                                             0.35
          0.12
                                                                                               Overpower Void Fraction
                       Overpower Quality                                            0.3
           0.1




                                                                   Void Fraction
                                                                                   0.25
Quality




          0.08
                                                                                    0.2
Q




          0.06
                                                                                   0.15
          0.04
                                                                                    0.1
          0.02                                                                     0.05

            0                                                                        0
                 0              50                     100   150                          0             50                   100   150
                                     Axial Location (in)                                                   Axial Location (in)
Hot Thimble Cell Quality                                              Hot Thimble Cell Void Fraction
          0.16                                                                      0.45

          0.14                                                                       0.4

                                                                                    0.35
          0.12
                                                                                                Nominal Void Fraction
                        Nominal Quality                                              0.3
           0.1




                                                                    Void Fraction
                                                                                                Overpower Void Fraction
                        Overpower Quality                                           0.25
Quality




          0.08
                                                                                     0.2
Q




          0.06
                                                                                    0.15
          0.04
                                                                                     0.1
          0.02                                                                      0.05

            0                                                                         0
                 0               50                     100   150                          0              50                  100   150
                                      Axial Location (in)                                                   Axial Location (in)
Departure from Nucleate Boiling Ratio: ratio of 
 the heat flux needed to cause DNB to the 
 the heat flux needed to cause DNB to the
 actual heat flux of a fuel rod 
Minimum DNBR (MDNBR) limit is 1.17.
Minimum DNBR (MDNBR) limit is 1 17

Power was increased to determine at what 
          i        d d        i      h
overpower the limit was reached
  Power    MDNBR   Rod   Channel   Axial Location (in.)   Cell Type
   100%     3.37    2      2              107.2           Thimble
   153%    1.174   11      31             135.8            Typical
Typical Cell DNBR
       25




       20
                                                             Nominal Case
                                                             Nominal Case
                                                             Overpower Case
                                                             Boiling Crisis
       15
DNBR
D




       10




        5




        0
            0   20   40     60                80       100       120          140
                                 Axial Location (in)
                                 Axial Location (in)
Thimble Cell DNBR
       25




       20
                                                             Nominal Case
                                                             Nominal Case
                                                             Overpower Case
                                                             Boiling Crisis
       15
DNBR
D




       10




        5




        0
            0   20   40     60                80       100          120       140
                                 Axial Location (in)
                                 Axial Location (in)
Section 06
Terminal Objective
Terminal Objective
• Successfully became familiar with codes (ANC 
  and COBRA‐IV) used to generate core loading 
  and COBRA IV) used to generate core loading
  patterns and perform reload design analysis    
Enabling Objectives
Enabling Objectives
• Successfully developed an acceptable core 
  reload pattern that met all limitations
  reload pattern that met all limitations
• Safety, Operational, and Thermal‐Hydraulic 
  calculations were performed 
    l l i              f      d
• Written report completed
Loading Pattern Generation and Safety Analysis

Weitere ähnliche Inhalte

Ähnlich wie Loading Pattern Generation and Safety Analysis

2005 polaris 700 xc sp m 10 snowmobile service repair manual
2005 polaris 700 xc sp m 10 snowmobile service repair manual2005 polaris 700 xc sp m 10 snowmobile service repair manual
2005 polaris 700 xc sp m 10 snowmobile service repair manualfjjfyjsekdmme
 
2005 polaris 600 xc sp snowmobile service repair manual
2005 polaris 600 xc sp snowmobile service repair manual2005 polaris 600 xc sp snowmobile service repair manual
2005 polaris 600 xc sp snowmobile service repair manualfjskemdzaqmme
 
2005 polaris 500 xc sp m 10 snowmobile service repair manual
2005 polaris 500 xc sp m 10 snowmobile service repair manual2005 polaris 500 xc sp m 10 snowmobile service repair manual
2005 polaris 500 xc sp m 10 snowmobile service repair manualolfjsekdmmes
 
Ammonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal TapiawalaAmmonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal TapiawalaVishal Tapiawala
 
Npm pf(c)55 specsheet
Npm pf(c)55 specsheetNpm pf(c)55 specsheet
Npm pf(c)55 specsheetElectromate
 
Bombas Hermetic _ Informação técnica: bombas:CAM e CAM-TANDEM
Bombas Hermetic _ Informação técnica: bombas:CAM e CAM-TANDEMBombas Hermetic _ Informação técnica: bombas:CAM e CAM-TANDEM
Bombas Hermetic _ Informação técnica: bombas:CAM e CAM-TANDEMVibropac
 
Bombas de Refrigeração Hermetic
Bombas de Refrigeração HermeticBombas de Refrigeração Hermetic
Bombas de Refrigeração HermeticVibropac
 
DMP Catalogue
DMP CatalogueDMP Catalogue
DMP CatalogueAdhyKeraf
 
Iai rcp2 ss8_r_specsheet
Iai rcp2 ss8_r_specsheetIai rcp2 ss8_r_specsheet
Iai rcp2 ss8_r_specsheetElectromate
 
Iai rcp2 ba6_specsheet
Iai rcp2 ba6_specsheetIai rcp2 ba6_specsheet
Iai rcp2 ba6_specsheetElectromate
 
Npm pf(c)42t specsheet
Npm pf(c)42t specsheetNpm pf(c)42t specsheet
Npm pf(c)42t specsheetElectromate
 
ACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom CorporationACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom CorporationMarioFarias18
 
Motor Technical Brochure for ABB LT Motors LT
Motor Technical Brochure for ABB LT Motors LTMotor Technical Brochure for ABB LT Motors LT
Motor Technical Brochure for ABB LT Motors LTRajivSharma636471
 
Iai rcp2 ba7_specsheet
Iai rcp2 ba7_specsheetIai rcp2 ba7_specsheet
Iai rcp2 ba7_specsheetElectromate
 
Iai rcp2 ss7_c_specsheet
Iai rcp2 ss7_c_specsheetIai rcp2 ss7_c_specsheet
Iai rcp2 ss7_c_specsheetElectromate
 
Manual book honda cbr 250 r preview
Manual book honda cbr 250 r previewManual book honda cbr 250 r preview
Manual book honda cbr 250 r previewnur cholis
 
Iai rcp2 ss7_r_specsheet
Iai rcp2 ss7_r_specsheetIai rcp2 ss7_r_specsheet
Iai rcp2 ss7_r_specsheetElectromate
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductorauthelectroniccom
 

Ähnlich wie Loading Pattern Generation and Safety Analysis (20)

2005 polaris 700 xc sp m 10 snowmobile service repair manual
2005 polaris 700 xc sp m 10 snowmobile service repair manual2005 polaris 700 xc sp m 10 snowmobile service repair manual
2005 polaris 700 xc sp m 10 snowmobile service repair manual
 
2005 polaris 600 xc sp snowmobile service repair manual
2005 polaris 600 xc sp snowmobile service repair manual2005 polaris 600 xc sp snowmobile service repair manual
2005 polaris 600 xc sp snowmobile service repair manual
 
2005 polaris 500 xc sp m 10 snowmobile service repair manual
2005 polaris 500 xc sp m 10 snowmobile service repair manual2005 polaris 500 xc sp m 10 snowmobile service repair manual
2005 polaris 500 xc sp m 10 snowmobile service repair manual
 
Ammonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal TapiawalaAmmonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal Tapiawala
 
Npm pf(c)55 specsheet
Npm pf(c)55 specsheetNpm pf(c)55 specsheet
Npm pf(c)55 specsheet
 
Bombas Hermetic _ Informação técnica: bombas:CAM e CAM-TANDEM
Bombas Hermetic _ Informação técnica: bombas:CAM e CAM-TANDEMBombas Hermetic _ Informação técnica: bombas:CAM e CAM-TANDEM
Bombas Hermetic _ Informação técnica: bombas:CAM e CAM-TANDEM
 
Bombas de Refrigeração Hermetic
Bombas de Refrigeração HermeticBombas de Refrigeração Hermetic
Bombas de Refrigeração Hermetic
 
DMP Catalogue
DMP CatalogueDMP Catalogue
DMP Catalogue
 
Iai rcp2 ss8_r_specsheet
Iai rcp2 ss8_r_specsheetIai rcp2 ss8_r_specsheet
Iai rcp2 ss8_r_specsheet
 
i c engines ppt.pptx
i c engines ppt.pptxi c engines ppt.pptx
i c engines ppt.pptx
 
UNIT IV.pptx
UNIT IV.pptxUNIT IV.pptx
UNIT IV.pptx
 
Iai rcp2 ba6_specsheet
Iai rcp2 ba6_specsheetIai rcp2 ba6_specsheet
Iai rcp2 ba6_specsheet
 
Npm pf(c)42t specsheet
Npm pf(c)42t specsheetNpm pf(c)42t specsheet
Npm pf(c)42t specsheet
 
ACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom CorporationACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom Corporation
 
Motor Technical Brochure for ABB LT Motors LT
Motor Technical Brochure for ABB LT Motors LTMotor Technical Brochure for ABB LT Motors LT
Motor Technical Brochure for ABB LT Motors LT
 
Iai rcp2 ba7_specsheet
Iai rcp2 ba7_specsheetIai rcp2 ba7_specsheet
Iai rcp2 ba7_specsheet
 
Iai rcp2 ss7_c_specsheet
Iai rcp2 ss7_c_specsheetIai rcp2 ss7_c_specsheet
Iai rcp2 ss7_c_specsheet
 
Manual book honda cbr 250 r preview
Manual book honda cbr 250 r previewManual book honda cbr 250 r preview
Manual book honda cbr 250 r preview
 
Iai rcp2 ss7_r_specsheet
Iai rcp2 ss7_r_specsheetIai rcp2 ss7_r_specsheet
Iai rcp2 ss7_r_specsheet
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
 

Loading Pattern Generation and Safety Analysis