SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Downloaden Sie, um offline zu lesen
A N a t i o n a l S p a c e Te c h n o l o g y
       Strategy for the UK
               A High Growth Sector




   N a t i o n a l S p a c e Te c h n o l o g y S t e e r i n g G r o u p
Chairman’s Foreword

                                       The Space Innovation Growth Team through the Space
                                       Innovation and Growth Strategy (IGS) published an
                                       extensive and detailed report in 2010. The report was
                                       prepared by a team of experts selected from across industry,
                                       academia and central government and made a clear set
                                       of recommendations.

                                       I had the pleasure to chair the Technologies, Capabilities and
                                       Facilities work stream whose work set a strong foundation
                                       for the third IGS recommendation which stated:

                                    “The UK Government and industry should establish a
                                    National Space Technology Strategy (NSTS), with a clearly
                                    identifiable budget separate and additional to ESA and
    research council budgets. This recommendation is a key building block in delivering the
    jobs and economic growth planned, and should be established quickly and funded properly.
    A National Space Technology Steering Group should be set up immediately to oversee the
    NSTS, chaired by industry, but with Government representation”.

    In August 2010 the National Space Technology Steering Group was created, which I now chair
    and has representation from Government departments and agencies, industry and academia.
    This Group with support from the Space Special Interest Group has pulled together this
    document, the National Space Technology Strategy with a suite of underpinning technology
    roadmaps.

    It identifies the Strategy’s objectives and introduces an initial set of 5 sector roadmaps building
    on the IGS data and conclusions updated through a series of roadmap workshops held
    with the UK space community through September 2010. The roadmaps are sector based,
    providing a clear vision and cohesive technology strategy for UK space activities. They bring
    together the institutional, commercial and scientific objectives and respond to the wider UK
    challenges of meeting society’s needs.

    During the next few months we intend to harmonise further the relationship between this, the
    UK Programme and other international activities as well as seeking to draw out cross-cutting
    themes. These approaches will maximise the UK’s engagement and impact on the global
    space economy. I encourage you to read the summary and following document with a view
    to engaging at all levels to enable delivery of the National Space Technology Strategy.

    The effort to create the document and roadmaps should not be underestimated and has
    involved extensive consultation across the UK space community over 6 months; I wish to
    thank the National Space Technology Steering Group, the Space Special Interest Group and
    the community at large for their time and contributions in delivering what follows.




    Sir Keith O’Nions
    Chairman National Space Technology Strategy Group
    Rector of Imperial College London
    March 2011




2
Contents




Chairman’s Foreword                                       2

1. Executive Summary                                      4

2. Strategic Principles of the Space Sector               7

3. Overview of the Space Sector                           8

4. Role of the National Space Technology Strategy         12

5. Technology Themes and Roadmaps                         14

6. Delivering the Space Innovation Growth Strategy        22

7. Governance of the National Space Technology Strategy   24




                                                               3
1                              Executive Summary
         Space is Earth’s Nervous System
               i                                              technologies and innovation needed to increase market
                                                              share and benefit from wealth-generating opportunities
From monitoring crop yields to measuring ice cover;           in the short, medium and long term.
protecting national security or our shared environment,
delivering information instantly, anywhere in the world or    For this to be realised, however, a new approach of
safeguarding teenage drivers on local streets, the more       additional investment by Government is essential.
we understand about what space can do for us, the more
we want from it.
                                                                            Competitors Old and New
The Innovation and Growth Strategy confirmed that
the worldwide market for its services is predicted to         Brazil, Russia, India and China are among the nations
grow by 5% annually from £160bn to £400bn p.a within          investing heavily in space, looking to claim a slice of this
twenty years                                                  rapidly expanding market. Our ‘traditional’ space-trading
                                                              rivals in France, Germany and the US are doing likewise.
                                                              The knowledge, infrastructure and success of the UK
     The UK Space Sector – Growing Success                    space sector currently presents a formidable barrier to
                                                              entry for would-be rivals.
For the past decade it has achieved year-on-year growth
of 9%, a figure more commonly associated with China’s         However, the pace of development is such that, were we
‘economic miracle’. This rate has been maintained despite     to erode our technology research and development base
recession. It manifests itself in a truly national, export-   through under-investment, an advantage earned over
led industry employing more than 70,000 people and            thirty years could be lost within five.
contributing £6.5bn to the economy each year, directly
and through its wider economic impact. Revenues in            In this scenario, we would not be looking to grow
this sector could readily rise from £6.5bn to £40bn p.a.      our market share and create new jobs; we would be
by 2030, if the UK grows its share of the global space        fighting simply to cling on to what we have, vulnerable
economy from the 6% to 10%.                                   to multinational corporations transferring business,
                                                              expertise and intellectual property to other more
This is an achievable aspiration, but only if we make the     conducive environments. Having the ability to be first
right investment decisions now.                               to market which with technical superiority will allow
                                                              the UK to capture a greater proportion of the global
The National Space Technology Strategy is the result          growth available. The challenge should certainly not
of an inclusive, six month process that distilled the         be underestimated. But nor should our ability to seize
views and expertise of all parts of the space sector into     the day.
a series of clear, actionable roadmaps. Market led, the
Strategy details how the UK can develop and deploy the        We do not need to match the investment levels of rivals




 4
 6
U K N AT IO N AL S PACE TEC HN OLOGY S T R ATEGY




                Feeling The Benefits of Space
   Hasita is unaware that she’s part of the new space age. But that’s           Behind them, unnoticed, is one of the companies that first put this
   about to change. Ten years old and dashing down a dusty path                 corner of the Capital on the global map – Inmarsat. A world leader in
   flanked by swaying wheat fields, she has abandoned early plans to be         maritime and aircraft communications, its fleet of satellites is controlled
   a film star and set her sights on becoming a doctor. Or an architect.        from a mission control room high above the whirling intersection.
   Either would be an achievement in a region where less than 4% of the         Should disaster strike, anywhere in the world, the people in this room
   population go on to higher education.                                        will be amongst the first to respond, re-tasking satellites in order to
                                                                                provide vital voice and data capability for the rescue services, state
   At school, there is nervous chatter as Hasita and her classmates take        agencies, media and humanitarian organisations on the ground.
   their places in front of a computer. There are just five in the school and
   today it is their turn to use them. The teacher produces a mobile            Matt Jones, deftly dodging the kids on his bike, knows about Inmarsat
   phone and smiles. The students glance at each other. This is going to        and the power of data. Matt invents with information. His company,
   be a very different kind of English lesson…                                  Berg, is located close by, one of a growing number of creative,
                                                                                fearless start-ups exploring new ways to vision the world and frame
   The offices of Cambridge University Press are 4500 miles and a               our growing appetite for knowledge.
   pleasant stroll through leafy streets away from Hasita’s Punjab
   classroom. A famous academic imprint, it is also one of the world’s          From maps of Manhattan that magically ‘curl’ up in the distance,
   oldest companies, having been in business continuously since 1584.           changing a street-scene into a birds-eye view, through to applications
   As the venerable publisher of Newton and Darwin, CUP has often               mapping Neil Armstrong’s moon-walk onto your neighbourhood,
   championed revolutions in thought. Today it is also leading one in           Berg’s products blend curiosity, technology, fun and utility. Interna-
   education.                                                                   tional brands come calling.

   Across India, North Africa and the Middle East, fast growing popula-         A student’s education; the re-invention of a world famous name;
   tions mean demand for learning is outstripping the supply of teachers.       cutting-edge communications and the entrepreneurial energy of a
   So Cambridge University Press uses today’s technologies – the                high-tech start-up: they are all empowered, realised, connected by
   internet, mobile phones – to being lessons to remote locations and           space.
   continue the mission it has been on for half a millennia.
                                                                                Which is why the worldwide market for its services will be worth
   That timeframe would not mean much to Hasita, nor the gaggle of              £400bn p/a in twenty years time. For Britain, this presents a once in a
   teenagers standing at London’s Old Street Roundabout. They stare at          generation opportunity to generate new wealth, jobs and knowledge.
   the traffic maelstrom and wonder if this really is the place where the
   next Google is supposed to spring from.




in order to claim a greater share of the prize; building on                     Avanti is a pioneer enjoying ‘first mover’ advantage,
current momentum will cost relatively little, both in real                      thanks to a successful strategic partnership between
terms and in proportion to the market opportunity. Recent                       government, business and academia.
experience shows how successful targeted investment
can be.                                                                         The National Space Technology Strategy can amplify
                                                                                this success, increase overseas earnings and generate
                                                                                100,000 new jobs, but only with appropriate investment
                      Real World Returns                                        in research and development.

In November 2010, Avanti launched Europe’s first Ka-                            Similarly, as our economy grows, the UK should also
band broadband satellite, HYLAS 1; the novel, highly                            increase its contributions to the European Space Agency
adaptable payload incorporated in this satellite was                            (ESA). This will not only bring us more into line with
designed and built in Britain by Astrium. It will deliver                       other leading European space nations, it will strengthen
broadband coverage from space, connecting users                                 our role in ESA decision-making and create increased
in rural areas across Europe not served by wire-based                           opportunities for our domestic space sector to win larger
networks. With each satellite providing a consistent                            shares of commercial contracts.
service to hundreds of thousands of homes and
businesses, regardless of location, and a market of over                        UK technology will become even more important as the
70m people with broadband needs, exportable products                            European Commission becomes more involved in space
are in high demand.                                                             programmes and deploys its funding to deliver projects.
                                                                                In addition to an increase in scale, the Commission is
Thanks to seed-corn investment by the UK Government                             likely to adopt a more commercial attitude to selecting
in key technologies, the company generated sufficient                           contractors and this provides the opportunity for the UK
City investment not only to launch HYLAS 1, but also fly a                      to win a greater share of work based on world-leading
sister satellite. From 2012, HYLAS 2 will extend Avanti’s                       technology and greater competitiveness.
service to North Africa and the Middle East and millions
of new customers.



                                                                                                                                                          5
1                              Executive Summary
                                                                growth and wider policy objectives. Specifically, we
That space provides a good return is not in doubt:              recommend it is aimed to:
£1m invested in satellite developments in 1998 is now
worth £350m.                                                     • Develop and de-risk technologies needed to directly
                                                                   increase the UK’s share of global high growth markets
A systematic failure in this sector has been the difficulty
for equipment suppliers to cross the boundary between            • Ensure we lever maximum benefit from our strategic
science domains, where disruptive technology is often              funding commitments in Europe and beyond
developed, and commercial markets where exploitation
leads to wealth creation. By bringing together the prime         • Maximise the return from UK’s existing investments in
contractors and the suppliers in a combined strategy, this         the International Space Innovation Centre at Harwell
plan ensures a clear development path for both which,
in the long run, should enhance the competiveness and            • Develop new technologies and IP for the market by
hence success of all players.                                      encouraging UK-based SMEs and academia to exploit
                                                                   ideas in applications and services
More pragmatically, the National Space Technology
Strategy represents the most realistic and achievable            • Game-changing technologies require alternative
route to realising essential national ambitions:                   mechanisms of investment, which are outside of
economic growth and stability; creation of highly skilled          the scope of this strategy due to the high level of
jobs; development of new knowledge and business                    innovation involved
opportunities; and generation of tangible revenue for
the economy.                                                    This Strategy is critical to deliver the growth promised,
                                                                and needs to span the commercial markets and the
                                                                public service markets such as climate monitoring
     A National Programme, UK competiveness                     and security services.

The UK space industry has been successful in research           The UK should launch a cross-sector National Space
activity, largely through European research and                 Technology programme in 2011, jointly funded by
development (R&D) programmes. Nonetheless, the                  industry and Government, rising from £20m per year
competitive advantage the UK enjoys in key technology           to £100m per annum by 2015/16 as this becomes
areas is at risk of being eroded and further action is needed   affordable to industry and Government. This will
to increase both the value to the UK of R&D support and         deliver both near and longer-term economic and
secure a still greater level of industry investment. This       social benefits to the UK and the scale of benefits for
requires a national programme.                                  the five technology themes presented in the report.

A UK programme provides the advantages that it can              We need not lose market share to China, India or any
be agile, focus accurately on market needs that UK-             other ‘challenger’ nation; these countries will, instead, be
technology can meet and support the UK’s industrial             our markets. This is the future the UK space sector has
                                                                been building towards.




 6
2                                Strategic Principles
The National Space Technology Strategy (NSTS) is              • To encourage innovative service-led business models
governed by a set o underlying principles which have
                    of                                          recognising the growing importance of public-private
been established to meet the overarching strategic              partnerships, and of the EU as an operational driver
goals and vision for the Space sector as articulated in         for European space needs
the IGS. The Strategy is detailed and implemented via
a suite of market-driven Technology Roadmaps. The             • To recognise the linkages between the
strategic principles are:                                       applications and services that can drive the
                                                                development of cutting edge and disruptive
 • Technology must meet an end objective, such as:              technologies and capabilities
  o direct economic jobs and wealth creation
  o indirect impact on GDP through societal or strategic      • To create an environment for the growth of a
    needs (e.g. health, environment, resilience, defence)       balanced space sector, embracing the benefits
  o longer-term scientific understanding                        of linking prime contractors, subsystem and
                                                                equipment suppliers, technology companies, SMEs,
 • To encourage clarity of focus for the UK space               and academia
   industry technological capability, in order to increase
   competitive standing and therefore profitability           • To create greater alignment of space sector
                                                                capability with Government needs and priorities
 • To continue to use the technology development
   funding mechanisms that exist today but                    • To maximise job creation and employment of STEM
   encouraging the UK space industry and government             trained graduates in the UK space industry and
   to look to the future structures of national, European       associated terrestrial applications
   and global markets ( including new and emerging
   markets and those of emerging space powers)

 • To utilise as appropriate to the market sector, a mix of
   private, national government and European funding




                                                                                                                  7
3
                                Overview of the Space Sector:
                                 Markets and Background
For an industry which is half the age of the automotive         scientific exploration that is fundamental to furthering
and aerospace sectors the space industry provides               human understanding.
significant benefit to today’s society in areas of business
and leisure. Space has been one of the hidden success           Telecommunications currently dominates the UK space
stories of UK industry over the past decades not simply         industry in terms of earnings, exports and employment
because of its remote space-enabled services but for            for both upstream manufacturing and downstream
the revenues it generates £6.5bn in the UK in 2008              services and applications. Over 95% of the commercial
of which £3.6bn contributed directly to the nation’s            (non-government and institutional) upstream satellite
Gross Domestic Product (GDP) and its track record               manufacturing market by value is dedicated to
as an important source of export revenue. The sector            telecommunication satellites. Over 90% of the UK
accounts for 19,100 jobs as a direct result of its activities   downstream space market is dedicated to telecoms.
with up to 70,000 in related activities.                        More than 80% of the telecommunications satellites
                                                                produced in the UK have been built for overseas
Strongly market-driven, space represents a truly cross-         customers.
cutting sector which permeates our everyday lives in
all manner of ways from our satellite TV, the navigation        The Position, Navigation and Timing market which
system in our cars, the weather forecasts and the               has significantly developed over the past ten years is




 8
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY




very broad, touching on all aspects of modern life. In      future markets is sensing whose technologies have
addition to the well understood transport and personal      applications elsewhere in areas ranging from healthcare
navigation applications, it also includes more discrete     through to security.
services: from the timing signals needed to deliver fibre
optic communications to the telematic elements of our       Space science and its associated instrumentation
just in time supply chain culture. The common element       and space engineering remains a very strong and key
is the space component, with a very well established        part of our success in space, with the UK providing a
and trusted infrastructure in the form of GPS meeting       knowledge base and capability for many developments
almost all of our current needs. We are however on the      feeding into applications and services which are
brink of a number of new generation satellite navigation    all around us in our lives. Academic experts have
systems, including Galileo in Europe, GLONASS from          teamed with industry to help develop new technology,
Russia and Beidou from China.                               instrumentation and capabilities via research and
                                                            development programmes. Knowledge exchange from
Major market growth is expected in the future from          this part of the sector have grown over the last five
Earth Observation (EO) data provision and services          years to ensure economic return. Recently, applications
where the market has traditionally been dominated by        from drink can manufacturing through to petrochemical
government applications. However, programmes such           processing are emerging from a space exploration
as the European Global Monitoring for Environment           programme (ESA ExoMars programme). This trend
and Security (GMES) are enablers for both future            will continue. The academic knowledge base in space
technology and applications. Through innovations like       technology also provides for the future training of
Google Earth, EO data has become more accessible to         the highly skilled workforce needed to exploit future
the consumer; new markets relating to climate change,       opportunities in space.
carbon emissions and security are further developed
via GMES and other programmes. Furthermore                  The UK has great strengths in space technology. Past
new markets and applications are also anticipated           and current investment in these capabilities has been a
from the integration of EO and position data with           central factor in making space one of the highest growth
telecommunications services. Longer term markets,           sectors in the UK economy and resilient to the effects of
reaching up to ten years hence, such as robotics            economic and political turmoil. Between 1999 and 2007
and new energy systems will grow, which will utilise        the UK’s space sector grew on average by 9% per year.
space derived technologies. A key aspect of all these
                                                                                                                 9
3
                             Overview of the Space Sector:
                              Markets and Background
The growth in the sector includes the contributions         • They serve defence markets, offering ever more cost
from UK prime contractors as well as the many (and            effective options for gathering data and underwriting
increasing number of) SMEs and technology companies           communication and command structures.
involved in the space industry along with the growing
trend of academic industrial partnerships which enable      • They provide solutions to Government agendas
full economic exploitation of the UK’s knowledge and          in key areas of societal challenge such as energy,
technology base.                                              transport, climate change and healthcare.

Through the IGS we have set ourselves a clear              For such markets to prosper and to ensure the UK is
challenge to firmly establish the UK as one of the         in the position to capture the maximum portion of the
world’s leading space nations and grow the UK’s share      market it is important to position UK industry with the
of the global market to 10% over the next 20 years. This   ability to be first to market and technically superior.
drives space in the UK from a £6bn to a £4bn sector and    There is no room for complacency in the UK, many
provides an estimated 100,000 new highly skilled jobs in   other governments recognise the importance and invest
the UK.                                                    significantly greater sums into their space sectors.

Space consequently combines high-value                     To realise the vision set out in the Space IGS, the
manufacturing and services, advanced engineering           National Space Technology Steering Group has
and technology with an ability to provide solutions        categorised and focused the UK capabilities, and
to Government agendas through the delivery of data         their potential contributions – economic, scientific and
and information by space enabled services and from         societal to achieve maximum impact for the UK. This is
terrestrial applications of the technology.                reflected in the first issue of a suite of roadmaps which
                                                           will be maintained ensuring that underpinning applied
Within the global space economy existing and emerging      research supports the development programmes which
technology capabilities drive three key areas:             in turn meet the projected market needs.

 • They support strong commercial markets, particularly    The aim is to achieve the best and most effective
   in telecommunications and broadcast.                    balance of this investment for the UK across national,
                                                           ESA and international programmes and leverage
                                                           the strong partnership between public and private
                                                           institutions established through the space Innovation
                                                           and Growth Team Project.

                                                           Because space is a global business, we need to present
                                                           the UK’s technology strategy in a wider context. We
                                                           must have a clear view of how we plan to leverage




 10
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY




particularly ESA and EU funding and resources
to achieve our aims, but also how we will develop
partnerships with the wider international community,
including the emerging economies of China, India
and South America. This in turn must be informed by
the broader vision of where the UK sees itself in ten to
twenty years time. Clarity of aim will allow the UK to
more effectively drive the international agenda.
                                                            Campuses, including the International Space Innovation
Government investment is a key enabler of a long-           Centre at Harwell (linked to other centres of excellence
term strategy, creating both a level playing field for      around the UK), is a major attractor for ESA and others,
UK companies and science in the international arena,        while novel financing models such as the PPP for Avanti
and guarding the long-term vision for the nation.           Communications HYLAS broadband satellite and the
Government is also vital in setting the appropriate         successful PFI for the Skynet 5 secure satcoms system
regulatory framework and in brokering the relationship      can revolutionise the way in which the space business
with other national agencies (e.g. NASA, ISRO). In turn     is conducted.
Government can use the space agenda to further its
broader policy aims and global geopolitical relationships   A pragmatic but visionary technology strategy is a key
(so-called ‘soft power’).                                   foundation upon which the UK’s future role in space can
                                                            be defined. The case for space technology is strong
Underpinning this vision is the strength that the UK        because of its inherent multidisciplinary application
can bring in innovation and new enabling models, to         that benefits society across many sectors (e.g. health,
be responsive to a changing environment and resilient       security, transport and communications). As a major
to future demands. The UK is leading the way in             contributor to the EU, the UK can use this technology
bringing together capabilities and enabling new ways        strategy to leverage EU funding and bolster the
of working across different sectors and disciplines.        competitive position of the UK and Europe in the world
The development of the National Science & Innovation        market, both in the space sector and beyond.
                                                                                                                11
4
                                 Rationale of the
                       National Space Technology Strategy
The aim of the NSTS is to set out a strategy which will       The cross-cutting technologies will flow out from the
enable UK industry to achieve the vision of the IGS           sector roadmaps, as they are brought together in the
through a balanced portfolio of technology priorities that    overall technology strategy. This consolidation has not
support the development of the UK’s commercial space          yet fully taken place, and is planned in our next phase of
sector and are aligned with scientific priorities, and        activities. It is anticipated that cross-cutting technologies
Government/societal and strategic needs.                      should potentially have a very wide range of application
                                                              and demonstrate very different “advantages”. However,
Support will firstly be targeted to areas of current UK       all must have the potential to make a significant impact
strength and capability, where there is evidence of a         strategically and/or competitively.
leading position, and capability to deliver and exploit the
technology. This will deliver tangible economic benefits      Space science missions tend to have long periods
and is likely to have a high return on investment. The        of gestation and it is necessary to bring forward
support must be timely and result in a real difference        technologies in parallel with the study and planning
in the context of the world stage and the support being       of mission concepts. Technological proposals in this
given by other nations. Collaborative projects (e.g.          area must be written in the context of this lifecycle
industry-academia collaborations) are particularly            and demonstrate clearly how they enable a valuable
encouraged and the added value of the proposed                opportunity. In some situations new technological
collaboration would have to be demonstrated. Proposals        developments may generate ground-breaking future
will be expected to address a strategic need with clear       missions and longer term spin-offs and economic
reference to national priorities and roadmaps.                return, in such cases an appropriate level of investment
                                                              to demonstrate proof-of-concept will be required.
Particular emphasis should also be placed upon cross-
cutting opportunities and technologies which can              Space has enormous potential for societal benefit, in
address many space and terrestrial application areas          the study of the Earth (e.g. climate change), as a vehicle
including technologies where developments may lead            for the inspiration of future generations of scientists and
to applications in other areas such as health, defence        engineers, in the generation of technological spin-offs
and security.                                                 and many other areas. Where appropriate investment
                                                              proposals must evidence such benefits.




 12
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY


The highest priority for technology investment for both    Automotive where a small additional activity focused
private and public sectors will be the commercial market   on the space market could leverage core technology
sector which has a strong track record of return on        programmes already funded through other means
investment and is continuing to demonstrate growth.        (for example, autonomous systems activity included
Where the UK has a proven strength in a particular         in the National Aerospace Technology Strategy). The
market sector, for example, mobile satcomms, the           involvement of the Technology Strategy Board in the
technology roadmaps identify research themes which         NSTSG will be crucial in exploiting these cross
build and develop these strengths through innovation       sector opportunities.
and collaboration where an investment may enable
larger market share to be gained.                          The UK should also consider, if deemed appropriate by
                                                           the UK Government, UK Space Agency, NSTSG and the
The roadmaps also highlight research themes which          Space industry, trading equipment and instrumentation
will open up new and emerging growth markets such          for involvement in missions of other countries, emerging
as next generation broadband, Earth Observation or         markets, and those of emerging space powers. An
robotics by delivering step changes in cost, capacity      example here is a bilateral science mission where the
and capability. The roadmaps include research themes       UK provides instrumentation to conduct science but as
which support development of new ‘downstream’              a condition of involvement also requires the country to
services which bring together capability and data          use UK provided equipment or facilities on the mission
from existing space assets and add value to terrestrial    enabling UK space industry to enter a non-UK national
services (for example location based services using        mission and that potential market. This kind of trade
GPS/Galileo). In order for the UK to remain competitive,   is already exploited by many of the UK’s competitors
maintain its capability and be able to sustain, and        and may also be used to achieve some of the IGS
continue to grow its share in the world space market       recommendations in terms of the desire for UK-led
a balanced portfolio across the various space market       science and exploration missions. The roadmaps will
sectors will need to be achieved.                          also allow any such opportunities to be identified at an
                                                           early stage.
A further element of the roadmaps will be research
in areas of disruptive technology where UK expertise
could create large new markets (for example reusable
launchers). An important consideration for the roadmaps
will be alignment with research and development
activity in other sectors such as Aerospace, Digital and




                                                                                                               13
5                Technology Themes and Roadmaps
The National Space Technology Strategy is articulated       • Presentation of research and technology funding
via a suite of five ma
                    market driven technology roadmaps         requirements from all participants.
based around technology themes. These enable
engagement with a broad stakeholder community               • Development of stakeholder relationships as a result
across the industrial supply chain, government and            of collaborative thinking.
academia and ensure widespread awareness of the
strategy’s content. In particular the roadmaps afford       • The roadmaps themselves equip stakeholders with
government agencies, such as the UK Space Agency,             insight and information to inform decision-making.
the Technology Strategy Board and the Research
Councils, an understanding of technology needs             The NSTS focuses on those areas of the space sector
within the sector and the market impact of research        in which the UK is globally competitive and/or world-
and development.                                           leading. Each area has its own roadmap that details
                                                           the sequence for transition of research into technology
The Space Special Interest Group will actively maintain    development and validation through to products that
the technology roadmaps facilitating a biannual revision   feed the global space market.
in collaboration with the UK space sector.
                                                           The NSTS technology roadmapping process is open,
The collaborative process by which the roadmaps are        transparent and inclusive to UK stakeholders who
formulated delivers five high level outcomes, namely:      engage in collaborative research and development
                                                           within the space sector. This approach to sector
 • A consensus view of the sector’s research and           roadmapping enables top-down and bottom-up
   technology requirements in the UK.                      integration of research, technology and development
                                                           requirements, ensuring the UK space sector thrives and
 • Planned and targeted technology development that        expands in a competitive global market.
   is focussed on the UK’s highest priority areas.




 14
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY


              5.1 Telecommunications
                                                               • Turnkey satellite systems (e.g. Inmarsat’s Paradigm
The telecommunications roadmap covers both                       and Avanti systems; with scope to expand into Earth
the upstream manufacturing and downstream                        Observation)
manufacturing aspects of the satellite
telecommunications sector. The IGS report highlights           • Spacecraft platform, structure and composites
key market opportunities including satellite broadband,
broadcast, enterprise services, transport, security and        • Payload systems capability
the environment.
                                                               • Satellite Network Operations, Business Support
It is widely recognised that the telecommunications              Systems, Services and Applications
sector provides the critical mass for the UK space
industry in terms of workload, skills, capabilities and        • RF electronic equipment including telecoms,
facilities to enable the UK to compete effectively in other      navigation, radar EO, communications for science
sectors. UK industrial strengths are highlighted for the         and exploration missions.
required telecommunications satellite systems across
the full value chain.                                          • Space antennas covering telecoms, radar with
                                                                 opportunities in other sectors
Telecommunications developments enable industry to
build large programmes leading to significant returns         Telecommunications investments in R&D have shown
on investment. Individual programmes are not identified       consistent high returns and this can be highlighted by
in the roadmap, it is the requirement to facilitate           the following:
technology demonstration opportunities to secure
flight heritage for novel technology that is recognised.      • Over 10 years, the UK invested £15m into the Astrium
These flight opportunities could be through institutional       E3000 Spacecraft through the ESA ARTES program
missions, public/private partnerships or technology             with matched investments by industry resulting in the
demonstrator payloads (TDPs) on commercial missions.            award of 34 spacecraft platform contracts worth over
                                                                £510m directly to the Astrium Stevenage site. This
Research themes as highlighted below have been                  equates to a 30 fold return on investment.
identified based on maintaining and improving the
competitiveness of the UK satellite telecommunications        • A 36 fold return of investment was achieved following
industry:                                                       £20m of ARTES support for the on-board digital signal
                                                                processor to lead to a contract to Astrium worth
 • Increased telecommunications satellite capacity              £740m for three Inmarsat 4 satellites.

 • Reducing cost to manufacturer, operator and user           • Investment of £20m generic flexible payload
                                                                technology developments secured the contract for
 • Enabling new services and market opportunities               the Avanti Hylas satellite with Astrium and directly led
                                                                to the creation of a new UK satellite operator with a
Example technology themes from the roadmap include:             market capitalisation of £531m.




                                                                                                                     15
5                 Technology Themes and Roadmaps
                      5.2 Sensing                                           commercial customers for EO data is expected to
                                                                            grow by more than a factor of three to $1.4bn over the
Sensing is defined as the space and ground systems                          next decade. With UK industrial and academic teams
and technologies that allow detection of data together                      working closely together in upstream and downstream
with the technologies to exploit that data for scientific                   developments, it will be possible to capture a significant
and commercial applications. The scope is broad,                            share by being ‘first-to-market’.
including detectors, instruments and supporting
systems, either mounted on satellites or on planetary                       The market drives technology capability, leading to
landers. It also includes the ground technologies to                        societal benefit and economic impact through the
handle and process the data.                                                development of downstream services

The UK has a well established world-leading capability                      UK industry and academia are major providers of
in sensing, a capability built on meeting challenging                       sensing technologies and systems into international
requirements from space and EO missions and the                             space missions with the following identified as UK
analysis of complex datasets. This allows the UK to                         differentiators:
access the upstream and downstream emerging market
areas in the short term and prepare technologies for                         • Detectors – UV/visible, IR and X-ray
longer term applications.
                                                                             • Optical systems and Lidar
Institutional markets (e.g. Government, Research
Councils, ESA, Eumetsat and European Union) act as                           • Microwave sensing systems – active and passive
strong drivers of technology development providing
maturity in capability which is further exploited via                        • In-situ instruments
export and commercial EO markets. It also equips
the UK supply chain to export to other national space                        • Down-stream technologies and EO applications
agencies including NASA and NOAA. Major commercial
opportunities exist, which could be captured with                           Downstream technology development will provide
strategic and timely investment in sensing technologies,                    the next generation of ground systems necessary to
enabling UK industry to remain competitive in the world.                    handle ever increasing data volumes and to provide the
                                                                            new applications using EO data. This area is growing
Sensing technologies are vital to provide information to                    significantly and UK organisations are well placed to
address important societal issues, including monitoring                     access markets in climate services, for instance tropical
the climate, environmental change and future energy                         forest monitoring.
needs. There are strong links to security and defence
with many common requirements, capabilities and                             The sensing roadmap has identified many technologies
technologies, where the opportunities for dual-use                          where the UK has an established and competitive
development in space and non-space markets are                              capability. Investment in these technologies by
significant.                                                                government and industry will ensure continued growth
                                                                            in capability and maximise access to the growing
The downstream market for civil government and                              market in sensing

                                             Environment &
                                             Climate Change
                                                                                                                           Detectors
                                                                  Drivers
                                                                  Market




                                                                                  Space
                                              Commercial EO                      Capability
                                                                                                                      Microwave Systems

                                              Space Science                                       Technology
                                                                                                   Capability           Optics & Sensors

                                                                                                                       Ground Systems &
                                                                                                                          Applications
                                                                                     Societal &
                                            Space                                    Economic                         Support Technologies
                                           Science                                    Impact
                                                                                                                            Sensing
                                                                                                                          Technologies
                                                            Applications



                                                                                   Security &
                                            Health
                                                                                    Defence

                                               Commercial
                                                                             Low Carbon
                                                  EO
                                                            Monitoring
                                                            The Earth
 16
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY


       5.3 Position, Navigation and Timing                   The roadmap has focused on how these services can
                                                             be best exploited and the expertise resident in the
The Position, Navigation and Timing (PNT) Sector             UK is retained and leveraged. There is an upstream
touches on all aspects of modern life such as the            requirement to retain and develop the UK’s payload
well understood transport and personal navigation            expertise, this is captured under the European GNSS
applications; it also includes discrete services             Evolutions Programme (EGEP) that the UK participates
such as timing signals needed to deliver fibre optic         in thus protecting and developing the home grown
communications to the telematic elements of the just-in-     competencies, specifically in payload development. It is
time supply chain culture evidenced in retail.               therefore proposed that the upstream activity is aligned
                                                             and funded through this programme.
This area is on the brink of a number of new generation
satellite navigation systems, including Galileo in Europe,   Market Drivers in Position, Navigation and Timing fall
GLONASS from Russia and Beidou from China as well            into three categories
as upgrades to GPS (GPS-III) to meet the shortfalls of
the current GPS system. Satellite Based Augmentation          • An appropriate service, e.g. a phone “App” is just a
Services (SBAS), is commonly known as EGNOS is                  good idea that customers are prepared to pay for but
Europe and WAAS in the US. Additional services over             the infrastructure may or may not already exist. The
India (GAGAN) and Japan (QZSS) are currently                    space community need to be aware of this growth
being developed.                                                and also assist in influencing such developers
                                                                regarding the capabilities and limitations of current
The key point is that each of these infrastructure              and future PNT technology.
projects is underway and UK companies have secured a
significant share of the Galileo system procurement, the      • Legislation ensures that services developed such
midterm growth is in the downstream exploitation of the         as phone “Apps” are fit for purpose and the Space
current and future GNSS services, both in domestic and          community has a strong role to play in helping
export markets.




                                                                                                                  17
5                 Technology Themes and Roadmaps
   specify the capabilities and requirements of PNT             • Social market and structure as the UK is a fertile
   related services whilst also validating the services.          market for LBS applications with large numbers of
                                                                  early adopters and mature privacy laws.
 • Services have in-service dates forming fixed
   milestones for availability. The technology must             • Securing and exploiting the GNSS infrastructure for
   therefore keep pace or shape the service offering              security applications.
   such as integrity (knowing your location is correct),
   increased availability (being able to operate in            The key need to have arisen from both the IGS and
   environments it is not currently possible, e.g.             roadmapping process is for a national test bed.
   city centres) or improved accuracy (over the current        Consensus revolves around improved availability, better
   GPS services).                                              exploitation of current test facilities, promotion within
                                                               non-PNT led communities and impartial expertise and
The greatest threat to the global GNSS and PNT                 advice available.
markets is time to market with many programmes, such
as Galileo which is behind schedule; such delays have                      5.4 Exploration and Robotics
impacted all GNSS programmes. The importance
for Galileo being on time ensures being the second             Exploration and Robotics is technologically driven and
“full” service to GPS, before GLONASS achieves full            faces huge challenges to achieve the science goals that
recognition or even Beidou to become commercially              typically drive the missions. Focused on the upstream
available. The risk is that the supply chain cannot            aspect of space, it has excellent potential for spin-in and
wait for new infrastructure or services and will seek          spin-out of other sectors. Exploration of other planets
alternative solutions, including non-space                     requires cutting edge and highly resilient solutions to
based services.                                                successfully deploy robotics in remote and hazardous
                                                               locations where human intervention for operations,
The availability of new services will then further stimulate   repairs or accidents is not possible.
improvements as well as the development of new, niche
applications.                                                  Exploration and Robotics is defined as including all
                                                               types of robotics for the exploration of a planet surface
The UK capabilities can be broadly categorised as:             as well as robotics used in orbit around the Earth.
                                                               The instruments used to meet the science objectives
 • Innovative application developers demonstrated              of a mission are covered by the sensing sector, while
   by the UK attracting the single largest number of           sensors needed by the platform for navigation or control
   applicants in the ESA IAP programme, with almost            are included in this sector.
   half as many again as the next most active region.




 18
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY


                                                            • Penetrators – Includes modelling of de-orbit, entry
The roadmap identifies a series of opportunities for          and descent, flight control of high velocity objects,
specific ESA space missions, other multi-national             sensors, novel power/heating, highly rugged
programmes with UK contributions and some                     electronics
commercial opportunities. Routes into terrestrial
applications through spin-out are significant thus          • Novel Locomotion Technologies – includes aerobots,
leveraging further the technology investments. Areas of       under liquid propulsion, climbing robots and could
possible spin-out include unmanned vehicles for military      spin out to military and civil dirigible programmes,
use in dangerous situations, civil applications such as       low cost high altitude communications platforms and
the nuclear industry or oil and gas exploration and in        robotic access to difficult locations.
assisted living developments, results of spin-out from
the Aurora programme are already being observed.            • Novel Power Technologies - nuclear power/heating
                                                              sources, autonomous mission management, very
UK expertise has been further advanced as a result            low power systems, energy scavenging.
of the Beagle 2 mission as well as the work already
performed for the ExoMars programme.                        • Robotic Support of Manned Exploration - human
                                                              factors, multi-agent collaboration, in-situ
More than 70 individual technologies have been                resource utilisation.
mapped out and then grouped into a set of themes:
                                                                            5.5 Access to Space
 • Autonomous Vehicles – Technologies include
   autonomous mission management, navigation,              The Access to Space technology roadmap focuses
   science autonomy, robotic control, localisation         on the future market need for technologies to deliver
   without GPS, data fusion and multi-agent autonomy.      payloads into space where the term ‘payloads’ is used
                                                           in a generic sense, e.g. science instrument, a network of
 • Robotic Manipulators – Includes teleoperation,          sensors distributed around multiple orbits, a satellite, a
   sampling devices, sample transfer and manipulation,     space tourist, etc. Key market opportunities have been
   rendezvous and docking.                                 further developed following the publication of the
                                                           Space IGS.




                                                                                                                  19
5                    Technology Themes and Roadmaps

                                                                                MEMS based sensors, technologies for structure
Space-plane/Reusable launch systems                                             assembly in space and technologies for space-based
The ability to deliver a payload to orbit and return the                        solar power generation and supply to ground.
launch system to the ground safely and efficiently
presents a game-changing capability in launch                                   Inter-orbital transfer capability
systems. UK developments in this area include engine                            This activity includes propulsion stages that assist
development, advanced aerospace structures, re-entry                            platforms to transfer from one orbit to another.
systems and automatic flight systems.                                           Applications include: transfer of communications
                                                                                satellites to geostationary orbit, interplanetary transfer
Small satellite launcher and Sub-orbital space-planes                           module; transfer and deployment of constellations
Currently, an air-launch system seems the most                                  of satellites in LEO and space-tugs. Existing UK
adaptable solution, enabling launches from recently                             capability identified includes chemical propulsion, solar
formed ‘space ports’ such as New Mexico or even                                 electric propulsion, lightweight structures, fuel tanks,
from a space port in the UK. This also opens up the                             rendezvous and docking, nuclear power systems, de-
possibility of a space tourist industry for the UK, using                       orbiting devices and on-orbit refuelling.
sub-orbital space-planes either developed in the UK or
from companies like Virgin Galactic.                                            Legislation and regulatory changes
                                                                                Many of the market opportunities identified are limited
Small and nano platform technologies                                            by current UK legislation. The roadmap shows areas
The ability to have a capable small satellite platform                          to be resolved relating to the Outer Space Act, liability,
requires the miniaturisation of spacecraft components,                          RF spectrum, Civil Aviation Authority limitations and
without significant degradation in performance.                                 insurance to create a 5, 10 and 20 year plan covering
Expanding UK capability, the research themes for small                          low-cost access to space, infrastructure and
and nano spacecraft will increase the performance                               space tourism.
of small satellite platforms, whilst at the same time
putting the UK at the forefront of miniaturised space
technologies.

Large platform technologies
Development themes for this roadmap include:
deployable and inflatable structures, ultra stable
platforms, agile control moment gyro systems and

                   Market Opportunities                            UK Capability                         Research Themes

                     Low cost launch systems                    Reusable launcher design                Reusable launch systems


                    Cost effective orbit transfer                Large telecom platforms            Launch services for small satellites


              Services using advanced low-cost small
                                                            Small and nano-satellite platforms      New smallsat platform technologies
                             satellites

                                                         Launcher elements (propulsion, avionics,
                          Space tourism                                                                  Inter-orbital transfer units
                                                                      structures)

                                                                                                    Enabling regulatory improvements




                                                       5.6 NSTS Investment Profile

The IGS concluded that a £20 million national program                           technology innovation that resides in all UK players,
should start in 2011 jointly funded by government and                           from academia, through SMEs, equipment suppliers
industry, rising incrementally to around £100 million per                       and Prime contractors, ranging from academic ‘blue
annum by 2015/16.The exact funding for years 2 to 5                             skies’(TRL1), through technology demonstration (TRL
should be determined from the roadmapping activity.                             5-6), to exploitation (TRL9). Support and agreement
                                                                                of the Research Councils including those not normally
The roadmaps prepared for the NSTS cover all                                    engaged in space technology development, such as the
aspects of the UK space programme including ESA                                 Engineering and Physical Sciences Research Council
and EU based programs and have been developed in                                (EPSRC) as well as the Technology Strategy Board
partnership by industry, government and academia.                               through their R&D competitions and grants is required
This ensures an integrated and agile exploitation of the                        to ensure this integrated approach.

 20
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY



This first issue of the NSTS technology roadmaps                             programs it is essential that Europe collaborates
identifies a priority plan for a National Funding                            through the European Space Agency. Sustained
Programme for the next 5 years built on top of the ESA                       investment in ESA and EU programmes (latter via EU
and EU programmes.                                                           funding) is therefore essential to maintaining the UK’s
                                                                             market share as this investment underpins medium to
Due to the high cost of research and demonstration                           long term technology developments.


             National Space Technology Strategy Sectors                          ESA and EU Relevant Programmes

                                                                             Science, Earth Observation, Robotics and Exploration
                                            Sensing
                                                                                 (Aurora), GMES, Space Situation Awareness

                                        Telecomms                                              Telecommunications (ARTES)


                               Position, Navigation and Timing                                       Galileo, EGEP


                                  Robotics and Exploration                               Robotics and Exploration (Aurora)

                                                                               GSTP Science, Earth Observation, GMES, Space
                                                                                   ,
                                      Access to Space
                                                                                           Situation Awareness



There is a natural correspondence between the                                and meet IGS objectives by: enabling UK development
European based programmes and the sectors adopted                            and ownership of the Intellectual Property; providing
within this strategy document; this is shown in the table                    commercial opportunities for UK industry; and
above.                                                                       competitively positioning the UK for ESA and European
                                                                             programmes. The National Programme will ensure that
The ESA Ministerial in 2012 will define the future ESA                       the UK continues to secure a comparative advantage
programmes and additional funding will needed for UK                         from developing and exploiting technologies for future
to participate in future programmes. Failure to sustain                      markets in both manufacturing and applications.
and increase this funding will result in a slow down
in growth, an erosion of UK space Capabilities and                           The investment profile shown below, which has been
therefore a loss of global market share.                                     produced as a direct output of the roadmapping activity,
                                                                             reflects the balances between ESA and national funding
A national programme (based upon this Strategy)                              and share of costs between industry and government,
in addition is required to enable exponential growth                         as seen in the following table.


                                        Space Investment Profile (Indicative Numbers Only)
                               500

                               400
                   £Millions




                               300

                               200

                               100

                                0
                                0
                                         Current




                                                         2010/11




                                                                   2011/12




                                                                                     2012/13




                                                                                                         2013/14




                                                                                                                      2014/15




                                        Baseline spend (Existing ESA based programmes)
                                        Baseline spend (ESA based programmes including
                                        extensions and new programmes - Indicative)
                                        National Space Technology Programme (Indicative)
                                                                   Profile does not include research council expenditure on Space.
                                                                                                                                     21
6
                                Delivering the
                     Space Innovation and Growth Strategy
                     S
The targets laid out in the Space Innovation and Growth        Space organisations have been successful in the
Strategy of reaching £40bn of revenue and an additional        following Technology Strategy Board competitions
100,000 high skilled jobs in the sector are ambitious          this year:
– BUT can be realised if the recommendations are
implemented in an integrated way.                               • Trusted Services

This document is a key deliverable of Recommendation            • Network Services Demonstrators
Three of the Space IGS along with the development
of a suite of technology roadmaps and supporting                • Nuclear R&D Feasibility Studies
documentation. Other areas of Recommendation 3 are
concerned with the identification of a separate and ring        • Assisted Living
fenced R&D budget; initial investment was targeted
for April 2010/11 with increases to then reach £50m of          • Collaboration across Digital Industries
public investment by 2015/16.
                                                                • Crop Protection
Whilst no new ringfenced space technology budget was
identified in 2010/11 it is important to note that there has    • Technology Inspired Collaborative R&D
been an increase in space related applications for the
Technology Strategy Board’s Collaborative R&D grants           Up to £3m of new public funding will have been
and new technology demonstration opportunities have            committed in 2010/11 via the Technology Strategy
been created by Technology Strategy Board grants for           Board’s R&D grants. This increase in publicly funded
Tech Demo Sat and UKube1.                                      R&D can be attributed to:




 22
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY


• An enhanced profile of space on the whole as a result                 applications for 78 grants of up to £25k. These projects
  of the publication of the Space IGS Report                            will be carried out between May and July 2011 and
                                                                        the results will influence future developments of the
• Improved understanding of possible areas of space                     National Space Technology Strategy.
  related interest to possible funders, public and private
                                                                        The publication and regular updating of this National
• Greater visibility to the space community of                          Space Technology Strategy and its underpinning
  collaborative R&D competitions through technology                     technology roadmaps not only mark a delivery of a
  roadmapping developments and enhanced                                 Space IGS recommendation but also enable informed
  communications                                                        discussions across broad ranging stakeholders
                                                                        regarding future investments.
The first dedicated space competition, “Feasibility
Studies for Innovation in Space” attracted over 215




    Space IGS                                                                       Relationship of National Space
                           Recommendation Summary
 Recommendation                                                              Technology Strategy to IGS Recommendation
          1          National Space Policy                              Defines technology base and possible mission opportunities
          2          Executive UK Space Agency                          Provides independent input on strategy and funding requirements
          4          Access to capital                                  Improves access to capital by reducing technical risk
          5          Innovative indigenous EO data service              Defines technology base and aids in development planning
                     Climate Change Validation, adaptation and
          6                                                    Defines technological development paths
                     mitigation
                     Space enabled services as complementary
                                                                Defines technological development paths for satellite broadband,
          7          Information and Communication Technologies
                                                                broadcast and innovative applications and services
                     (ICT ) infrastructure
                     Strategic view of use of space in national security Defines technology base and possible mission opportunities along
          9
                     and defence planning                                with technological development paths
                     UK to take lead in Mobile Satellite-based Services
         10                                                             Defines technological development paths
                     (MSS)
                     UK should initiate and lead space exploration or   Defines technology base and possible mission opportunities along
         13
                     science missions                                   with technological development paths
         14          Hub and Spokes Centres of excellence               Defines technology base and associated centres of excellence
                                                                        Defines technology base and possible mission opportunities along
         15          Increase investment in ESA                         with technological development paths and relationship to national
                                                                        technology development
         16          Space Leadership Council                           Provides a National Strategy for use by the SLC




                                                                                                                                       23
7
                       National Space Technology Strategy
                                  Governance
The Space Leadership Council (SLC) which oversees              the technology programmes. These groups will adopt a
the delivery of the Space Innovation and Growth                generic approach that will provide:
Strategy has endorsed the process used to develop the
Space Technology Strategy. It is not the role of the SLC       • An accessible advisory body for the NSTSG to better
to determine the content of Technology Strategy but to           understand sector themes
represent the Strategy at all necessary forums where
decisions are to be made regarding its implementation.         • Clearly defined working objectives to encourage
                                                                 further involvement from UK space industry
The development and ongoing implementation of                    stakeholders
the NSTS will be governed by the National Space
Technology Steering Group (NSTSG). This is a forum of          • A set of mutually agreed outcomes that benefit the
industry, government and academia experts from across            participants and the broader community space
the space community to provide technical direction.              at large
Chaired by Sir Keith O’Nions, Imperial College, the
group will meet upto six times per year. The Group             The Technology Strategy Board’s pan-KTN Space
currently involves the organisations detailed below.           Special Interest Group (SIG) has a coordinating
                                                               and facilitating role in the above groups. It acts as a
The NSTSG takes its lead from the five sector based            light touch secretariat to the NSTSG and will on an
Space Technology Roadmaps. Each space sector is                ongoing basis coordinate the Space Sector Technical
represented by a small working group of organisations          Committees. The Space SIG will also continue to
which are able to contribute to the overall development        publish a biweekly newsletter highlighting technology
of that area. Each group is chaired by industry but            strategy developments, opportunities of funding and
includes a wide range of experts from a range of public        the promotion of relevant technology based
sector bodies and universities.                                networking events from across the community. It will
                                                               also actively utilise the Technology Strategy Board’s
It is expected that the space sector groups will create        portal _connect to enable wider access to the Strategy
Space Sector Technical Committees that will meet               and its developments.
approximately four times per year to further develop




                                 Astrium                                         QinetiQ
                                  Avanti                                         SciSys
               Centre for Earth Observation Instrumentation     South East England Development Agency
                               Clyde Space                            Space Special Interest Group
              Department for Business Innovations and Skills         Surrey Satellite Technology Ltd
                             Imperial College                          Technology Strategy Board
                                 Inmarsat                                  UK space Agency
                   International Space Innovation Centre                 University of Edinburgh
                                  Logica                                 University of Leicester
                            Ministry of Defence                           University of Sheffield
                    Mullard Space Science Laboratory                    University of Strathyclyde




 24
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY




                             About the Space Special Interest Group
The Technology Strategy Board created the Space Special Interest Group (SIG) as a pilot that will aim to
connect pan-Knowledge Transfer Network (KTN) activities, acting as a mechanism to foster a space community
that spans Government, Industry and Academia. The Space SIG is the custodian of the NSTS and its underpinning
technology roadmaps.

The Space SIG is hosted by the Aerospace, Aviation & Defence Knowledge Transfer Network (AAD KTN).

           To connect with the Space Special Interest Group you can:
   •   email ruth.mallors@aadktn.co.uk regarding getting involved in the            Knowledge
       Space SIG’s activities.
   •   Register for free at www.aadktn.co.uk to access services, networks and to    Transfer
       receive the fortnightly newsletter.
   •   Email the Space SIG at spaceSIG@aadktn.co.uk for further
                                                                                    Network
       information.
                                                                                    Aerospace & Defence

                                                                                                           25
Notes




26
U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY


                       Notes




                                                   27
All images in this document are reproduced with the kind permission of: QinetiQ, Astrium, STFC-RAL/CEOI, QUB/CEOI, Avanti
Communications plc, Reaction Engines Ltd, SciSys.

Weitere ähnliche Inhalte

Ähnlich wie UKSA National Space Technology Strategy

dcb1201 - Feature1
dcb1201 - Feature1dcb1201 - Feature1
dcb1201 - Feature1Paul Elliott
 
Feasibility studies for innovation in space
Feasibility studies for innovation in spaceFeasibility studies for innovation in space
Feasibility studies for innovation in spaceA. Rocketeer
 
IGS Low cost access to space April 2016
IGS Low cost access to space April 2016IGS Low cost access to space April 2016
IGS Low cost access to space April 2016Dmitry Tseitlin
 
18 November 2014: Delivering the Space Growth Action Plan
18 November 2014: Delivering the Space Growth Action Plan 18 November 2014: Delivering the Space Growth Action Plan
18 November 2014: Delivering the Space Growth Action Plan Defence and Security Accelerator
 
HUB:BLE-2 02 Growth and Entrepreneurship
HUB:BLE-2 02 Growth and EntrepreneurshipHUB:BLE-2 02 Growth and Entrepreneurship
HUB:BLE-2 02 Growth and EntrepreneurshipSpace IDEAS Hub
 
Agi foresight 2015 public policy 20100714
Agi foresight 2015   public policy 20100714Agi foresight 2015   public policy 20100714
Agi foresight 2015 public policy 20100714Andy Coote
 
National Space Technology Roadmap Workshop: Presentation
National Space Technology Roadmap Workshop: PresentationNational Space Technology Roadmap Workshop: Presentation
National Space Technology Roadmap Workshop: PresentationA. Rocketeer
 
Satellite technologies in UK agriculture 2015
Satellite technologies in UK agriculture 2015Satellite technologies in UK agriculture 2015
Satellite technologies in UK agriculture 2015Dmitry Tseitlin
 
Changing Face V4
Changing Face V4Changing Face V4
Changing Face V4Saine
 
SMi Group's 13th annual Military Space Situational Awareness 2018 conference
SMi Group's 13th annual Military Space Situational Awareness 2018 conferenceSMi Group's 13th annual Military Space Situational Awareness 2018 conference
SMi Group's 13th annual Military Space Situational Awareness 2018 conferenceDale Butler
 
Space Mission UK - Mission 3 Lookbook - 5-11 Nov 2016
Space Mission UK - Mission 3 Lookbook - 5-11 Nov 2016Space Mission UK - Mission 3 Lookbook - 5-11 Nov 2016
Space Mission UK - Mission 3 Lookbook - 5-11 Nov 2016Chinwag
 
Global Networked Entrepreneurship
Global Networked EntrepreneurshipGlobal Networked Entrepreneurship
Global Networked EntrepreneurshipChris Stiles
 
BEIS AI Sector Deal
BEIS AI Sector Deal BEIS AI Sector Deal
BEIS AI Sector Deal JacobBrookman
 
UK space agency - The Space Economy and Role of the UK Space Agency
UK space agency - The Space Economy and Role of the UK Space AgencyUK space agency - The Space Economy and Role of the UK Space Agency
UK space agency - The Space Economy and Role of the UK Space AgencyChris Atherton
 
Knowledge-Driven and Reseach and development to Support the Nation's Infrast...
 Knowledge-Driven and Reseach and development to Support the Nation's Infrast... Knowledge-Driven and Reseach and development to Support the Nation's Infrast...
Knowledge-Driven and Reseach and development to Support the Nation's Infrast...NSEAkure
 
Smart shipping by Policy Lab
Smart shipping by Policy LabSmart shipping by Policy Lab
Smart shipping by Policy LabPolicy Lab
 

Ähnlich wie UKSA National Space Technology Strategy (20)

dcb1201 - Feature1
dcb1201 - Feature1dcb1201 - Feature1
dcb1201 - Feature1
 
Feasibility studies for innovation in space
Feasibility studies for innovation in spaceFeasibility studies for innovation in space
Feasibility studies for innovation in space
 
IGS Low cost access to space April 2016
IGS Low cost access to space April 2016IGS Low cost access to space April 2016
IGS Low cost access to space April 2016
 
18 November 2014: Delivering the Space Growth Action Plan
18 November 2014: Delivering the Space Growth Action Plan 18 November 2014: Delivering the Space Growth Action Plan
18 November 2014: Delivering the Space Growth Action Plan
 
HUB:BLE-2 02 Growth and Entrepreneurship
HUB:BLE-2 02 Growth and EntrepreneurshipHUB:BLE-2 02 Growth and Entrepreneurship
HUB:BLE-2 02 Growth and Entrepreneurship
 
Agi foresight 2015 public policy 20100714
Agi foresight 2015   public policy 20100714Agi foresight 2015   public policy 20100714
Agi foresight 2015 public policy 20100714
 
National Space Technology Roadmap Workshop: Presentation
National Space Technology Roadmap Workshop: PresentationNational Space Technology Roadmap Workshop: Presentation
National Space Technology Roadmap Workshop: Presentation
 
GSE conference 2015
GSE conference 2015GSE conference 2015
GSE conference 2015
 
Investments in the Future: NASA's Technology Programs
Investments in the Future: NASA's Technology ProgramsInvestments in the Future: NASA's Technology Programs
Investments in the Future: NASA's Technology Programs
 
Satellite technologies in UK agriculture 2015
Satellite technologies in UK agriculture 2015Satellite technologies in UK agriculture 2015
Satellite technologies in UK agriculture 2015
 
Changing Face V4
Changing Face V4Changing Face V4
Changing Face V4
 
SMi Group's 13th annual Military Space Situational Awareness 2018 conference
SMi Group's 13th annual Military Space Situational Awareness 2018 conferenceSMi Group's 13th annual Military Space Situational Awareness 2018 conference
SMi Group's 13th annual Military Space Situational Awareness 2018 conference
 
Space Mission UK - Mission 3 Lookbook - 5-11 Nov 2016
Space Mission UK - Mission 3 Lookbook - 5-11 Nov 2016Space Mission UK - Mission 3 Lookbook - 5-11 Nov 2016
Space Mission UK - Mission 3 Lookbook - 5-11 Nov 2016
 
12345
1234512345
12345
 
Zep knowledge-sharing-report
Zep knowledge-sharing-reportZep knowledge-sharing-report
Zep knowledge-sharing-report
 
Global Networked Entrepreneurship
Global Networked EntrepreneurshipGlobal Networked Entrepreneurship
Global Networked Entrepreneurship
 
BEIS AI Sector Deal
BEIS AI Sector Deal BEIS AI Sector Deal
BEIS AI Sector Deal
 
UK space agency - The Space Economy and Role of the UK Space Agency
UK space agency - The Space Economy and Role of the UK Space AgencyUK space agency - The Space Economy and Role of the UK Space Agency
UK space agency - The Space Economy and Role of the UK Space Agency
 
Knowledge-Driven and Reseach and development to Support the Nation's Infrast...
 Knowledge-Driven and Reseach and development to Support the Nation's Infrast... Knowledge-Driven and Reseach and development to Support the Nation's Infrast...
Knowledge-Driven and Reseach and development to Support the Nation's Infrast...
 
Smart shipping by Policy Lab
Smart shipping by Policy LabSmart shipping by Policy Lab
Smart shipping by Policy Lab
 

Mehr von A. Rocketeer

Emerging Technical Requirements For A UK Spaceport
Emerging Technical Requirements For A UK SpaceportEmerging Technical Requirements For A UK Spaceport
Emerging Technical Requirements For A UK SpaceportA. Rocketeer
 
A Business Analysis of a SKYLON Based European Launch Service Operator
A Business Analysis of a SKYLON Based European Launch Service OperatorA Business Analysis of a SKYLON Based European Launch Service Operator
A Business Analysis of a SKYLON Based European Launch Service OperatorA. Rocketeer
 
MEGAHIT: Let's Embrace Space presentation
MEGAHIT: Let's Embrace Space presentationMEGAHIT: Let's Embrace Space presentation
MEGAHIT: Let's Embrace Space presentationA. Rocketeer
 
Tranquility Aerospace: July 2015
Tranquility Aerospace: July 2015Tranquility Aerospace: July 2015
Tranquility Aerospace: July 2015A. Rocketeer
 
Space Propulsion Innovation Award
Space Propulsion Innovation AwardSpace Propulsion Innovation Award
Space Propulsion Innovation AwardA. Rocketeer
 
Progress on Skylon and SABRE
Progress on Skylon and SABREProgress on Skylon and SABRE
Progress on Skylon and SABREA. Rocketeer
 
UK Space Conference IGS Presentation
UK Space Conference IGS PresentationUK Space Conference IGS Presentation
UK Space Conference IGS PresentationA. Rocketeer
 
Spacefleet: UKSC 2013
Spacefleet: UKSC 2013Spacefleet: UKSC 2013
Spacefleet: UKSC 2013A. Rocketeer
 
Institute for Interstellar Studies
Institute for Interstellar StudiesInstitute for Interstellar Studies
Institute for Interstellar StudiesA. Rocketeer
 
IGS Restack Workshop Presentation: Nov 2012
IGS Restack Workshop Presentation: Nov 2012IGS Restack Workshop Presentation: Nov 2012
IGS Restack Workshop Presentation: Nov 2012A. Rocketeer
 
Future of UK Space Science Missions: Oct 2012
Future of UK Space Science Missions: Oct 2012Future of UK Space Science Missions: Oct 2012
Future of UK Space Science Missions: Oct 2012A. Rocketeer
 
World Space Programs & Prospects: A European Perspective
World Space Programs & Prospects: A European PerspectiveWorld Space Programs & Prospects: A European Perspective
World Space Programs & Prospects: A European PerspectiveA. Rocketeer
 
UK National Space Programme Update
UK National Space Programme UpdateUK National Space Programme Update
UK National Space Programme UpdateA. Rocketeer
 
Satellite Applications Catapult Centre
Satellite Applications Catapult CentreSatellite Applications Catapult Centre
Satellite Applications Catapult CentreA. Rocketeer
 
Satellite Applications Catapult Centre Overview
Satellite Applications Catapult Centre OverviewSatellite Applications Catapult Centre Overview
Satellite Applications Catapult Centre OverviewA. Rocketeer
 
Progress on the SKYLON Reusable Spaceplane
Progress on the SKYLON Reusable SpaceplaneProgress on the SKYLON Reusable Spaceplane
Progress on the SKYLON Reusable SpaceplaneA. Rocketeer
 
Space for Growth Competition Update
Space for Growth Competition UpdateSpace for Growth Competition Update
Space for Growth Competition UpdateA. Rocketeer
 
The Commercial Spaceflight Revolution
The Commercial Spaceflight RevolutionThe Commercial Spaceflight Revolution
The Commercial Spaceflight RevolutionA. Rocketeer
 
UKSA Access to Space Roadmap
UKSA Access to Space RoadmapUKSA Access to Space Roadmap
UKSA Access to Space RoadmapA. Rocketeer
 
NAUTILUS-X Future in Space Operations (FISO) Group Presentation
NAUTILUS-X Future in Space Operations (FISO) Group PresentationNAUTILUS-X Future in Space Operations (FISO) Group Presentation
NAUTILUS-X Future in Space Operations (FISO) Group PresentationA. Rocketeer
 

Mehr von A. Rocketeer (20)

Emerging Technical Requirements For A UK Spaceport
Emerging Technical Requirements For A UK SpaceportEmerging Technical Requirements For A UK Spaceport
Emerging Technical Requirements For A UK Spaceport
 
A Business Analysis of a SKYLON Based European Launch Service Operator
A Business Analysis of a SKYLON Based European Launch Service OperatorA Business Analysis of a SKYLON Based European Launch Service Operator
A Business Analysis of a SKYLON Based European Launch Service Operator
 
MEGAHIT: Let's Embrace Space presentation
MEGAHIT: Let's Embrace Space presentationMEGAHIT: Let's Embrace Space presentation
MEGAHIT: Let's Embrace Space presentation
 
Tranquility Aerospace: July 2015
Tranquility Aerospace: July 2015Tranquility Aerospace: July 2015
Tranquility Aerospace: July 2015
 
Space Propulsion Innovation Award
Space Propulsion Innovation AwardSpace Propulsion Innovation Award
Space Propulsion Innovation Award
 
Progress on Skylon and SABRE
Progress on Skylon and SABREProgress on Skylon and SABRE
Progress on Skylon and SABRE
 
UK Space Conference IGS Presentation
UK Space Conference IGS PresentationUK Space Conference IGS Presentation
UK Space Conference IGS Presentation
 
Spacefleet: UKSC 2013
Spacefleet: UKSC 2013Spacefleet: UKSC 2013
Spacefleet: UKSC 2013
 
Institute for Interstellar Studies
Institute for Interstellar StudiesInstitute for Interstellar Studies
Institute for Interstellar Studies
 
IGS Restack Workshop Presentation: Nov 2012
IGS Restack Workshop Presentation: Nov 2012IGS Restack Workshop Presentation: Nov 2012
IGS Restack Workshop Presentation: Nov 2012
 
Future of UK Space Science Missions: Oct 2012
Future of UK Space Science Missions: Oct 2012Future of UK Space Science Missions: Oct 2012
Future of UK Space Science Missions: Oct 2012
 
World Space Programs & Prospects: A European Perspective
World Space Programs & Prospects: A European PerspectiveWorld Space Programs & Prospects: A European Perspective
World Space Programs & Prospects: A European Perspective
 
UK National Space Programme Update
UK National Space Programme UpdateUK National Space Programme Update
UK National Space Programme Update
 
Satellite Applications Catapult Centre
Satellite Applications Catapult CentreSatellite Applications Catapult Centre
Satellite Applications Catapult Centre
 
Satellite Applications Catapult Centre Overview
Satellite Applications Catapult Centre OverviewSatellite Applications Catapult Centre Overview
Satellite Applications Catapult Centre Overview
 
Progress on the SKYLON Reusable Spaceplane
Progress on the SKYLON Reusable SpaceplaneProgress on the SKYLON Reusable Spaceplane
Progress on the SKYLON Reusable Spaceplane
 
Space for Growth Competition Update
Space for Growth Competition UpdateSpace for Growth Competition Update
Space for Growth Competition Update
 
The Commercial Spaceflight Revolution
The Commercial Spaceflight RevolutionThe Commercial Spaceflight Revolution
The Commercial Spaceflight Revolution
 
UKSA Access to Space Roadmap
UKSA Access to Space RoadmapUKSA Access to Space Roadmap
UKSA Access to Space Roadmap
 
NAUTILUS-X Future in Space Operations (FISO) Group Presentation
NAUTILUS-X Future in Space Operations (FISO) Group PresentationNAUTILUS-X Future in Space Operations (FISO) Group Presentation
NAUTILUS-X Future in Space Operations (FISO) Group Presentation
 

Kürzlich hochgeladen

Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbuapidays
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 

Kürzlich hochgeladen (20)

Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 

UKSA National Space Technology Strategy

  • 1. A N a t i o n a l S p a c e Te c h n o l o g y Strategy for the UK A High Growth Sector N a t i o n a l S p a c e Te c h n o l o g y S t e e r i n g G r o u p
  • 2. Chairman’s Foreword The Space Innovation Growth Team through the Space Innovation and Growth Strategy (IGS) published an extensive and detailed report in 2010. The report was prepared by a team of experts selected from across industry, academia and central government and made a clear set of recommendations. I had the pleasure to chair the Technologies, Capabilities and Facilities work stream whose work set a strong foundation for the third IGS recommendation which stated: “The UK Government and industry should establish a National Space Technology Strategy (NSTS), with a clearly identifiable budget separate and additional to ESA and research council budgets. This recommendation is a key building block in delivering the jobs and economic growth planned, and should be established quickly and funded properly. A National Space Technology Steering Group should be set up immediately to oversee the NSTS, chaired by industry, but with Government representation”. In August 2010 the National Space Technology Steering Group was created, which I now chair and has representation from Government departments and agencies, industry and academia. This Group with support from the Space Special Interest Group has pulled together this document, the National Space Technology Strategy with a suite of underpinning technology roadmaps. It identifies the Strategy’s objectives and introduces an initial set of 5 sector roadmaps building on the IGS data and conclusions updated through a series of roadmap workshops held with the UK space community through September 2010. The roadmaps are sector based, providing a clear vision and cohesive technology strategy for UK space activities. They bring together the institutional, commercial and scientific objectives and respond to the wider UK challenges of meeting society’s needs. During the next few months we intend to harmonise further the relationship between this, the UK Programme and other international activities as well as seeking to draw out cross-cutting themes. These approaches will maximise the UK’s engagement and impact on the global space economy. I encourage you to read the summary and following document with a view to engaging at all levels to enable delivery of the National Space Technology Strategy. The effort to create the document and roadmaps should not be underestimated and has involved extensive consultation across the UK space community over 6 months; I wish to thank the National Space Technology Steering Group, the Space Special Interest Group and the community at large for their time and contributions in delivering what follows. Sir Keith O’Nions Chairman National Space Technology Strategy Group Rector of Imperial College London March 2011 2
  • 3. Contents Chairman’s Foreword 2 1. Executive Summary 4 2. Strategic Principles of the Space Sector 7 3. Overview of the Space Sector 8 4. Role of the National Space Technology Strategy 12 5. Technology Themes and Roadmaps 14 6. Delivering the Space Innovation Growth Strategy 22 7. Governance of the National Space Technology Strategy 24 3
  • 4. 1 Executive Summary Space is Earth’s Nervous System i technologies and innovation needed to increase market share and benefit from wealth-generating opportunities From monitoring crop yields to measuring ice cover; in the short, medium and long term. protecting national security or our shared environment, delivering information instantly, anywhere in the world or For this to be realised, however, a new approach of safeguarding teenage drivers on local streets, the more additional investment by Government is essential. we understand about what space can do for us, the more we want from it. Competitors Old and New The Innovation and Growth Strategy confirmed that the worldwide market for its services is predicted to Brazil, Russia, India and China are among the nations grow by 5% annually from £160bn to £400bn p.a within investing heavily in space, looking to claim a slice of this twenty years rapidly expanding market. Our ‘traditional’ space-trading rivals in France, Germany and the US are doing likewise. The knowledge, infrastructure and success of the UK The UK Space Sector – Growing Success space sector currently presents a formidable barrier to entry for would-be rivals. For the past decade it has achieved year-on-year growth of 9%, a figure more commonly associated with China’s However, the pace of development is such that, were we ‘economic miracle’. This rate has been maintained despite to erode our technology research and development base recession. It manifests itself in a truly national, export- through under-investment, an advantage earned over led industry employing more than 70,000 people and thirty years could be lost within five. contributing £6.5bn to the economy each year, directly and through its wider economic impact. Revenues in In this scenario, we would not be looking to grow this sector could readily rise from £6.5bn to £40bn p.a. our market share and create new jobs; we would be by 2030, if the UK grows its share of the global space fighting simply to cling on to what we have, vulnerable economy from the 6% to 10%. to multinational corporations transferring business, expertise and intellectual property to other more This is an achievable aspiration, but only if we make the conducive environments. Having the ability to be first right investment decisions now. to market which with technical superiority will allow the UK to capture a greater proportion of the global The National Space Technology Strategy is the result growth available. The challenge should certainly not of an inclusive, six month process that distilled the be underestimated. But nor should our ability to seize views and expertise of all parts of the space sector into the day. a series of clear, actionable roadmaps. Market led, the Strategy details how the UK can develop and deploy the We do not need to match the investment levels of rivals 4 6
  • 5. U K N AT IO N AL S PACE TEC HN OLOGY S T R ATEGY Feeling The Benefits of Space Hasita is unaware that she’s part of the new space age. But that’s Behind them, unnoticed, is one of the companies that first put this about to change. Ten years old and dashing down a dusty path corner of the Capital on the global map – Inmarsat. A world leader in flanked by swaying wheat fields, she has abandoned early plans to be maritime and aircraft communications, its fleet of satellites is controlled a film star and set her sights on becoming a doctor. Or an architect. from a mission control room high above the whirling intersection. Either would be an achievement in a region where less than 4% of the Should disaster strike, anywhere in the world, the people in this room population go on to higher education. will be amongst the first to respond, re-tasking satellites in order to provide vital voice and data capability for the rescue services, state At school, there is nervous chatter as Hasita and her classmates take agencies, media and humanitarian organisations on the ground. their places in front of a computer. There are just five in the school and today it is their turn to use them. The teacher produces a mobile Matt Jones, deftly dodging the kids on his bike, knows about Inmarsat phone and smiles. The students glance at each other. This is going to and the power of data. Matt invents with information. His company, be a very different kind of English lesson… Berg, is located close by, one of a growing number of creative, fearless start-ups exploring new ways to vision the world and frame The offices of Cambridge University Press are 4500 miles and a our growing appetite for knowledge. pleasant stroll through leafy streets away from Hasita’s Punjab classroom. A famous academic imprint, it is also one of the world’s From maps of Manhattan that magically ‘curl’ up in the distance, oldest companies, having been in business continuously since 1584. changing a street-scene into a birds-eye view, through to applications As the venerable publisher of Newton and Darwin, CUP has often mapping Neil Armstrong’s moon-walk onto your neighbourhood, championed revolutions in thought. Today it is also leading one in Berg’s products blend curiosity, technology, fun and utility. Interna- education. tional brands come calling. Across India, North Africa and the Middle East, fast growing popula- A student’s education; the re-invention of a world famous name; tions mean demand for learning is outstripping the supply of teachers. cutting-edge communications and the entrepreneurial energy of a So Cambridge University Press uses today’s technologies – the high-tech start-up: they are all empowered, realised, connected by internet, mobile phones – to being lessons to remote locations and space. continue the mission it has been on for half a millennia. Which is why the worldwide market for its services will be worth That timeframe would not mean much to Hasita, nor the gaggle of £400bn p/a in twenty years time. For Britain, this presents a once in a teenagers standing at London’s Old Street Roundabout. They stare at generation opportunity to generate new wealth, jobs and knowledge. the traffic maelstrom and wonder if this really is the place where the next Google is supposed to spring from. in order to claim a greater share of the prize; building on Avanti is a pioneer enjoying ‘first mover’ advantage, current momentum will cost relatively little, both in real thanks to a successful strategic partnership between terms and in proportion to the market opportunity. Recent government, business and academia. experience shows how successful targeted investment can be. The National Space Technology Strategy can amplify this success, increase overseas earnings and generate 100,000 new jobs, but only with appropriate investment Real World Returns in research and development. In November 2010, Avanti launched Europe’s first Ka- Similarly, as our economy grows, the UK should also band broadband satellite, HYLAS 1; the novel, highly increase its contributions to the European Space Agency adaptable payload incorporated in this satellite was (ESA). This will not only bring us more into line with designed and built in Britain by Astrium. It will deliver other leading European space nations, it will strengthen broadband coverage from space, connecting users our role in ESA decision-making and create increased in rural areas across Europe not served by wire-based opportunities for our domestic space sector to win larger networks. With each satellite providing a consistent shares of commercial contracts. service to hundreds of thousands of homes and businesses, regardless of location, and a market of over UK technology will become even more important as the 70m people with broadband needs, exportable products European Commission becomes more involved in space are in high demand. programmes and deploys its funding to deliver projects. In addition to an increase in scale, the Commission is Thanks to seed-corn investment by the UK Government likely to adopt a more commercial attitude to selecting in key technologies, the company generated sufficient contractors and this provides the opportunity for the UK City investment not only to launch HYLAS 1, but also fly a to win a greater share of work based on world-leading sister satellite. From 2012, HYLAS 2 will extend Avanti’s technology and greater competitiveness. service to North Africa and the Middle East and millions of new customers. 5
  • 6. 1 Executive Summary growth and wider policy objectives. Specifically, we That space provides a good return is not in doubt: recommend it is aimed to: £1m invested in satellite developments in 1998 is now worth £350m. • Develop and de-risk technologies needed to directly increase the UK’s share of global high growth markets A systematic failure in this sector has been the difficulty for equipment suppliers to cross the boundary between • Ensure we lever maximum benefit from our strategic science domains, where disruptive technology is often funding commitments in Europe and beyond developed, and commercial markets where exploitation leads to wealth creation. By bringing together the prime • Maximise the return from UK’s existing investments in contractors and the suppliers in a combined strategy, this the International Space Innovation Centre at Harwell plan ensures a clear development path for both which, in the long run, should enhance the competiveness and • Develop new technologies and IP for the market by hence success of all players. encouraging UK-based SMEs and academia to exploit ideas in applications and services More pragmatically, the National Space Technology Strategy represents the most realistic and achievable • Game-changing technologies require alternative route to realising essential national ambitions: mechanisms of investment, which are outside of economic growth and stability; creation of highly skilled the scope of this strategy due to the high level of jobs; development of new knowledge and business innovation involved opportunities; and generation of tangible revenue for the economy. This Strategy is critical to deliver the growth promised, and needs to span the commercial markets and the public service markets such as climate monitoring A National Programme, UK competiveness and security services. The UK space industry has been successful in research The UK should launch a cross-sector National Space activity, largely through European research and Technology programme in 2011, jointly funded by development (R&D) programmes. Nonetheless, the industry and Government, rising from £20m per year competitive advantage the UK enjoys in key technology to £100m per annum by 2015/16 as this becomes areas is at risk of being eroded and further action is needed affordable to industry and Government. This will to increase both the value to the UK of R&D support and deliver both near and longer-term economic and secure a still greater level of industry investment. This social benefits to the UK and the scale of benefits for requires a national programme. the five technology themes presented in the report. A UK programme provides the advantages that it can We need not lose market share to China, India or any be agile, focus accurately on market needs that UK- other ‘challenger’ nation; these countries will, instead, be technology can meet and support the UK’s industrial our markets. This is the future the UK space sector has been building towards. 6
  • 7. 2 Strategic Principles The National Space Technology Strategy (NSTS) is • To encourage innovative service-led business models governed by a set o underlying principles which have of recognising the growing importance of public-private been established to meet the overarching strategic partnerships, and of the EU as an operational driver goals and vision for the Space sector as articulated in for European space needs the IGS. The Strategy is detailed and implemented via a suite of market-driven Technology Roadmaps. The • To recognise the linkages between the strategic principles are: applications and services that can drive the development of cutting edge and disruptive • Technology must meet an end objective, such as: technologies and capabilities o direct economic jobs and wealth creation o indirect impact on GDP through societal or strategic • To create an environment for the growth of a needs (e.g. health, environment, resilience, defence) balanced space sector, embracing the benefits o longer-term scientific understanding of linking prime contractors, subsystem and equipment suppliers, technology companies, SMEs, • To encourage clarity of focus for the UK space and academia industry technological capability, in order to increase competitive standing and therefore profitability • To create greater alignment of space sector capability with Government needs and priorities • To continue to use the technology development funding mechanisms that exist today but • To maximise job creation and employment of STEM encouraging the UK space industry and government trained graduates in the UK space industry and to look to the future structures of national, European associated terrestrial applications and global markets ( including new and emerging markets and those of emerging space powers) • To utilise as appropriate to the market sector, a mix of private, national government and European funding 7
  • 8. 3 Overview of the Space Sector: Markets and Background For an industry which is half the age of the automotive scientific exploration that is fundamental to furthering and aerospace sectors the space industry provides human understanding. significant benefit to today’s society in areas of business and leisure. Space has been one of the hidden success Telecommunications currently dominates the UK space stories of UK industry over the past decades not simply industry in terms of earnings, exports and employment because of its remote space-enabled services but for for both upstream manufacturing and downstream the revenues it generates £6.5bn in the UK in 2008 services and applications. Over 95% of the commercial of which £3.6bn contributed directly to the nation’s (non-government and institutional) upstream satellite Gross Domestic Product (GDP) and its track record manufacturing market by value is dedicated to as an important source of export revenue. The sector telecommunication satellites. Over 90% of the UK accounts for 19,100 jobs as a direct result of its activities downstream space market is dedicated to telecoms. with up to 70,000 in related activities. More than 80% of the telecommunications satellites produced in the UK have been built for overseas Strongly market-driven, space represents a truly cross- customers. cutting sector which permeates our everyday lives in all manner of ways from our satellite TV, the navigation The Position, Navigation and Timing market which system in our cars, the weather forecasts and the has significantly developed over the past ten years is 8
  • 9. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY very broad, touching on all aspects of modern life. In future markets is sensing whose technologies have addition to the well understood transport and personal applications elsewhere in areas ranging from healthcare navigation applications, it also includes more discrete through to security. services: from the timing signals needed to deliver fibre optic communications to the telematic elements of our Space science and its associated instrumentation just in time supply chain culture. The common element and space engineering remains a very strong and key is the space component, with a very well established part of our success in space, with the UK providing a and trusted infrastructure in the form of GPS meeting knowledge base and capability for many developments almost all of our current needs. We are however on the feeding into applications and services which are brink of a number of new generation satellite navigation all around us in our lives. Academic experts have systems, including Galileo in Europe, GLONASS from teamed with industry to help develop new technology, Russia and Beidou from China. instrumentation and capabilities via research and development programmes. Knowledge exchange from Major market growth is expected in the future from this part of the sector have grown over the last five Earth Observation (EO) data provision and services years to ensure economic return. Recently, applications where the market has traditionally been dominated by from drink can manufacturing through to petrochemical government applications. However, programmes such processing are emerging from a space exploration as the European Global Monitoring for Environment programme (ESA ExoMars programme). This trend and Security (GMES) are enablers for both future will continue. The academic knowledge base in space technology and applications. Through innovations like technology also provides for the future training of Google Earth, EO data has become more accessible to the highly skilled workforce needed to exploit future the consumer; new markets relating to climate change, opportunities in space. carbon emissions and security are further developed via GMES and other programmes. Furthermore The UK has great strengths in space technology. Past new markets and applications are also anticipated and current investment in these capabilities has been a from the integration of EO and position data with central factor in making space one of the highest growth telecommunications services. Longer term markets, sectors in the UK economy and resilient to the effects of reaching up to ten years hence, such as robotics economic and political turmoil. Between 1999 and 2007 and new energy systems will grow, which will utilise the UK’s space sector grew on average by 9% per year. space derived technologies. A key aspect of all these 9
  • 10. 3 Overview of the Space Sector: Markets and Background The growth in the sector includes the contributions • They serve defence markets, offering ever more cost from UK prime contractors as well as the many (and effective options for gathering data and underwriting increasing number of) SMEs and technology companies communication and command structures. involved in the space industry along with the growing trend of academic industrial partnerships which enable • They provide solutions to Government agendas full economic exploitation of the UK’s knowledge and in key areas of societal challenge such as energy, technology base. transport, climate change and healthcare. Through the IGS we have set ourselves a clear For such markets to prosper and to ensure the UK is challenge to firmly establish the UK as one of the in the position to capture the maximum portion of the world’s leading space nations and grow the UK’s share market it is important to position UK industry with the of the global market to 10% over the next 20 years. This ability to be first to market and technically superior. drives space in the UK from a £6bn to a £4bn sector and There is no room for complacency in the UK, many provides an estimated 100,000 new highly skilled jobs in other governments recognise the importance and invest the UK. significantly greater sums into their space sectors. Space consequently combines high-value To realise the vision set out in the Space IGS, the manufacturing and services, advanced engineering National Space Technology Steering Group has and technology with an ability to provide solutions categorised and focused the UK capabilities, and to Government agendas through the delivery of data their potential contributions – economic, scientific and and information by space enabled services and from societal to achieve maximum impact for the UK. This is terrestrial applications of the technology. reflected in the first issue of a suite of roadmaps which will be maintained ensuring that underpinning applied Within the global space economy existing and emerging research supports the development programmes which technology capabilities drive three key areas: in turn meet the projected market needs. • They support strong commercial markets, particularly The aim is to achieve the best and most effective in telecommunications and broadcast. balance of this investment for the UK across national, ESA and international programmes and leverage the strong partnership between public and private institutions established through the space Innovation and Growth Team Project. Because space is a global business, we need to present the UK’s technology strategy in a wider context. We must have a clear view of how we plan to leverage 10
  • 11. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY particularly ESA and EU funding and resources to achieve our aims, but also how we will develop partnerships with the wider international community, including the emerging economies of China, India and South America. This in turn must be informed by the broader vision of where the UK sees itself in ten to twenty years time. Clarity of aim will allow the UK to more effectively drive the international agenda. Campuses, including the International Space Innovation Government investment is a key enabler of a long- Centre at Harwell (linked to other centres of excellence term strategy, creating both a level playing field for around the UK), is a major attractor for ESA and others, UK companies and science in the international arena, while novel financing models such as the PPP for Avanti and guarding the long-term vision for the nation. Communications HYLAS broadband satellite and the Government is also vital in setting the appropriate successful PFI for the Skynet 5 secure satcoms system regulatory framework and in brokering the relationship can revolutionise the way in which the space business with other national agencies (e.g. NASA, ISRO). In turn is conducted. Government can use the space agenda to further its broader policy aims and global geopolitical relationships A pragmatic but visionary technology strategy is a key (so-called ‘soft power’). foundation upon which the UK’s future role in space can be defined. The case for space technology is strong Underpinning this vision is the strength that the UK because of its inherent multidisciplinary application can bring in innovation and new enabling models, to that benefits society across many sectors (e.g. health, be responsive to a changing environment and resilient security, transport and communications). As a major to future demands. The UK is leading the way in contributor to the EU, the UK can use this technology bringing together capabilities and enabling new ways strategy to leverage EU funding and bolster the of working across different sectors and disciplines. competitive position of the UK and Europe in the world The development of the National Science & Innovation market, both in the space sector and beyond. 11
  • 12. 4 Rationale of the National Space Technology Strategy The aim of the NSTS is to set out a strategy which will The cross-cutting technologies will flow out from the enable UK industry to achieve the vision of the IGS sector roadmaps, as they are brought together in the through a balanced portfolio of technology priorities that overall technology strategy. This consolidation has not support the development of the UK’s commercial space yet fully taken place, and is planned in our next phase of sector and are aligned with scientific priorities, and activities. It is anticipated that cross-cutting technologies Government/societal and strategic needs. should potentially have a very wide range of application and demonstrate very different “advantages”. However, Support will firstly be targeted to areas of current UK all must have the potential to make a significant impact strength and capability, where there is evidence of a strategically and/or competitively. leading position, and capability to deliver and exploit the technology. This will deliver tangible economic benefits Space science missions tend to have long periods and is likely to have a high return on investment. The of gestation and it is necessary to bring forward support must be timely and result in a real difference technologies in parallel with the study and planning in the context of the world stage and the support being of mission concepts. Technological proposals in this given by other nations. Collaborative projects (e.g. area must be written in the context of this lifecycle industry-academia collaborations) are particularly and demonstrate clearly how they enable a valuable encouraged and the added value of the proposed opportunity. In some situations new technological collaboration would have to be demonstrated. Proposals developments may generate ground-breaking future will be expected to address a strategic need with clear missions and longer term spin-offs and economic reference to national priorities and roadmaps. return, in such cases an appropriate level of investment to demonstrate proof-of-concept will be required. Particular emphasis should also be placed upon cross- cutting opportunities and technologies which can Space has enormous potential for societal benefit, in address many space and terrestrial application areas the study of the Earth (e.g. climate change), as a vehicle including technologies where developments may lead for the inspiration of future generations of scientists and to applications in other areas such as health, defence engineers, in the generation of technological spin-offs and security. and many other areas. Where appropriate investment proposals must evidence such benefits. 12
  • 13. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY The highest priority for technology investment for both Automotive where a small additional activity focused private and public sectors will be the commercial market on the space market could leverage core technology sector which has a strong track record of return on programmes already funded through other means investment and is continuing to demonstrate growth. (for example, autonomous systems activity included Where the UK has a proven strength in a particular in the National Aerospace Technology Strategy). The market sector, for example, mobile satcomms, the involvement of the Technology Strategy Board in the technology roadmaps identify research themes which NSTSG will be crucial in exploiting these cross build and develop these strengths through innovation sector opportunities. and collaboration where an investment may enable larger market share to be gained. The UK should also consider, if deemed appropriate by the UK Government, UK Space Agency, NSTSG and the The roadmaps also highlight research themes which Space industry, trading equipment and instrumentation will open up new and emerging growth markets such for involvement in missions of other countries, emerging as next generation broadband, Earth Observation or markets, and those of emerging space powers. An robotics by delivering step changes in cost, capacity example here is a bilateral science mission where the and capability. The roadmaps include research themes UK provides instrumentation to conduct science but as which support development of new ‘downstream’ a condition of involvement also requires the country to services which bring together capability and data use UK provided equipment or facilities on the mission from existing space assets and add value to terrestrial enabling UK space industry to enter a non-UK national services (for example location based services using mission and that potential market. This kind of trade GPS/Galileo). In order for the UK to remain competitive, is already exploited by many of the UK’s competitors maintain its capability and be able to sustain, and and may also be used to achieve some of the IGS continue to grow its share in the world space market recommendations in terms of the desire for UK-led a balanced portfolio across the various space market science and exploration missions. The roadmaps will sectors will need to be achieved. also allow any such opportunities to be identified at an early stage. A further element of the roadmaps will be research in areas of disruptive technology where UK expertise could create large new markets (for example reusable launchers). An important consideration for the roadmaps will be alignment with research and development activity in other sectors such as Aerospace, Digital and 13
  • 14. 5 Technology Themes and Roadmaps The National Space Technology Strategy is articulated • Presentation of research and technology funding via a suite of five ma market driven technology roadmaps requirements from all participants. based around technology themes. These enable engagement with a broad stakeholder community • Development of stakeholder relationships as a result across the industrial supply chain, government and of collaborative thinking. academia and ensure widespread awareness of the strategy’s content. In particular the roadmaps afford • The roadmaps themselves equip stakeholders with government agencies, such as the UK Space Agency, insight and information to inform decision-making. the Technology Strategy Board and the Research Councils, an understanding of technology needs The NSTS focuses on those areas of the space sector within the sector and the market impact of research in which the UK is globally competitive and/or world- and development. leading. Each area has its own roadmap that details the sequence for transition of research into technology The Space Special Interest Group will actively maintain development and validation through to products that the technology roadmaps facilitating a biannual revision feed the global space market. in collaboration with the UK space sector. The NSTS technology roadmapping process is open, The collaborative process by which the roadmaps are transparent and inclusive to UK stakeholders who formulated delivers five high level outcomes, namely: engage in collaborative research and development within the space sector. This approach to sector • A consensus view of the sector’s research and roadmapping enables top-down and bottom-up technology requirements in the UK. integration of research, technology and development requirements, ensuring the UK space sector thrives and • Planned and targeted technology development that expands in a competitive global market. is focussed on the UK’s highest priority areas. 14
  • 15. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY 5.1 Telecommunications • Turnkey satellite systems (e.g. Inmarsat’s Paradigm The telecommunications roadmap covers both and Avanti systems; with scope to expand into Earth the upstream manufacturing and downstream Observation) manufacturing aspects of the satellite telecommunications sector. The IGS report highlights • Spacecraft platform, structure and composites key market opportunities including satellite broadband, broadcast, enterprise services, transport, security and • Payload systems capability the environment. • Satellite Network Operations, Business Support It is widely recognised that the telecommunications Systems, Services and Applications sector provides the critical mass for the UK space industry in terms of workload, skills, capabilities and • RF electronic equipment including telecoms, facilities to enable the UK to compete effectively in other navigation, radar EO, communications for science sectors. UK industrial strengths are highlighted for the and exploration missions. required telecommunications satellite systems across the full value chain. • Space antennas covering telecoms, radar with opportunities in other sectors Telecommunications developments enable industry to build large programmes leading to significant returns Telecommunications investments in R&D have shown on investment. Individual programmes are not identified consistent high returns and this can be highlighted by in the roadmap, it is the requirement to facilitate the following: technology demonstration opportunities to secure flight heritage for novel technology that is recognised. • Over 10 years, the UK invested £15m into the Astrium These flight opportunities could be through institutional E3000 Spacecraft through the ESA ARTES program missions, public/private partnerships or technology with matched investments by industry resulting in the demonstrator payloads (TDPs) on commercial missions. award of 34 spacecraft platform contracts worth over £510m directly to the Astrium Stevenage site. This Research themes as highlighted below have been equates to a 30 fold return on investment. identified based on maintaining and improving the competitiveness of the UK satellite telecommunications • A 36 fold return of investment was achieved following industry: £20m of ARTES support for the on-board digital signal processor to lead to a contract to Astrium worth • Increased telecommunications satellite capacity £740m for three Inmarsat 4 satellites. • Reducing cost to manufacturer, operator and user • Investment of £20m generic flexible payload technology developments secured the contract for • Enabling new services and market opportunities the Avanti Hylas satellite with Astrium and directly led to the creation of a new UK satellite operator with a Example technology themes from the roadmap include: market capitalisation of £531m. 15
  • 16. 5 Technology Themes and Roadmaps 5.2 Sensing commercial customers for EO data is expected to grow by more than a factor of three to $1.4bn over the Sensing is defined as the space and ground systems next decade. With UK industrial and academic teams and technologies that allow detection of data together working closely together in upstream and downstream with the technologies to exploit that data for scientific developments, it will be possible to capture a significant and commercial applications. The scope is broad, share by being ‘first-to-market’. including detectors, instruments and supporting systems, either mounted on satellites or on planetary The market drives technology capability, leading to landers. It also includes the ground technologies to societal benefit and economic impact through the handle and process the data. development of downstream services The UK has a well established world-leading capability UK industry and academia are major providers of in sensing, a capability built on meeting challenging sensing technologies and systems into international requirements from space and EO missions and the space missions with the following identified as UK analysis of complex datasets. This allows the UK to differentiators: access the upstream and downstream emerging market areas in the short term and prepare technologies for • Detectors – UV/visible, IR and X-ray longer term applications. • Optical systems and Lidar Institutional markets (e.g. Government, Research Councils, ESA, Eumetsat and European Union) act as • Microwave sensing systems – active and passive strong drivers of technology development providing maturity in capability which is further exploited via • In-situ instruments export and commercial EO markets. It also equips the UK supply chain to export to other national space • Down-stream technologies and EO applications agencies including NASA and NOAA. Major commercial opportunities exist, which could be captured with Downstream technology development will provide strategic and timely investment in sensing technologies, the next generation of ground systems necessary to enabling UK industry to remain competitive in the world. handle ever increasing data volumes and to provide the new applications using EO data. This area is growing Sensing technologies are vital to provide information to significantly and UK organisations are well placed to address important societal issues, including monitoring access markets in climate services, for instance tropical the climate, environmental change and future energy forest monitoring. needs. There are strong links to security and defence with many common requirements, capabilities and The sensing roadmap has identified many technologies technologies, where the opportunities for dual-use where the UK has an established and competitive development in space and non-space markets are capability. Investment in these technologies by significant. government and industry will ensure continued growth in capability and maximise access to the growing The downstream market for civil government and market in sensing Environment & Climate Change Detectors Drivers Market Space Commercial EO Capability Microwave Systems Space Science Technology Capability Optics & Sensors Ground Systems & Applications Societal & Space Economic Support Technologies Science Impact Sensing Technologies Applications Security & Health Defence Commercial Low Carbon EO Monitoring The Earth 16
  • 17. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY 5.3 Position, Navigation and Timing The roadmap has focused on how these services can be best exploited and the expertise resident in the The Position, Navigation and Timing (PNT) Sector UK is retained and leveraged. There is an upstream touches on all aspects of modern life such as the requirement to retain and develop the UK’s payload well understood transport and personal navigation expertise, this is captured under the European GNSS applications; it also includes discrete services Evolutions Programme (EGEP) that the UK participates such as timing signals needed to deliver fibre optic in thus protecting and developing the home grown communications to the telematic elements of the just-in- competencies, specifically in payload development. It is time supply chain culture evidenced in retail. therefore proposed that the upstream activity is aligned and funded through this programme. This area is on the brink of a number of new generation satellite navigation systems, including Galileo in Europe, Market Drivers in Position, Navigation and Timing fall GLONASS from Russia and Beidou from China as well into three categories as upgrades to GPS (GPS-III) to meet the shortfalls of the current GPS system. Satellite Based Augmentation • An appropriate service, e.g. a phone “App” is just a Services (SBAS), is commonly known as EGNOS is good idea that customers are prepared to pay for but Europe and WAAS in the US. Additional services over the infrastructure may or may not already exist. The India (GAGAN) and Japan (QZSS) are currently space community need to be aware of this growth being developed. and also assist in influencing such developers regarding the capabilities and limitations of current The key point is that each of these infrastructure and future PNT technology. projects is underway and UK companies have secured a significant share of the Galileo system procurement, the • Legislation ensures that services developed such midterm growth is in the downstream exploitation of the as phone “Apps” are fit for purpose and the Space current and future GNSS services, both in domestic and community has a strong role to play in helping export markets. 17
  • 18. 5 Technology Themes and Roadmaps specify the capabilities and requirements of PNT • Social market and structure as the UK is a fertile related services whilst also validating the services. market for LBS applications with large numbers of early adopters and mature privacy laws. • Services have in-service dates forming fixed milestones for availability. The technology must • Securing and exploiting the GNSS infrastructure for therefore keep pace or shape the service offering security applications. such as integrity (knowing your location is correct), increased availability (being able to operate in The key need to have arisen from both the IGS and environments it is not currently possible, e.g. roadmapping process is for a national test bed. city centres) or improved accuracy (over the current Consensus revolves around improved availability, better GPS services). exploitation of current test facilities, promotion within non-PNT led communities and impartial expertise and The greatest threat to the global GNSS and PNT advice available. markets is time to market with many programmes, such as Galileo which is behind schedule; such delays have 5.4 Exploration and Robotics impacted all GNSS programmes. The importance for Galileo being on time ensures being the second Exploration and Robotics is technologically driven and “full” service to GPS, before GLONASS achieves full faces huge challenges to achieve the science goals that recognition or even Beidou to become commercially typically drive the missions. Focused on the upstream available. The risk is that the supply chain cannot aspect of space, it has excellent potential for spin-in and wait for new infrastructure or services and will seek spin-out of other sectors. Exploration of other planets alternative solutions, including non-space requires cutting edge and highly resilient solutions to based services. successfully deploy robotics in remote and hazardous locations where human intervention for operations, The availability of new services will then further stimulate repairs or accidents is not possible. improvements as well as the development of new, niche applications. Exploration and Robotics is defined as including all types of robotics for the exploration of a planet surface The UK capabilities can be broadly categorised as: as well as robotics used in orbit around the Earth. The instruments used to meet the science objectives • Innovative application developers demonstrated of a mission are covered by the sensing sector, while by the UK attracting the single largest number of sensors needed by the platform for navigation or control applicants in the ESA IAP programme, with almost are included in this sector. half as many again as the next most active region. 18
  • 19. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY • Penetrators – Includes modelling of de-orbit, entry The roadmap identifies a series of opportunities for and descent, flight control of high velocity objects, specific ESA space missions, other multi-national sensors, novel power/heating, highly rugged programmes with UK contributions and some electronics commercial opportunities. Routes into terrestrial applications through spin-out are significant thus • Novel Locomotion Technologies – includes aerobots, leveraging further the technology investments. Areas of under liquid propulsion, climbing robots and could possible spin-out include unmanned vehicles for military spin out to military and civil dirigible programmes, use in dangerous situations, civil applications such as low cost high altitude communications platforms and the nuclear industry or oil and gas exploration and in robotic access to difficult locations. assisted living developments, results of spin-out from the Aurora programme are already being observed. • Novel Power Technologies - nuclear power/heating sources, autonomous mission management, very UK expertise has been further advanced as a result low power systems, energy scavenging. of the Beagle 2 mission as well as the work already performed for the ExoMars programme. • Robotic Support of Manned Exploration - human factors, multi-agent collaboration, in-situ More than 70 individual technologies have been resource utilisation. mapped out and then grouped into a set of themes: 5.5 Access to Space • Autonomous Vehicles – Technologies include autonomous mission management, navigation, The Access to Space technology roadmap focuses science autonomy, robotic control, localisation on the future market need for technologies to deliver without GPS, data fusion and multi-agent autonomy. payloads into space where the term ‘payloads’ is used in a generic sense, e.g. science instrument, a network of • Robotic Manipulators – Includes teleoperation, sensors distributed around multiple orbits, a satellite, a sampling devices, sample transfer and manipulation, space tourist, etc. Key market opportunities have been rendezvous and docking. further developed following the publication of the Space IGS. 19
  • 20. 5 Technology Themes and Roadmaps MEMS based sensors, technologies for structure Space-plane/Reusable launch systems assembly in space and technologies for space-based The ability to deliver a payload to orbit and return the solar power generation and supply to ground. launch system to the ground safely and efficiently presents a game-changing capability in launch Inter-orbital transfer capability systems. UK developments in this area include engine This activity includes propulsion stages that assist development, advanced aerospace structures, re-entry platforms to transfer from one orbit to another. systems and automatic flight systems. Applications include: transfer of communications satellites to geostationary orbit, interplanetary transfer Small satellite launcher and Sub-orbital space-planes module; transfer and deployment of constellations Currently, an air-launch system seems the most of satellites in LEO and space-tugs. Existing UK adaptable solution, enabling launches from recently capability identified includes chemical propulsion, solar formed ‘space ports’ such as New Mexico or even electric propulsion, lightweight structures, fuel tanks, from a space port in the UK. This also opens up the rendezvous and docking, nuclear power systems, de- possibility of a space tourist industry for the UK, using orbiting devices and on-orbit refuelling. sub-orbital space-planes either developed in the UK or from companies like Virgin Galactic. Legislation and regulatory changes Many of the market opportunities identified are limited Small and nano platform technologies by current UK legislation. The roadmap shows areas The ability to have a capable small satellite platform to be resolved relating to the Outer Space Act, liability, requires the miniaturisation of spacecraft components, RF spectrum, Civil Aviation Authority limitations and without significant degradation in performance. insurance to create a 5, 10 and 20 year plan covering Expanding UK capability, the research themes for small low-cost access to space, infrastructure and and nano spacecraft will increase the performance space tourism. of small satellite platforms, whilst at the same time putting the UK at the forefront of miniaturised space technologies. Large platform technologies Development themes for this roadmap include: deployable and inflatable structures, ultra stable platforms, agile control moment gyro systems and Market Opportunities UK Capability Research Themes Low cost launch systems Reusable launcher design Reusable launch systems Cost effective orbit transfer Large telecom platforms Launch services for small satellites Services using advanced low-cost small Small and nano-satellite platforms New smallsat platform technologies satellites Launcher elements (propulsion, avionics, Space tourism Inter-orbital transfer units structures) Enabling regulatory improvements 5.6 NSTS Investment Profile The IGS concluded that a £20 million national program technology innovation that resides in all UK players, should start in 2011 jointly funded by government and from academia, through SMEs, equipment suppliers industry, rising incrementally to around £100 million per and Prime contractors, ranging from academic ‘blue annum by 2015/16.The exact funding for years 2 to 5 skies’(TRL1), through technology demonstration (TRL should be determined from the roadmapping activity. 5-6), to exploitation (TRL9). Support and agreement of the Research Councils including those not normally The roadmaps prepared for the NSTS cover all engaged in space technology development, such as the aspects of the UK space programme including ESA Engineering and Physical Sciences Research Council and EU based programs and have been developed in (EPSRC) as well as the Technology Strategy Board partnership by industry, government and academia. through their R&D competitions and grants is required This ensures an integrated and agile exploitation of the to ensure this integrated approach. 20
  • 21. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY This first issue of the NSTS technology roadmaps programs it is essential that Europe collaborates identifies a priority plan for a National Funding through the European Space Agency. Sustained Programme for the next 5 years built on top of the ESA investment in ESA and EU programmes (latter via EU and EU programmes. funding) is therefore essential to maintaining the UK’s market share as this investment underpins medium to Due to the high cost of research and demonstration long term technology developments. National Space Technology Strategy Sectors ESA and EU Relevant Programmes Science, Earth Observation, Robotics and Exploration Sensing (Aurora), GMES, Space Situation Awareness Telecomms Telecommunications (ARTES) Position, Navigation and Timing Galileo, EGEP Robotics and Exploration Robotics and Exploration (Aurora) GSTP Science, Earth Observation, GMES, Space , Access to Space Situation Awareness There is a natural correspondence between the and meet IGS objectives by: enabling UK development European based programmes and the sectors adopted and ownership of the Intellectual Property; providing within this strategy document; this is shown in the table commercial opportunities for UK industry; and above. competitively positioning the UK for ESA and European programmes. The National Programme will ensure that The ESA Ministerial in 2012 will define the future ESA the UK continues to secure a comparative advantage programmes and additional funding will needed for UK from developing and exploiting technologies for future to participate in future programmes. Failure to sustain markets in both manufacturing and applications. and increase this funding will result in a slow down in growth, an erosion of UK space Capabilities and The investment profile shown below, which has been therefore a loss of global market share. produced as a direct output of the roadmapping activity, reflects the balances between ESA and national funding A national programme (based upon this Strategy) and share of costs between industry and government, in addition is required to enable exponential growth as seen in the following table. Space Investment Profile (Indicative Numbers Only) 500 400 £Millions 300 200 100 0 0 Current 2010/11 2011/12 2012/13 2013/14 2014/15 Baseline spend (Existing ESA based programmes) Baseline spend (ESA based programmes including extensions and new programmes - Indicative) National Space Technology Programme (Indicative) Profile does not include research council expenditure on Space. 21
  • 22. 6 Delivering the Space Innovation and Growth Strategy S The targets laid out in the Space Innovation and Growth Space organisations have been successful in the Strategy of reaching £40bn of revenue and an additional following Technology Strategy Board competitions 100,000 high skilled jobs in the sector are ambitious this year: – BUT can be realised if the recommendations are implemented in an integrated way. • Trusted Services This document is a key deliverable of Recommendation • Network Services Demonstrators Three of the Space IGS along with the development of a suite of technology roadmaps and supporting • Nuclear R&D Feasibility Studies documentation. Other areas of Recommendation 3 are concerned with the identification of a separate and ring • Assisted Living fenced R&D budget; initial investment was targeted for April 2010/11 with increases to then reach £50m of • Collaboration across Digital Industries public investment by 2015/16. • Crop Protection Whilst no new ringfenced space technology budget was identified in 2010/11 it is important to note that there has • Technology Inspired Collaborative R&D been an increase in space related applications for the Technology Strategy Board’s Collaborative R&D grants Up to £3m of new public funding will have been and new technology demonstration opportunities have committed in 2010/11 via the Technology Strategy been created by Technology Strategy Board grants for Board’s R&D grants. This increase in publicly funded Tech Demo Sat and UKube1. R&D can be attributed to: 22
  • 23. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY • An enhanced profile of space on the whole as a result applications for 78 grants of up to £25k. These projects of the publication of the Space IGS Report will be carried out between May and July 2011 and the results will influence future developments of the • Improved understanding of possible areas of space National Space Technology Strategy. related interest to possible funders, public and private The publication and regular updating of this National • Greater visibility to the space community of Space Technology Strategy and its underpinning collaborative R&D competitions through technology technology roadmaps not only mark a delivery of a roadmapping developments and enhanced Space IGS recommendation but also enable informed communications discussions across broad ranging stakeholders regarding future investments. The first dedicated space competition, “Feasibility Studies for Innovation in Space” attracted over 215 Space IGS Relationship of National Space Recommendation Summary Recommendation Technology Strategy to IGS Recommendation 1 National Space Policy Defines technology base and possible mission opportunities 2 Executive UK Space Agency Provides independent input on strategy and funding requirements 4 Access to capital Improves access to capital by reducing technical risk 5 Innovative indigenous EO data service Defines technology base and aids in development planning Climate Change Validation, adaptation and 6 Defines technological development paths mitigation Space enabled services as complementary Defines technological development paths for satellite broadband, 7 Information and Communication Technologies broadcast and innovative applications and services (ICT ) infrastructure Strategic view of use of space in national security Defines technology base and possible mission opportunities along 9 and defence planning with technological development paths UK to take lead in Mobile Satellite-based Services 10 Defines technological development paths (MSS) UK should initiate and lead space exploration or Defines technology base and possible mission opportunities along 13 science missions with technological development paths 14 Hub and Spokes Centres of excellence Defines technology base and associated centres of excellence Defines technology base and possible mission opportunities along 15 Increase investment in ESA with technological development paths and relationship to national technology development 16 Space Leadership Council Provides a National Strategy for use by the SLC 23
  • 24. 7 National Space Technology Strategy Governance The Space Leadership Council (SLC) which oversees the technology programmes. These groups will adopt a the delivery of the Space Innovation and Growth generic approach that will provide: Strategy has endorsed the process used to develop the Space Technology Strategy. It is not the role of the SLC • An accessible advisory body for the NSTSG to better to determine the content of Technology Strategy but to understand sector themes represent the Strategy at all necessary forums where decisions are to be made regarding its implementation. • Clearly defined working objectives to encourage further involvement from UK space industry The development and ongoing implementation of stakeholders the NSTS will be governed by the National Space Technology Steering Group (NSTSG). This is a forum of • A set of mutually agreed outcomes that benefit the industry, government and academia experts from across participants and the broader community space the space community to provide technical direction. at large Chaired by Sir Keith O’Nions, Imperial College, the group will meet upto six times per year. The Group The Technology Strategy Board’s pan-KTN Space currently involves the organisations detailed below. Special Interest Group (SIG) has a coordinating and facilitating role in the above groups. It acts as a The NSTSG takes its lead from the five sector based light touch secretariat to the NSTSG and will on an Space Technology Roadmaps. Each space sector is ongoing basis coordinate the Space Sector Technical represented by a small working group of organisations Committees. The Space SIG will also continue to which are able to contribute to the overall development publish a biweekly newsletter highlighting technology of that area. Each group is chaired by industry but strategy developments, opportunities of funding and includes a wide range of experts from a range of public the promotion of relevant technology based sector bodies and universities. networking events from across the community. It will also actively utilise the Technology Strategy Board’s It is expected that the space sector groups will create portal _connect to enable wider access to the Strategy Space Sector Technical Committees that will meet and its developments. approximately four times per year to further develop Astrium QinetiQ Avanti SciSys Centre for Earth Observation Instrumentation South East England Development Agency Clyde Space Space Special Interest Group Department for Business Innovations and Skills Surrey Satellite Technology Ltd Imperial College Technology Strategy Board Inmarsat UK space Agency International Space Innovation Centre University of Edinburgh Logica University of Leicester Ministry of Defence University of Sheffield Mullard Space Science Laboratory University of Strathyclyde 24
  • 25. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY About the Space Special Interest Group The Technology Strategy Board created the Space Special Interest Group (SIG) as a pilot that will aim to connect pan-Knowledge Transfer Network (KTN) activities, acting as a mechanism to foster a space community that spans Government, Industry and Academia. The Space SIG is the custodian of the NSTS and its underpinning technology roadmaps. The Space SIG is hosted by the Aerospace, Aviation & Defence Knowledge Transfer Network (AAD KTN). To connect with the Space Special Interest Group you can: • email ruth.mallors@aadktn.co.uk regarding getting involved in the Knowledge Space SIG’s activities. • Register for free at www.aadktn.co.uk to access services, networks and to Transfer receive the fortnightly newsletter. • Email the Space SIG at spaceSIG@aadktn.co.uk for further Network information. Aerospace & Defence 25
  • 27. U K N AT IO N A L SPACE TEC HN OLOGY S T R ATEGY Notes 27
  • 28. All images in this document are reproduced with the kind permission of: QinetiQ, Astrium, STFC-RAL/CEOI, QUB/CEOI, Avanti Communications plc, Reaction Engines Ltd, SciSys.