SlideShare ist ein Scribd-Unternehmen logo
1 von 13
Downloaden Sie, um offline zu lesen
A APLICAÇÃO DE ESPOLETA ELETRÔNICA DE ROCHAS COM EXPLOSIVOS
Eduardo Jorge Lira Bonates – Professor Titular UFCG, bonates@reitoria.ufcg.edu.br
Arlindo José Bazante – Professor Assistente I – UFCG bazante@dmg.ufcg.edu.br
Gildácio José de Lima Araújo – Mestrando UFCG
RESUMO
O processo de desmonte de rochas, apesar de sua complexidade e do pouco aproveitamento
da energia tem alcançado progressos significativos com a aplicação de explosivos e acessórios
de alta tecnologia. As novas técnicas, equipamentos e softwares de monitoramento são
ferramentas que ajudam a melhorar o desempenho do desmonte. O ajuste dos tempos de
iniciação e a seqüência de detonação representam alguns dos parâmetros de grande relevância
dentro do processo de desmonte de rocha. Atualmente existem vários tipos de iniciadores,
sejam instantâneos ou com elemento de retardo. O sistema eletrônico de iniciação, apesar de já
estar na sua segunda geração, só em meados de 2002 vêm sendo aplicado no Brasil. Trata-se
de um sistema que permite maior flexibilidade nos ajuste dos tempos (de 1 a 8000 ms.) e uma
menor dispersão que outros iniciadores, permitindo, assim, um controle melhor da detonação.
Palavras Chave: espoleta eletrônica, impacto ambiental, fragmentação.
ABSTRACT
The process of rock blasting with explosive, in spite of its complexity and small performance of
energy has been achieving progresses with the application of explosive and accessories of high
technology. The new techniques, equipments and software of monitoring are tools that can help
the performance of blasting. The adjustment of the times of initiation and the sequence of
detonation of the explosive represent some of the parameters of great relevance in the process
of blasting. Actually, exist several types of initiators: instantaneous and delay element. The
electronic system of initiation, only recently has been applied in Brazil, It is a system that
presents larger flexibility, can be adjusted for the times varying from 1 to 8000 ms and shows
small dispersion than any other initiators, which allows a better control of the detonation.
Key words: electronic cap, ambient impact, fragmentation
2
INTRODUÇÃO
A maioria das pedreiras destinadas a produção de brita situam-se próximas aos centros
urbanos, por razões econômicas relacionadas principalmente com o baixo valor agregado do
material e o elevado custo de transporte. Isso tem causado sérios problemas ao meio ambiente
em virtude das vibrações, ruídos e sobre-pressão atmosférica causado pelo desmonte de rocha.
Entre os vários aspectos relacionados com o desmonte dois tem importância significativa:
fragmentação e o ambiente. A fragmentação se constitui num fator econômico associado com o
mercado consumidor, já que existem normas que padronizam o produto. Em relação a questão
ambiental, que é um fator social, devem ser feitos controles de forma a minimizar os efeitos
caudados pelas detonações. Para tanto são necessárias informações que permitam a
realização de um planejamento que não somente atenda os objetivos de produção, mas que
também satisfaça as exigências legais dos órgãos ambientais.
O processo de fragmentação ocorre através da velocidade de detonação e expansão dos
gases, sendo avaliada pela distribuição granulométrica do material. Porém existem outros
parâmetros que devem ser considerados. A parte da onda de choque que não gera trabalho útil,
é absorvida pelo maciço, gerando vibrações no terreno que provocam perturbações a
circunvizinhança, sendo sua verificação estabelecida em normas e determinada pelo cálculo da
resultante da velocidade de partícula.
O monitoramento dos processos de desmonte de rochas com explosivos são recentes, sendo
que a explicação desses fenômenos como esforços dinâmicos e mecanismos de ruptura eram
meramente empíricos, pois não existiam instrumentos suficientemente confiáveis para
quantificá-los (Silva, 1998). Um dos principais trabalhos desenvolvidos com esta finalidade foi o
de Langefors e Kihlstron (1963), que consideravam cada estudo geomecânico como
representativo de uma situação de campo, isto é, cada região reage de forma diferente na
interação explosivo/rocha.
OBJETIVO
O objetivo desse trabalho é mostrar as aplicações das novas tecnologias de monitoramento das
operações de desmonte realizadas na pedreira Cantareira localizada na região de Mairiporã-
SP, cuja finalidade é a produção de britas graníticas. A empresa faz parte da divisão de
agregados do grupo Holcim, que possui duas unidades operacionais - Mairiporã e Sorocaba,
com capacidade anual de produção de 2,46 milhões de toneladas de brita. A Unidade Mairiporã
situa-se na rodovia Fernão Dias - km 67. Foi a primeira empresa no setor de produção de britas,
a obter o certificado de qualidade ISO 9002.
Além disso, será também apresentado o resultado obtido com o emprego desse novo
procedimento, fazendo uma comparação entre o uso dos acessórios convencionais e a
espoleta eletrônica.
É evidente que ao longo do tempo ocorreu um desenvolvimento tecnológico significativo na
produção e manuseio dos explosivos civis, com a finalidade de otimizar os parâmetros que
influenciam no desmonte, tais como a fragmentação, carregamento, qualidade e segurança.
A pedreira Cantareira foi uma das primeiras a utilizar o sistema de iniciação eletrônica, com a
finalidade de controlar a velocidade de partícula dentro dos limites estabelecidos pelas normas
da CETESBE. Os testes foram feitos em locais críticos devido à proximidade com áreas
habitadas.
3
ASPECTOS OPERACIONAIS
A lavra é desenvolvida a céu aberto e em flanco com desmonte de rocha por explosivo, sendo a
carregamento e transporte mecanizados. O material retirado do capeamento é depositado
ordenadamente no bota-fora, onde posteriormente será drenado e revegetado, atendendo
requisitos técnicos e de meio ambiente.
No plano de fogo os furos são executados em pontos previamente determinados em função os
dados a frente de lavra, com o emprego de um teodolito a laser, tendo sua orientação medida
posteriormente com um inclinômetro. A partir daí são verificados os possíveis desvios da
furação. A perfuração é feita por equipamentos hidráulicos e/ou pneumáticos, com diâmetros de
3 e 3½" e comprimento de furos variando entre 10 e 20 metros. O processo de transporte e
manuseio é realizado por caminhões fora-de-estrada com capacidade de 25 e 35 toneladas e o
carregamento por escavadoras e carregadoras de 4,0 m³.
O processo produtivo é feito através das operações de cominuição e classificação
granulométrica do material. Na britagem primária são utilizados britadores de mandíbulas com
alimentadores vibratórios, onde o produto britado é transportado por correias transportadoras
de 42" e depositado em uma pilha intermediária, para posterior re-britagem. Na britagem
primária, o tamanho máximo dos blocos é de 0,8 m de diâmetro, seno reduzido para abaixo de
0,3 m, adequados às operações subseqüentes até chegar ao produto final, conforme ilustrado
na tabela 1.
Tabela 1.1: Produtos e aplicações de agregados para construções civis (Catareira, 2003)
PRODUTOS E APLICAÇÕES
Malha de corte (mm) densidade
Material
Mairiporã Sorocaba Mairiporã
Aplicações
Bica corrida Variável Variável 1,751 Pavimentos.
Bica
Graduada
Conforme
Especificação
Conforme
especificação
1,802 Pavimentos.
Brita 1 +9,5 – 23 +10 – 24 1,416 Concreto estrutural,
pavimentos e pré-moldados.
Brita 2 +23 – 30 +24 – 30 1,441 Concreto estrutural,
pavimentação e drenos
Brita 3 +30 – 50 +30 – 50 1,445 Pavimentação, túbulos, drenos
e lastros ferroviários.
Brita 1/2 - +7,5 – 10 - Concreto estrutural,
pavimentos e pré-moldados.
Macadame
Hidráulico
Variável - 1,471 Pavimentos.
Pedrisco +5,5 - 9,5 +4,76 - 10 1,332 Blocos, pré-moldados,
pavimentos simples, concreto
asfalto e estrutural.
Pedrisco
Misto
- 9,5 -10 1,605 Blocos, pré-moldados e
concreto.
Pó de
Pedra
- 5,5 -4,76 1,550 Blocos, pré-moldados,
pavimentos simples, concreto
asfáltico e estrutural.
4
INICIADORES
Ao longo do tempo, os acessórios de detonação que tem como principal função controlar e
iniciar a massa explosiva agregou novas tecnologias com o objetivo de melhorar seu
desempenho. Como os intervalos de tempo dos iniciadores eram irregulares e proporcionava
pouco ou nenhum controle da iniciação, tornou-se necessário desenvolver métodos mais
seguros. Numa tentativa de melhorar a segurança foi desenvolvido um sistema de iniciação
semelhante ao estopim. Em função da necessidade de se obter um modo mais eficiente de
iniciar a detonação, pois a energia potencial da nitroglicerina era muitas vezes desperdiçada por
meios insatisfatórios foi desenvolvido o primeiro iniciador pirotécnico que constitui a espoleta
simples. Posteriormente esse iniciador foi aperfeiçoado através da mudança de sua carga
explosiva.
No início da década de 80 a Imperial Chemical Industries (ICI) desenvolveu o sistema
eletromagnético de iniciação denominado “Magnadet”. Nos anos 90 surgiram iniciadores
eletrônicos baseados em sistemas de iniciação por ondas de rádio de baixa freqüência e
retardos eletrônicos iniciados por meios não elétricos como o “Digidet” da Ensign Bickford Co.
(Munarette, 1997).
As atividades produtivas (mineração, construção civil, etc.) que utilizam explosivos, contam
atualmente com recente desenvolvimento dos iniciadores eletrônicos, muito embora o sistema
pirotécnico associado a não-elétrico e ao cordel sejam os mais utilizados. O sistema eletrônico
de iniciação garante mais segurança, versatilidade e precisão nos tempos de retardo que os
demais sistemas iniciadores.
Os iniciadores têm uma influência significativa na eficiência do desmonte. Entre os parâmetros
de avaliação podemos destacar:
 Fragmentação e distribuição granulométrica;
 Características da pilha;
 Distribuição de teores;
 Danos causados a rocha remanescente;
 Efeitos sobre as operações subseqüentes (carregamento, transporte,
manuseio, cominuição);
 Custos;
 Impactos ambientais.
Uma boa fragmentação terá influência direta nas operações subseqüentes, já que representa o
principal objetivo do desmonte. A tabela abaixo mostra como a distribuição granulométrica do
processo de fragmentação terá relação com o desempenho do desmonte nos custos de lavra e
dos processos subseqüentes.
O planejamento das operações de lavra para produção de brita consiste basicamente no
posicionamento das frentes condicionado as feições geológicas estruturais (falhas, juntas,
fraturas, etc.), pois influencia nas condições de segurança e perdas energéticas.
SISTEMAS DE INICIAÇÃO
Os sistemas de iniciação surgiram em função da necessidade de se controlar a detonação das
cargas principais. Atualmente essa necessidade é maior, uma vez que os explosivos
apresentam uma menor sensibilidade. Além disso, ainda possui outras finalidades: melhorar a
fragmentação, seqüência e direção da iniciação e, conseqüentemente, do movimento e
5
lançamento dos blocos, minimizar os impactos ambientais, tais como vibração e
ultralançamentos, etc. (Cintra, 1997).
Tabela 2 - Efeitos indesejáveis na fragmentação de rocha com explosivos.
Efeitos indesejáveis na fragmentação
GRANULOMETRIA PROBLEMAS GERADOS
Blocos de tamanho
superior do desejado
• Exigem desmonte secundário.
• Dificulta o carregamento, transporte e a britagem.
• Aumento no custo de manutenção dos equipamentos.
• Exige equipamento de grande porte para blocos grandes.
• Gera problemas ambientais
Quantidade de finos
• Aumento da razão de carregamento e dos custos no
desmonte primário.
• Aumento no custo de manutenção na britagem.
• Redução da quantidade de blocos.
• Gera problemas ambientais (poeira excessiva).
SISTEMA ELETRÔNICO
O sistema de iniciação eletrônico consiste da interação entre 2 componentes: espoleta
eletrônica e os mecanismos computadorizados de acionamento. Trata-se de um sistema similar
ao elétrico, entretanto os dispositivos eletrônicos proporcionam maior segurança, versatilidade e
precisão nos ajustes de tempo. Apesar de toda sua eficiência tem como principal desvantagem
o alto custo. Esse sistema é aplicado em situações especiais que exigem maior controle
rigoroso dos nos ajustes dos tempos de retardo.
MONITORAMENTO E AVALIAÇÕES DO DESMONTE
Como as propriedades de um maciço rochoso variam espacialmente, cada rocha reage de
maneira diferente na interação explosivo/rocha, de acordo com a localização dos pontos de
aplicação da energia transferida pelo explosivo no maciço rochoso. Daí, tem-se a necessidade
de estudar o maciço rochoso e adotar um plano de desmonte que se ajuste as condições
ideais, com o objetivo de obter uma melhor fragmentação e, conseqüentemente, menor dano ao
meio ambiente. Entre os vários métodos de monitoramento e avaliação do desmonte destacam-
se:
 Perfilagem da bancada;
 Verificação e avaliação de possíveis desvios de perfuração;
 Monitoramento sismográfico;
 Medição de velocidade de detonação;
 Medição da sobrepressão e ruídos;
 Verificação da pressão de detonação;
 Medição dos tempos reais de retardo;
 Monitoramento de trincas;
 Fotografia de alta velocidade e vídeo de alta definição;
 Analise granulométrica.
6
A parte principal do sistema eletrônico de detonação é composta pela espoleta eletrônica
associada ao programador (logger) e ao sistema de ignição (blaster).
O logger é um dispositivo de programação onde são definidos os tempos de retardo. Cada
espoleta é identificada pelo o sistema e permite que seja programada de acordo com as
características operacionais do desmonte. Além disso, permite simular a seqüência de
detonação antes ou após do carregamento dos furos.O sistema de ignição tem capacidade de
iniciar até 1600 espoletas com condições satisfatórias de segurança. A iniciação das cargas só
acontece após a liberação de um dispositivo de segurança conectado ao iniciador. A operação
pode ser interrompida mesmo após ser iniciada a contagem do tempo.
Os programas que simulam as operações de desmonte permitem a programação dos devidos
retardos e, assim, observá-los em diferentes velocidades. Isto é feito com o objetivo de prever
possíveis correções ou alterações na seqüência da detonação previamente escolhida, como
também verificar erros de projeto.
APLICAÇÕES DO SISTEMA
O sistema eletrônico de iniciação representa uma revolução nas operações de desmonte,
permitindo uma maior segurança e controle dos tempos de iniciação, adequando a operação as
exigências das normas técnicas e ambientais. Entre as muitas características podemos citar:
 Sistema totalmente programável no furo de 0 - 8.000 ms, em incrementos de 1 ms;
 Conexão perfeitamente segura feitas através de conectores;
 Comunicação bidirecional entre o equipamento de controle e as espoletas; possibilitando
a avaliação do sistema antes da detonação.
 Fácil de se usar e programar
 Planos de detonação digitais facilmente projetados com o software
 Um espoleta de tamanho único e padronizado que se adapta a todos os boosters
convencionais;
 Espoleta padrão com carga primária protegida, oferecendo resistência a pressão
dinâmica até 100 MPa (14,700 psi);
 Sistema de hardware e software totalmente autotestáveis.
A aplicação esse sistema é recomendada em situações que exigem um controle rígido do ponto
de vista técnico, segurança e ambiental, etc., dentre as quais podemos citar:
 Controle de vibrações, próximos a estruturas e a ambientes sensíveis;
 Desmontes complexos,
 Controle rígido do maciço remanescente, permitindo uma maior estabilidade e
segurança;
 Minimização da diluição do minério;
 Otimização do lançamento da pilha.
As empresas que fazem uso dessas espoletas são a Orica Brasil Ltda. e a Joule Comercial
Ltda. A Pedreira Cantareira do Grupo Holcim esta atualmente desenvolvendo um programa de
aplicação dessas espoletas em suas operações, apresentando bons resultados.
O trabalho e campo foram divididos em 4 etapas. A primeira consistiu da elaboração do plano
de fogo com base nos dados levantados do “bore track”, da geologia, tipos de equipamentos,
altura da bancada e efeitos no meio ambiente. Na definição das variáveis foi utilizado o
7
programa SHOTPlusTM
determinando a malha de furação, forma de carregamento e a iniciação
de cada espoleta.
Na segunda etapa, com o uso de um teodolito, foram definidos os furos de acordo com o plano
de fogo. Logo após, é iniciada a perfuração com sua orientação também já definida, utilizando
perfuratrizes pneumáticas com diâmetro de 3” e com profundidade variando entre 14 à 18
metros. Essa etapa só se encerra com a aferição dos furos através de um inclinômetro, onde
são verificados previamente os possíveis desvios para posterior correção.
Na terceira fase os furos já estão previamente preparados para operação de carregamento, que
é feito de acordo com as condições de cada furo. Logo após a verificação dois reforçadores
são escorvados iniciando o carregamento. Antes de iniciar o carregamento com o explosivo
principal, no caso emulsão bombeada, é verificada a densidade do explosivo e se for preciso
ajustada. Esses ajustes são possíveis, porque neste caso é utilizada uma unidade móvel de
emulsão bombeada, o que permite o ajuste da mistura explosiva no momento do carregamento
conseguindo a densidade adequada da carga. No caso de furos extensos (mais de 10 m), são
utilizadas duas escorvas separadas por um deck no cento da coluna explosiva.
A ultima fase consiste na operação de conexão dos fios que fazem as ligações com a linha de
tronco (em paralelo) e simultaneamente, é feita a programação dos tempos de iniciação de
cada espoleta em função dos dados simulados. A figura abaixo mostra a área no topo da
bancada a ser desmontada (2002).
Figura 1 - Área no topo da bancada a ser desmontada (2002).
Para controle e monitoramento das vibrações e sobrepressão acústica ocasionada pelas
detonações são utilizados sismógrafos.
ANÁLISE DOS RESULTADOS
O trabalho teve como objetivo analisar os resultados dos desmontes realizados durante os
meses de março a setembro de 2002, na pedreira Cantareira, com o sistema eletrônico de
detonação da I-kon, utilizado pela Orica do Brasil Ltda. e, a partir daí, sugerir ações e novos
estudos para a melhoria do desempenho das operações subseqüentes.
8
O resultado do monitoramento do desmonte foi satisfatório, demonstrando que a vibração
originada nas detonações dos bancos estava abaixo do limite estipulado, conforme ilustra a
tabela abaixo.
Todos estes resultados foram obtidos em desmontes com furos de 3” e as cargas distribuídas
em 2 decks por furo. O único resultado que ficou acima do limite da norma da Cetesb (4,2
mm/s), foi o do dia 12 de julho, já que foi utilizado um tempo de retardo entre cargas explosivas
menor, com a finalidade de melhorar a fragmentação. Esta sobreposição de onda também foi
favorecida pela posição e seqüência de detonação dos furos, relativa ao ponto onde foi
instalado o geofone. Com o objetivo de retornar as condições anteriores foi aumentado o tempo
de retardo para 16 ms.
Tabela 3 - Resultados da velocidade de partícula versos retardo por cargas.
Data PPV
(mm/s)
Vert.
(mm/s)
Banco Geof. Freq
Max/Mín(Hz)
Ret/Cargas (
ms)
28/fev 3.03 1.78 1017 1 57/64 15
12/mar 2.68 1.52 1040 2 37/57 15
26/mar 0.933 0.762 1017L 2 30/39 25
09/abr 2.44 1.65 1017 1 73/85 5
16/abr 2.65 2.29 1017 1 73/>100 5
19/abr 2.31 2.03 1040L 1 37/51 15
24/abr 1.89 1.65 1017L 2 37/51 15
14/jun 0.899 0.635 1040L 2 57/85 3
12/jul 6.85 6.1 1040L 1 27/57 3
23/jul 1.36 1.14 1017L 1 57/85 16
02/ago 1.74 1.65 1040L 3 26/73 16
16/ago 2.16 2.16 1040L 3 19/39 16
27/ago 0.933 0.635 1040L 3 19/51 16
30/ago 1.36 1.02 1070L 3 18/47 16
03/set 1.91 1.9 1017L 3 34/64 16
06/set 1.38 1.27 1040L 3 37/73 16
13/set 1.24 0.635 1017L 3 47/73 16
24/set 2.2 1.52 1017L 1 32/73 16
Ainda foram analisados outros valores, de acordo com os locais de instalação do geofone: (1),
(2) e (3). Pela análise do gráfico abaixo se verifica uma tendência de redução na sobrepressão
nos pontos de captação.
9
Figura 2 - Evolução da PPV Com geofones instalados na (1).
Devido a proximidade da posição (1) em relação a frente de lavra, era esperado que seu valor
fosse maior que os demais pontos de observação.
Figura 3 - Evolução da PPV Com geofones instalados na (3)
Figura 4 - Evolução da PPV Com geofones instalados na (2)
Nos dois desmontes apresentado na tabela 11.3, o ponto de captação estava situado atrás da
linha de furos. Devido a esse posicionamento do sismógrafo, foram gerados valores maiores de
10
vibração. O posicionamento do equipamento em posição ortogonal a face localizada nos
bancos 1000L e 1017L, fez com que a PPV fosse reduzida.
Tabela 4 - Evolução da PPV(Velocidade de Partícula) nos bancos 1000 e 1017.
Data PPV
(mm/s)
Vert(mm/s) Banco Geof. Freq Max/Mín(Hz) Ret/Cargas ( ms)
05/abr 4.5 2.03 980 1 64/>100 8
06/mai 5.75 2.67 1000 1 73/>100 15
10/mai 1.2 0.889 1000* 2 37/85 8
01/out 3.48 2.16 1000L 1 47/51 16
08/out 2.56 1.02 1017L 1 30/47 16
• Esta frente está bem mais distante do Sítio 3E do que as demais.
980
1000
1017 L
Geofone
4.5 mm/s
5.75 mm/s
2.56 mm/s
Figura 5 - Posicionamento dos bancos 1000 e 1017 da Pedreira de Cantareira (2002).
O valor da PPV no banco 1017 L foi menor devido a uma maior distância do ponto de captação.
Verifica-se assim, que os bancos com terminação L (1000 L, 1017L, 1040L e 1070L), permite
maiores cargas por espera sem utilização de separadores na coluna.
O monitoramento da perfuração foi analisada com a finalidade de demonstrar a importância dos
desvios de furação.
11
0 50 100 150 200 250 300
0
20
40
60
80
100
Mesh size (cm)
%Passing
Figura 6 - Mostra a dispersão dos alinhamentos entre furos e face livre.
A tabela mostra que ocorre um aumento de aproximadamente 15% no tamanho dos blocos
para a faixa granulométrica que está acima de 70 cm. Vale salientar que o monitoramento é
feito apenas na primeira linha de furos. Entretanto, caso os desvios permaneçam nas demais
linhas os podem ocorrer efeitos negativos, tais como:
 Aumento da geração de matacões,
 Aumento da possibilidade de “fly rock”,
 Aumento da possibilidade de “roubo de furos”,
 Aumento da possibilidade do desconfinamento da carga explosiva (fato este com maior
probabilidade de ocorrer quando se utiliza 2 separadores),
 Maior irregularidade da face remanescente,
A análise de fragmentação é feita a partir dos resultados do percentual de matacões (Nº de
matacões por volume de rocha desmontada). A figura 11.11 apresenta os resultados medidos
durante os anos de 2001 e 2002 (fig.11.11) e posteriormente os dados relativos aos desmontes
utilizando o sistema eletrônico. Essas informações foram cedidas pela empresa.
Figura 7 - Índice de mataco gerados pelos desmontes feitos de janeirode 2001 a setembro de
2002 na Pedreira Cantareira.
12
A princípio esses resultados são insignificantes, entretanto o que deve ser observado é que a
razão de carga utilizada até setembro/2001 era de carga de 750 g/m³. Com uma redução
gradativa, inicialmente 650 g/m³ e dois separadores, conseguem atualmente trabalhar com uma
razão de 600 g/m³.
SUGESTÕES
A partir destas análises anteriores, enumero algumas sugestões para obtermos melhoria dos
resultados dos desmontes praticados na unidade de Mairiporã da Holcim:
1. Marcação da malha de perfuração - Todas as marcações das malhas devem ser
feitas utilizando-se o “laser profile”, com a face totalmente limpa. A marcação deve
sempre objetivar o melhor alinhamento possível dos furos.
2. Perfuração.
Devemos minimizar ao máximo os desvios através de:
♦ Correto posicionamento da perfuratriz (com as sapatas perpendiculares à face),
♦ Controle de pressão do avanço da perfuratriz.
3. Carga por espera.
Com a possibilidade do aumento da carga por espera podemos utilizar:
♦ Emulsão com maior densidade,
♦ Tampões superiores menores (1,8m),
♦ Furos com somente 01 “deck” (sempre se observando os limites de PPV),
♦ Aumento do diâmetro dos furos (de 76mm para 80 mm inicialmente).
4. Nº de linhas.
Nas regiões aonde poderemos trabalhar com apenas 01 “deck”, devemos trabalhar
com 03 carreiras de furos, melhorando a performance do desmonte.
5. N.º de detonadores.
Iniciar a carga explosiva, nas regiões de 01 “deck”, em 02 pontos com diferença
mínima de tempo (de 1 a 4 ms) a fim de se obter trens de ondas mecânicas em
sentidos opostos na região mediana da bancada. Este encontro aumenta a geração
de fraturas (principalmente no encontro de ondas de compressão com ondas de
cisalhamento), portanto, diminui o tamanho dos fragmentos.
6. Tempos mínimos entre furos.
RESULTADOS OBTIDOS
Os resultados foram fornecidos pela empresa que está implantando no mercado brasileiro.
 20 a 35 % de aumento na fragmentação da rocha;
 Formação de pilhas uniformes;
 48 % dos níveis de vibração;
 10 a 15 % de redução nos custos de escavação e britagem.
REFERÊNCIAS BIBLIOGRAFICAS
Cameron, A & Hagan, T (1996) Curso Internacional de Desmonte de Rocha com Explosivo para
Minas a Céu Aberto e Subterrâneas. IBRAM.
Cintra, H. B. (1997) – Engenharia de Explosivos.
13
Crosby, W. A. (1998) Drilling and Blasting in Open Pits and Quarries – Mining resource
engineering Limited, 1555 sydenham Road, R.R.#8, Kingston, Ontario, Canada, Vol. 1 e 2..
Dowding, C. H. & Aimone, C. T. (1993) Mining Engineering Handbook p. 722 – 978.
Eston, S. M. (1998) Uma Análise dos Níveis de Vibração Associados a Detonação - tese(Livre
Docência) - Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia de
Minas, São Paulo- SP.
Hartman, H.L. (Ed.) (1992) - SME Mining Engineering Handbook - AIME
Hermann, C. (1968) – Manual de Perfuração de Rocha – São Paulo, Polígono, Cap. C. 2 – 5, p.
96 – 141.
Langefors, U. & Kihlstrom, B. (1997) The Modern Technique of Rock Blasting - John Wiley &
Sons. 2nd edition.
Munaretti, H.(1997) - “Avaliação da Utilização de Anfo Fabricado In Situ em Pedreira de
Calcário” , Cap. 9 e 10, UFRS, Porto Alegre.
Scott, A., ed. (1996) - Open Pit Blast Design: analysis and optimization – queens land, Julius
Kruttschnitt Mineral research Center, 1996.(Monograph Series in Mining and Mineral
Processing, 1).
Silva, C. M. (2000) Desenvolvimento de Tecnologia Eletrohidráulica Aplicada ao Desmonte de
Rochas em Áreas Urbanas – EPUSP. 2001, S. Paulo/SP.
Silva, V. C. (1998), Desmonte de Rochas com Explosivos IETEC – Belo Horizonte –MG.

Weitere ähnliche Inhalte

Was ist angesagt?

52213668 aula-04-pontes-de-concreto-armado-1-1
52213668 aula-04-pontes-de-concreto-armado-1-152213668 aula-04-pontes-de-concreto-armado-1-1
52213668 aula-04-pontes-de-concreto-armado-1-1
Barto Freitas
 
Aula escavacao rocha xerox
Aula escavacao rocha xeroxAula escavacao rocha xerox
Aula escavacao rocha xerox
Matheus Alves
 
6 aula 04 tec cons - trabalhos de execucao - laje,vigas e pilares
6 aula 04 tec cons - trabalhos de execucao - laje,vigas e pilares6 aula 04 tec cons - trabalhos de execucao - laje,vigas e pilares
6 aula 04 tec cons - trabalhos de execucao - laje,vigas e pilares
Rafael Santos
 
UNIT-V Slope Stability - Land Slides.ppt
UNIT-V Slope Stability - Land Slides.pptUNIT-V Slope Stability - Land Slides.ppt
UNIT-V Slope Stability - Land Slides.ppt
mythili spd
 
Slide aula de reforço cláudia
Slide aula de reforço cláudiaSlide aula de reforço cláudia
Slide aula de reforço cláudia
claudiadno12
 

Was ist angesagt? (20)

Estabilidadede taludes
Estabilidadede taludesEstabilidadede taludes
Estabilidadede taludes
 
Energia
EnergiaEnergia
Energia
 
Tunnelling & underground design (Topic5-hard & weak rock tunnelling)
Tunnelling & underground design (Topic5-hard & weak rock tunnelling)Tunnelling & underground design (Topic5-hard & weak rock tunnelling)
Tunnelling & underground design (Topic5-hard & weak rock tunnelling)
 
Desafios da gestão democrática na escola pública: Emergência de um novo parad...
Desafios da gestão democrática na escola pública: Emergência de um novo parad...Desafios da gestão democrática na escola pública: Emergência de um novo parad...
Desafios da gestão democrática na escola pública: Emergência de um novo parad...
 
Instrumentos e Recursos utilizados na Avaliação das Crianças na Educação Infa...
Instrumentos e Recursos utilizados na Avaliação das Crianças na Educação Infa...Instrumentos e Recursos utilizados na Avaliação das Crianças na Educação Infa...
Instrumentos e Recursos utilizados na Avaliação das Crianças na Educação Infa...
 
52213668 aula-04-pontes-de-concreto-armado-1-1
52213668 aula-04-pontes-de-concreto-armado-1-152213668 aula-04-pontes-de-concreto-armado-1-1
52213668 aula-04-pontes-de-concreto-armado-1-1
 
Aula escavacao rocha xerox
Aula escavacao rocha xeroxAula escavacao rocha xerox
Aula escavacao rocha xerox
 
Ondas e Marés - 10º C
Ondas e Marés - 10º COndas e Marés - 10º C
Ondas e Marés - 10º C
 
Fundações e obras de terra - Parte 01
Fundações e obras de terra - Parte 01Fundações e obras de terra - Parte 01
Fundações e obras de terra - Parte 01
 
Energia Geotérmica
Energia GeotérmicaEnergia Geotérmica
Energia Geotérmica
 
Curso introdutório de Concreto Protendido
Curso introdutório de Concreto ProtendidoCurso introdutório de Concreto Protendido
Curso introdutório de Concreto Protendido
 
USINA DE SANTO ANTÔNIO JG
USINA DE SANTO ANTÔNIO JGUSINA DE SANTO ANTÔNIO JG
USINA DE SANTO ANTÔNIO JG
 
Hidrelétricas
HidrelétricasHidrelétricas
Hidrelétricas
 
Energia solar e Geotermica
Energia solar e Geotermica Energia solar e Geotermica
Energia solar e Geotermica
 
Relação entre avaliação formativa e somativa
Relação entre avaliação formativa e somativaRelação entre avaliação formativa e somativa
Relação entre avaliação formativa e somativa
 
Projeto eja power-point
Projeto  eja power-pointProjeto  eja power-point
Projeto eja power-point
 
Izabel maria de matos tcc sobre educação inclusiva
Izabel maria de matos tcc sobre educação inclusivaIzabel maria de matos tcc sobre educação inclusiva
Izabel maria de matos tcc sobre educação inclusiva
 
6 aula 04 tec cons - trabalhos de execucao - laje,vigas e pilares
6 aula 04 tec cons - trabalhos de execucao - laje,vigas e pilares6 aula 04 tec cons - trabalhos de execucao - laje,vigas e pilares
6 aula 04 tec cons - trabalhos de execucao - laje,vigas e pilares
 
UNIT-V Slope Stability - Land Slides.ppt
UNIT-V Slope Stability - Land Slides.pptUNIT-V Slope Stability - Land Slides.ppt
UNIT-V Slope Stability - Land Slides.ppt
 
Slide aula de reforço cláudia
Slide aula de reforço cláudiaSlide aula de reforço cláudia
Slide aula de reforço cláudia
 

Ähnlich wie A aplicação de espoleta eletrônica de rochas com explosivos

Poço Elíptico da Estação do Marquês - Metro do Porto (Art.º publicado no Bole...
Poço Elíptico da Estação do Marquês - Metro do Porto (Art.º publicado no Bole...Poço Elíptico da Estação do Marquês - Metro do Porto (Art.º publicado no Bole...
Poço Elíptico da Estação do Marquês - Metro do Porto (Art.º publicado no Bole...
José Pinto
 
Corros prot mater_vol32_n1_2013
Corros prot mater_vol32_n1_2013Corros prot mater_vol32_n1_2013
Corros prot mater_vol32_n1_2013
Profjorge Silva
 
Betão de ensoleiramento inl
Betão de ensoleiramento   inlBetão de ensoleiramento   inl
Betão de ensoleiramento inl
José Carlos
 
Ferramentas SIG aplicadas à Sismologia e ao controlo das Grandes Barragens em...
Ferramentas SIG aplicadas à Sismologia e ao controlo das Grandes Barragens em...Ferramentas SIG aplicadas à Sismologia e ao controlo das Grandes Barragens em...
Ferramentas SIG aplicadas à Sismologia e ao controlo das Grandes Barragens em...
Guitts Isel
 

Ähnlich wie A aplicação de espoleta eletrônica de rochas com explosivos (20)

Poço Elíptico da Estação do Marquês - Metro do Porto (Art.º publicado no Bole...
Poço Elíptico da Estação do Marquês - Metro do Porto (Art.º publicado no Bole...Poço Elíptico da Estação do Marquês - Metro do Porto (Art.º publicado no Bole...
Poço Elíptico da Estação do Marquês - Metro do Porto (Art.º publicado no Bole...
 
Artigo corpos metálicos Pitagoras
Artigo corpos metálicos PitagorasArtigo corpos metálicos Pitagoras
Artigo corpos metálicos Pitagoras
 
Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...
Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...
Desenvolvimento de um Sistema de Inspeção baseado em Transmissão de Radiação ...
 
Minuta consulta-publica-norma-d7-013
Minuta consulta-publica-norma-d7-013Minuta consulta-publica-norma-d7-013
Minuta consulta-publica-norma-d7-013
 
Valas tacitano
Valas tacitanoValas tacitano
Valas tacitano
 
Palestra Controle Tecnológico do Concreto
Palestra Controle Tecnológico do ConcretoPalestra Controle Tecnológico do Concreto
Palestra Controle Tecnológico do Concreto
 
181106 manual tecco_pt
181106 manual tecco_pt181106 manual tecco_pt
181106 manual tecco_pt
 
1º resumo túneis e obras subterrâneas
1º  resumo túneis e obras subterrâneas1º  resumo túneis e obras subterrâneas
1º resumo túneis e obras subterrâneas
 
Corros prot mater_vol32_n1_2013
Corros prot mater_vol32_n1_2013Corros prot mater_vol32_n1_2013
Corros prot mater_vol32_n1_2013
 
Betão de ensoleiramento inl
Betão de ensoleiramento   inlBetão de ensoleiramento   inl
Betão de ensoleiramento inl
 
PCMAT MGQ Construtora e Incorporadora de Imóveis Ltda. 2015 2019.doc
PCMAT MGQ Construtora e Incorporadora de Imóveis Ltda. 2015 2019.docPCMAT MGQ Construtora e Incorporadora de Imóveis Ltda. 2015 2019.doc
PCMAT MGQ Construtora e Incorporadora de Imóveis Ltda. 2015 2019.doc
 
Lista-Dinâmica-ENEM.pdf
Lista-Dinâmica-ENEM.pdfLista-Dinâmica-ENEM.pdf
Lista-Dinâmica-ENEM.pdf
 
Ferramentas SIG aplicadas à Sismologia e ao controlo das Grandes Barragens em...
Ferramentas SIG aplicadas à Sismologia e ao controlo das Grandes Barragens em...Ferramentas SIG aplicadas à Sismologia e ao controlo das Grandes Barragens em...
Ferramentas SIG aplicadas à Sismologia e ao controlo das Grandes Barragens em...
 
Controle particulado cimento portland
Controle particulado cimento portlandControle particulado cimento portland
Controle particulado cimento portland
 
Nr 10 senai
Nr 10 senaiNr 10 senai
Nr 10 senai
 
SEMINARIO- DIREITO DO TRABALHO I.pptx
SEMINARIO- DIREITO DO TRABALHO I.pptxSEMINARIO- DIREITO DO TRABALHO I.pptx
SEMINARIO- DIREITO DO TRABALHO I.pptx
 
Estudo da variação dos parâmetros de eletroerosão no desgaste relativo do ele...
Estudo da variação dos parâmetros de eletroerosão no desgaste relativo do ele...Estudo da variação dos parâmetros de eletroerosão no desgaste relativo do ele...
Estudo da variação dos parâmetros de eletroerosão no desgaste relativo do ele...
 
Materiais Piezoeletricos
Materiais PiezoeletricosMateriais Piezoeletricos
Materiais Piezoeletricos
 
Chute 1
Chute 1Chute 1
Chute 1
 
Novos procedimentos de concretagem no brasil
Novos procedimentos de concretagem no brasilNovos procedimentos de concretagem no brasil
Novos procedimentos de concretagem no brasil
 

Mehr von Renatbar

Acidentes de trabalho com perfurocortantes
Acidentes de trabalho com perfurocortantesAcidentes de trabalho com perfurocortantes
Acidentes de trabalho com perfurocortantes
Renatbar
 
Acidentes com perfuro cortantes
Acidentes com perfuro cortantesAcidentes com perfuro cortantes
Acidentes com perfuro cortantes
Renatbar
 
Acidentes com motoristas
Acidentes com motoristasAcidentes com motoristas
Acidentes com motoristas
Renatbar
 
Acidentes com material biológico
Acidentes com material biológicoAcidentes com material biológico
Acidentes com material biológico
Renatbar
 
A saúde mental está doente! a síndrome de burnout em psicólogos
A saúde mental está doente! a síndrome de burnout em psicólogosA saúde mental está doente! a síndrome de burnout em psicólogos
A saúde mental está doente! a síndrome de burnout em psicólogos
Renatbar
 
A importância da saúde, segurança
A importância da saúde, segurançaA importância da saúde, segurança
A importância da saúde, segurança
Renatbar
 
A importância da odontologia legal
A importância da odontologia legalA importância da odontologia legal
A importância da odontologia legal
Renatbar
 
A gestao do risco hospitalar
A gestao do risco hospitalar A gestao do risco hospitalar
A gestao do risco hospitalar
Renatbar
 
Acidentes do trabalho e indenização acidentária
Acidentes do trabalho e indenização acidentáriaAcidentes do trabalho e indenização acidentária
Acidentes do trabalho e indenização acidentária
Renatbar
 
A identificação e a análise de riscos
A identificação e a análise de riscosA identificação e a análise de riscos
A identificação e a análise de riscos
Renatbar
 
Acidentes de trabalho fatores e influencias comportamentais
Acidentes de trabalho  fatores e influencias comportamentaisAcidentes de trabalho  fatores e influencias comportamentais
Acidentes de trabalho fatores e influencias comportamentais
Renatbar
 
Agroecologia conceitos e princpios1
Agroecologia conceitos e princpios1Agroecologia conceitos e princpios1
Agroecologia conceitos e princpios1
Renatbar
 
Guia tecnico risco biologico nr-32
Guia tecnico risco biologico nr-32Guia tecnico risco biologico nr-32
Guia tecnico risco biologico nr-32
Renatbar
 
69895114 aula-insalubridade-e-periculosidade-d-trabalho-ii
69895114 aula-insalubridade-e-periculosidade-d-trabalho-ii69895114 aula-insalubridade-e-periculosidade-d-trabalho-ii
69895114 aula-insalubridade-e-periculosidade-d-trabalho-ii
Renatbar
 
10 lixo hospitalar[1]
10 lixo hospitalar[1]10 lixo hospitalar[1]
10 lixo hospitalar[1]
Renatbar
 
5 pontos altos___cinco_maneiras_de_reduzir_riscos_nos_sitios_de_construcao
5 pontos altos___cinco_maneiras_de_reduzir_riscos_nos_sitios_de_construcao5 pontos altos___cinco_maneiras_de_reduzir_riscos_nos_sitios_de_construcao
5 pontos altos___cinco_maneiras_de_reduzir_riscos_nos_sitios_de_construcao
Renatbar
 
2 doença relacionada ao trabalho
2 doença relacionada ao trabalho2 doença relacionada ao trabalho
2 doença relacionada ao trabalho
Renatbar
 
Espacos confinados
 Espacos confinados Espacos confinados
Espacos confinados
Renatbar
 

Mehr von Renatbar (20)

Acidentes de trabalho com perfurocortantes
Acidentes de trabalho com perfurocortantesAcidentes de trabalho com perfurocortantes
Acidentes de trabalho com perfurocortantes
 
Acidentes com perfuro cortantes
Acidentes com perfuro cortantesAcidentes com perfuro cortantes
Acidentes com perfuro cortantes
 
Acidentes com motoristas
Acidentes com motoristasAcidentes com motoristas
Acidentes com motoristas
 
Acidentes com material biológico
Acidentes com material biológicoAcidentes com material biológico
Acidentes com material biológico
 
A saúde mental está doente! a síndrome de burnout em psicólogos
A saúde mental está doente! a síndrome de burnout em psicólogosA saúde mental está doente! a síndrome de burnout em psicólogos
A saúde mental está doente! a síndrome de burnout em psicólogos
 
A importância da saúde, segurança
A importância da saúde, segurançaA importância da saúde, segurança
A importância da saúde, segurança
 
A importância da odontologia legal
A importância da odontologia legalA importância da odontologia legal
A importância da odontologia legal
 
A gestao do risco hospitalar
A gestao do risco hospitalar A gestao do risco hospitalar
A gestao do risco hospitalar
 
Acidentes do trabalho e indenização acidentária
Acidentes do trabalho e indenização acidentáriaAcidentes do trabalho e indenização acidentária
Acidentes do trabalho e indenização acidentária
 
A identificação e a análise de riscos
A identificação e a análise de riscosA identificação e a análise de riscos
A identificação e a análise de riscos
 
Acidentes de trabalho fatores e influencias comportamentais
Acidentes de trabalho  fatores e influencias comportamentaisAcidentes de trabalho  fatores e influencias comportamentais
Acidentes de trabalho fatores e influencias comportamentais
 
Tlv acgih
Tlv acgihTlv acgih
Tlv acgih
 
Pprps
PprpsPprps
Pprps
 
Agroecologia conceitos e princpios1
Agroecologia conceitos e princpios1Agroecologia conceitos e princpios1
Agroecologia conceitos e princpios1
 
Guia tecnico risco biologico nr-32
Guia tecnico risco biologico nr-32Guia tecnico risco biologico nr-32
Guia tecnico risco biologico nr-32
 
69895114 aula-insalubridade-e-periculosidade-d-trabalho-ii
69895114 aula-insalubridade-e-periculosidade-d-trabalho-ii69895114 aula-insalubridade-e-periculosidade-d-trabalho-ii
69895114 aula-insalubridade-e-periculosidade-d-trabalho-ii
 
10 lixo hospitalar[1]
10 lixo hospitalar[1]10 lixo hospitalar[1]
10 lixo hospitalar[1]
 
5 pontos altos___cinco_maneiras_de_reduzir_riscos_nos_sitios_de_construcao
5 pontos altos___cinco_maneiras_de_reduzir_riscos_nos_sitios_de_construcao5 pontos altos___cinco_maneiras_de_reduzir_riscos_nos_sitios_de_construcao
5 pontos altos___cinco_maneiras_de_reduzir_riscos_nos_sitios_de_construcao
 
2 doença relacionada ao trabalho
2 doença relacionada ao trabalho2 doença relacionada ao trabalho
2 doença relacionada ao trabalho
 
Espacos confinados
 Espacos confinados Espacos confinados
Espacos confinados
 

A aplicação de espoleta eletrônica de rochas com explosivos

  • 1. A APLICAÇÃO DE ESPOLETA ELETRÔNICA DE ROCHAS COM EXPLOSIVOS Eduardo Jorge Lira Bonates – Professor Titular UFCG, bonates@reitoria.ufcg.edu.br Arlindo José Bazante – Professor Assistente I – UFCG bazante@dmg.ufcg.edu.br Gildácio José de Lima Araújo – Mestrando UFCG RESUMO O processo de desmonte de rochas, apesar de sua complexidade e do pouco aproveitamento da energia tem alcançado progressos significativos com a aplicação de explosivos e acessórios de alta tecnologia. As novas técnicas, equipamentos e softwares de monitoramento são ferramentas que ajudam a melhorar o desempenho do desmonte. O ajuste dos tempos de iniciação e a seqüência de detonação representam alguns dos parâmetros de grande relevância dentro do processo de desmonte de rocha. Atualmente existem vários tipos de iniciadores, sejam instantâneos ou com elemento de retardo. O sistema eletrônico de iniciação, apesar de já estar na sua segunda geração, só em meados de 2002 vêm sendo aplicado no Brasil. Trata-se de um sistema que permite maior flexibilidade nos ajuste dos tempos (de 1 a 8000 ms.) e uma menor dispersão que outros iniciadores, permitindo, assim, um controle melhor da detonação. Palavras Chave: espoleta eletrônica, impacto ambiental, fragmentação. ABSTRACT The process of rock blasting with explosive, in spite of its complexity and small performance of energy has been achieving progresses with the application of explosive and accessories of high technology. The new techniques, equipments and software of monitoring are tools that can help the performance of blasting. The adjustment of the times of initiation and the sequence of detonation of the explosive represent some of the parameters of great relevance in the process of blasting. Actually, exist several types of initiators: instantaneous and delay element. The electronic system of initiation, only recently has been applied in Brazil, It is a system that presents larger flexibility, can be adjusted for the times varying from 1 to 8000 ms and shows small dispersion than any other initiators, which allows a better control of the detonation. Key words: electronic cap, ambient impact, fragmentation
  • 2. 2 INTRODUÇÃO A maioria das pedreiras destinadas a produção de brita situam-se próximas aos centros urbanos, por razões econômicas relacionadas principalmente com o baixo valor agregado do material e o elevado custo de transporte. Isso tem causado sérios problemas ao meio ambiente em virtude das vibrações, ruídos e sobre-pressão atmosférica causado pelo desmonte de rocha. Entre os vários aspectos relacionados com o desmonte dois tem importância significativa: fragmentação e o ambiente. A fragmentação se constitui num fator econômico associado com o mercado consumidor, já que existem normas que padronizam o produto. Em relação a questão ambiental, que é um fator social, devem ser feitos controles de forma a minimizar os efeitos caudados pelas detonações. Para tanto são necessárias informações que permitam a realização de um planejamento que não somente atenda os objetivos de produção, mas que também satisfaça as exigências legais dos órgãos ambientais. O processo de fragmentação ocorre através da velocidade de detonação e expansão dos gases, sendo avaliada pela distribuição granulométrica do material. Porém existem outros parâmetros que devem ser considerados. A parte da onda de choque que não gera trabalho útil, é absorvida pelo maciço, gerando vibrações no terreno que provocam perturbações a circunvizinhança, sendo sua verificação estabelecida em normas e determinada pelo cálculo da resultante da velocidade de partícula. O monitoramento dos processos de desmonte de rochas com explosivos são recentes, sendo que a explicação desses fenômenos como esforços dinâmicos e mecanismos de ruptura eram meramente empíricos, pois não existiam instrumentos suficientemente confiáveis para quantificá-los (Silva, 1998). Um dos principais trabalhos desenvolvidos com esta finalidade foi o de Langefors e Kihlstron (1963), que consideravam cada estudo geomecânico como representativo de uma situação de campo, isto é, cada região reage de forma diferente na interação explosivo/rocha. OBJETIVO O objetivo desse trabalho é mostrar as aplicações das novas tecnologias de monitoramento das operações de desmonte realizadas na pedreira Cantareira localizada na região de Mairiporã- SP, cuja finalidade é a produção de britas graníticas. A empresa faz parte da divisão de agregados do grupo Holcim, que possui duas unidades operacionais - Mairiporã e Sorocaba, com capacidade anual de produção de 2,46 milhões de toneladas de brita. A Unidade Mairiporã situa-se na rodovia Fernão Dias - km 67. Foi a primeira empresa no setor de produção de britas, a obter o certificado de qualidade ISO 9002. Além disso, será também apresentado o resultado obtido com o emprego desse novo procedimento, fazendo uma comparação entre o uso dos acessórios convencionais e a espoleta eletrônica. É evidente que ao longo do tempo ocorreu um desenvolvimento tecnológico significativo na produção e manuseio dos explosivos civis, com a finalidade de otimizar os parâmetros que influenciam no desmonte, tais como a fragmentação, carregamento, qualidade e segurança. A pedreira Cantareira foi uma das primeiras a utilizar o sistema de iniciação eletrônica, com a finalidade de controlar a velocidade de partícula dentro dos limites estabelecidos pelas normas da CETESBE. Os testes foram feitos em locais críticos devido à proximidade com áreas habitadas.
  • 3. 3 ASPECTOS OPERACIONAIS A lavra é desenvolvida a céu aberto e em flanco com desmonte de rocha por explosivo, sendo a carregamento e transporte mecanizados. O material retirado do capeamento é depositado ordenadamente no bota-fora, onde posteriormente será drenado e revegetado, atendendo requisitos técnicos e de meio ambiente. No plano de fogo os furos são executados em pontos previamente determinados em função os dados a frente de lavra, com o emprego de um teodolito a laser, tendo sua orientação medida posteriormente com um inclinômetro. A partir daí são verificados os possíveis desvios da furação. A perfuração é feita por equipamentos hidráulicos e/ou pneumáticos, com diâmetros de 3 e 3½" e comprimento de furos variando entre 10 e 20 metros. O processo de transporte e manuseio é realizado por caminhões fora-de-estrada com capacidade de 25 e 35 toneladas e o carregamento por escavadoras e carregadoras de 4,0 m³. O processo produtivo é feito através das operações de cominuição e classificação granulométrica do material. Na britagem primária são utilizados britadores de mandíbulas com alimentadores vibratórios, onde o produto britado é transportado por correias transportadoras de 42" e depositado em uma pilha intermediária, para posterior re-britagem. Na britagem primária, o tamanho máximo dos blocos é de 0,8 m de diâmetro, seno reduzido para abaixo de 0,3 m, adequados às operações subseqüentes até chegar ao produto final, conforme ilustrado na tabela 1. Tabela 1.1: Produtos e aplicações de agregados para construções civis (Catareira, 2003) PRODUTOS E APLICAÇÕES Malha de corte (mm) densidade Material Mairiporã Sorocaba Mairiporã Aplicações Bica corrida Variável Variável 1,751 Pavimentos. Bica Graduada Conforme Especificação Conforme especificação 1,802 Pavimentos. Brita 1 +9,5 – 23 +10 – 24 1,416 Concreto estrutural, pavimentos e pré-moldados. Brita 2 +23 – 30 +24 – 30 1,441 Concreto estrutural, pavimentação e drenos Brita 3 +30 – 50 +30 – 50 1,445 Pavimentação, túbulos, drenos e lastros ferroviários. Brita 1/2 - +7,5 – 10 - Concreto estrutural, pavimentos e pré-moldados. Macadame Hidráulico Variável - 1,471 Pavimentos. Pedrisco +5,5 - 9,5 +4,76 - 10 1,332 Blocos, pré-moldados, pavimentos simples, concreto asfalto e estrutural. Pedrisco Misto - 9,5 -10 1,605 Blocos, pré-moldados e concreto. Pó de Pedra - 5,5 -4,76 1,550 Blocos, pré-moldados, pavimentos simples, concreto asfáltico e estrutural.
  • 4. 4 INICIADORES Ao longo do tempo, os acessórios de detonação que tem como principal função controlar e iniciar a massa explosiva agregou novas tecnologias com o objetivo de melhorar seu desempenho. Como os intervalos de tempo dos iniciadores eram irregulares e proporcionava pouco ou nenhum controle da iniciação, tornou-se necessário desenvolver métodos mais seguros. Numa tentativa de melhorar a segurança foi desenvolvido um sistema de iniciação semelhante ao estopim. Em função da necessidade de se obter um modo mais eficiente de iniciar a detonação, pois a energia potencial da nitroglicerina era muitas vezes desperdiçada por meios insatisfatórios foi desenvolvido o primeiro iniciador pirotécnico que constitui a espoleta simples. Posteriormente esse iniciador foi aperfeiçoado através da mudança de sua carga explosiva. No início da década de 80 a Imperial Chemical Industries (ICI) desenvolveu o sistema eletromagnético de iniciação denominado “Magnadet”. Nos anos 90 surgiram iniciadores eletrônicos baseados em sistemas de iniciação por ondas de rádio de baixa freqüência e retardos eletrônicos iniciados por meios não elétricos como o “Digidet” da Ensign Bickford Co. (Munarette, 1997). As atividades produtivas (mineração, construção civil, etc.) que utilizam explosivos, contam atualmente com recente desenvolvimento dos iniciadores eletrônicos, muito embora o sistema pirotécnico associado a não-elétrico e ao cordel sejam os mais utilizados. O sistema eletrônico de iniciação garante mais segurança, versatilidade e precisão nos tempos de retardo que os demais sistemas iniciadores. Os iniciadores têm uma influência significativa na eficiência do desmonte. Entre os parâmetros de avaliação podemos destacar:  Fragmentação e distribuição granulométrica;  Características da pilha;  Distribuição de teores;  Danos causados a rocha remanescente;  Efeitos sobre as operações subseqüentes (carregamento, transporte, manuseio, cominuição);  Custos;  Impactos ambientais. Uma boa fragmentação terá influência direta nas operações subseqüentes, já que representa o principal objetivo do desmonte. A tabela abaixo mostra como a distribuição granulométrica do processo de fragmentação terá relação com o desempenho do desmonte nos custos de lavra e dos processos subseqüentes. O planejamento das operações de lavra para produção de brita consiste basicamente no posicionamento das frentes condicionado as feições geológicas estruturais (falhas, juntas, fraturas, etc.), pois influencia nas condições de segurança e perdas energéticas. SISTEMAS DE INICIAÇÃO Os sistemas de iniciação surgiram em função da necessidade de se controlar a detonação das cargas principais. Atualmente essa necessidade é maior, uma vez que os explosivos apresentam uma menor sensibilidade. Além disso, ainda possui outras finalidades: melhorar a fragmentação, seqüência e direção da iniciação e, conseqüentemente, do movimento e
  • 5. 5 lançamento dos blocos, minimizar os impactos ambientais, tais como vibração e ultralançamentos, etc. (Cintra, 1997). Tabela 2 - Efeitos indesejáveis na fragmentação de rocha com explosivos. Efeitos indesejáveis na fragmentação GRANULOMETRIA PROBLEMAS GERADOS Blocos de tamanho superior do desejado • Exigem desmonte secundário. • Dificulta o carregamento, transporte e a britagem. • Aumento no custo de manutenção dos equipamentos. • Exige equipamento de grande porte para blocos grandes. • Gera problemas ambientais Quantidade de finos • Aumento da razão de carregamento e dos custos no desmonte primário. • Aumento no custo de manutenção na britagem. • Redução da quantidade de blocos. • Gera problemas ambientais (poeira excessiva). SISTEMA ELETRÔNICO O sistema de iniciação eletrônico consiste da interação entre 2 componentes: espoleta eletrônica e os mecanismos computadorizados de acionamento. Trata-se de um sistema similar ao elétrico, entretanto os dispositivos eletrônicos proporcionam maior segurança, versatilidade e precisão nos ajustes de tempo. Apesar de toda sua eficiência tem como principal desvantagem o alto custo. Esse sistema é aplicado em situações especiais que exigem maior controle rigoroso dos nos ajustes dos tempos de retardo. MONITORAMENTO E AVALIAÇÕES DO DESMONTE Como as propriedades de um maciço rochoso variam espacialmente, cada rocha reage de maneira diferente na interação explosivo/rocha, de acordo com a localização dos pontos de aplicação da energia transferida pelo explosivo no maciço rochoso. Daí, tem-se a necessidade de estudar o maciço rochoso e adotar um plano de desmonte que se ajuste as condições ideais, com o objetivo de obter uma melhor fragmentação e, conseqüentemente, menor dano ao meio ambiente. Entre os vários métodos de monitoramento e avaliação do desmonte destacam- se:  Perfilagem da bancada;  Verificação e avaliação de possíveis desvios de perfuração;  Monitoramento sismográfico;  Medição de velocidade de detonação;  Medição da sobrepressão e ruídos;  Verificação da pressão de detonação;  Medição dos tempos reais de retardo;  Monitoramento de trincas;  Fotografia de alta velocidade e vídeo de alta definição;  Analise granulométrica.
  • 6. 6 A parte principal do sistema eletrônico de detonação é composta pela espoleta eletrônica associada ao programador (logger) e ao sistema de ignição (blaster). O logger é um dispositivo de programação onde são definidos os tempos de retardo. Cada espoleta é identificada pelo o sistema e permite que seja programada de acordo com as características operacionais do desmonte. Além disso, permite simular a seqüência de detonação antes ou após do carregamento dos furos.O sistema de ignição tem capacidade de iniciar até 1600 espoletas com condições satisfatórias de segurança. A iniciação das cargas só acontece após a liberação de um dispositivo de segurança conectado ao iniciador. A operação pode ser interrompida mesmo após ser iniciada a contagem do tempo. Os programas que simulam as operações de desmonte permitem a programação dos devidos retardos e, assim, observá-los em diferentes velocidades. Isto é feito com o objetivo de prever possíveis correções ou alterações na seqüência da detonação previamente escolhida, como também verificar erros de projeto. APLICAÇÕES DO SISTEMA O sistema eletrônico de iniciação representa uma revolução nas operações de desmonte, permitindo uma maior segurança e controle dos tempos de iniciação, adequando a operação as exigências das normas técnicas e ambientais. Entre as muitas características podemos citar:  Sistema totalmente programável no furo de 0 - 8.000 ms, em incrementos de 1 ms;  Conexão perfeitamente segura feitas através de conectores;  Comunicação bidirecional entre o equipamento de controle e as espoletas; possibilitando a avaliação do sistema antes da detonação.  Fácil de se usar e programar  Planos de detonação digitais facilmente projetados com o software  Um espoleta de tamanho único e padronizado que se adapta a todos os boosters convencionais;  Espoleta padrão com carga primária protegida, oferecendo resistência a pressão dinâmica até 100 MPa (14,700 psi);  Sistema de hardware e software totalmente autotestáveis. A aplicação esse sistema é recomendada em situações que exigem um controle rígido do ponto de vista técnico, segurança e ambiental, etc., dentre as quais podemos citar:  Controle de vibrações, próximos a estruturas e a ambientes sensíveis;  Desmontes complexos,  Controle rígido do maciço remanescente, permitindo uma maior estabilidade e segurança;  Minimização da diluição do minério;  Otimização do lançamento da pilha. As empresas que fazem uso dessas espoletas são a Orica Brasil Ltda. e a Joule Comercial Ltda. A Pedreira Cantareira do Grupo Holcim esta atualmente desenvolvendo um programa de aplicação dessas espoletas em suas operações, apresentando bons resultados. O trabalho e campo foram divididos em 4 etapas. A primeira consistiu da elaboração do plano de fogo com base nos dados levantados do “bore track”, da geologia, tipos de equipamentos, altura da bancada e efeitos no meio ambiente. Na definição das variáveis foi utilizado o
  • 7. 7 programa SHOTPlusTM determinando a malha de furação, forma de carregamento e a iniciação de cada espoleta. Na segunda etapa, com o uso de um teodolito, foram definidos os furos de acordo com o plano de fogo. Logo após, é iniciada a perfuração com sua orientação também já definida, utilizando perfuratrizes pneumáticas com diâmetro de 3” e com profundidade variando entre 14 à 18 metros. Essa etapa só se encerra com a aferição dos furos através de um inclinômetro, onde são verificados previamente os possíveis desvios para posterior correção. Na terceira fase os furos já estão previamente preparados para operação de carregamento, que é feito de acordo com as condições de cada furo. Logo após a verificação dois reforçadores são escorvados iniciando o carregamento. Antes de iniciar o carregamento com o explosivo principal, no caso emulsão bombeada, é verificada a densidade do explosivo e se for preciso ajustada. Esses ajustes são possíveis, porque neste caso é utilizada uma unidade móvel de emulsão bombeada, o que permite o ajuste da mistura explosiva no momento do carregamento conseguindo a densidade adequada da carga. No caso de furos extensos (mais de 10 m), são utilizadas duas escorvas separadas por um deck no cento da coluna explosiva. A ultima fase consiste na operação de conexão dos fios que fazem as ligações com a linha de tronco (em paralelo) e simultaneamente, é feita a programação dos tempos de iniciação de cada espoleta em função dos dados simulados. A figura abaixo mostra a área no topo da bancada a ser desmontada (2002). Figura 1 - Área no topo da bancada a ser desmontada (2002). Para controle e monitoramento das vibrações e sobrepressão acústica ocasionada pelas detonações são utilizados sismógrafos. ANÁLISE DOS RESULTADOS O trabalho teve como objetivo analisar os resultados dos desmontes realizados durante os meses de março a setembro de 2002, na pedreira Cantareira, com o sistema eletrônico de detonação da I-kon, utilizado pela Orica do Brasil Ltda. e, a partir daí, sugerir ações e novos estudos para a melhoria do desempenho das operações subseqüentes.
  • 8. 8 O resultado do monitoramento do desmonte foi satisfatório, demonstrando que a vibração originada nas detonações dos bancos estava abaixo do limite estipulado, conforme ilustra a tabela abaixo. Todos estes resultados foram obtidos em desmontes com furos de 3” e as cargas distribuídas em 2 decks por furo. O único resultado que ficou acima do limite da norma da Cetesb (4,2 mm/s), foi o do dia 12 de julho, já que foi utilizado um tempo de retardo entre cargas explosivas menor, com a finalidade de melhorar a fragmentação. Esta sobreposição de onda também foi favorecida pela posição e seqüência de detonação dos furos, relativa ao ponto onde foi instalado o geofone. Com o objetivo de retornar as condições anteriores foi aumentado o tempo de retardo para 16 ms. Tabela 3 - Resultados da velocidade de partícula versos retardo por cargas. Data PPV (mm/s) Vert. (mm/s) Banco Geof. Freq Max/Mín(Hz) Ret/Cargas ( ms) 28/fev 3.03 1.78 1017 1 57/64 15 12/mar 2.68 1.52 1040 2 37/57 15 26/mar 0.933 0.762 1017L 2 30/39 25 09/abr 2.44 1.65 1017 1 73/85 5 16/abr 2.65 2.29 1017 1 73/>100 5 19/abr 2.31 2.03 1040L 1 37/51 15 24/abr 1.89 1.65 1017L 2 37/51 15 14/jun 0.899 0.635 1040L 2 57/85 3 12/jul 6.85 6.1 1040L 1 27/57 3 23/jul 1.36 1.14 1017L 1 57/85 16 02/ago 1.74 1.65 1040L 3 26/73 16 16/ago 2.16 2.16 1040L 3 19/39 16 27/ago 0.933 0.635 1040L 3 19/51 16 30/ago 1.36 1.02 1070L 3 18/47 16 03/set 1.91 1.9 1017L 3 34/64 16 06/set 1.38 1.27 1040L 3 37/73 16 13/set 1.24 0.635 1017L 3 47/73 16 24/set 2.2 1.52 1017L 1 32/73 16 Ainda foram analisados outros valores, de acordo com os locais de instalação do geofone: (1), (2) e (3). Pela análise do gráfico abaixo se verifica uma tendência de redução na sobrepressão nos pontos de captação.
  • 9. 9 Figura 2 - Evolução da PPV Com geofones instalados na (1). Devido a proximidade da posição (1) em relação a frente de lavra, era esperado que seu valor fosse maior que os demais pontos de observação. Figura 3 - Evolução da PPV Com geofones instalados na (3) Figura 4 - Evolução da PPV Com geofones instalados na (2) Nos dois desmontes apresentado na tabela 11.3, o ponto de captação estava situado atrás da linha de furos. Devido a esse posicionamento do sismógrafo, foram gerados valores maiores de
  • 10. 10 vibração. O posicionamento do equipamento em posição ortogonal a face localizada nos bancos 1000L e 1017L, fez com que a PPV fosse reduzida. Tabela 4 - Evolução da PPV(Velocidade de Partícula) nos bancos 1000 e 1017. Data PPV (mm/s) Vert(mm/s) Banco Geof. Freq Max/Mín(Hz) Ret/Cargas ( ms) 05/abr 4.5 2.03 980 1 64/>100 8 06/mai 5.75 2.67 1000 1 73/>100 15 10/mai 1.2 0.889 1000* 2 37/85 8 01/out 3.48 2.16 1000L 1 47/51 16 08/out 2.56 1.02 1017L 1 30/47 16 • Esta frente está bem mais distante do Sítio 3E do que as demais. 980 1000 1017 L Geofone 4.5 mm/s 5.75 mm/s 2.56 mm/s Figura 5 - Posicionamento dos bancos 1000 e 1017 da Pedreira de Cantareira (2002). O valor da PPV no banco 1017 L foi menor devido a uma maior distância do ponto de captação. Verifica-se assim, que os bancos com terminação L (1000 L, 1017L, 1040L e 1070L), permite maiores cargas por espera sem utilização de separadores na coluna. O monitoramento da perfuração foi analisada com a finalidade de demonstrar a importância dos desvios de furação.
  • 11. 11 0 50 100 150 200 250 300 0 20 40 60 80 100 Mesh size (cm) %Passing Figura 6 - Mostra a dispersão dos alinhamentos entre furos e face livre. A tabela mostra que ocorre um aumento de aproximadamente 15% no tamanho dos blocos para a faixa granulométrica que está acima de 70 cm. Vale salientar que o monitoramento é feito apenas na primeira linha de furos. Entretanto, caso os desvios permaneçam nas demais linhas os podem ocorrer efeitos negativos, tais como:  Aumento da geração de matacões,  Aumento da possibilidade de “fly rock”,  Aumento da possibilidade de “roubo de furos”,  Aumento da possibilidade do desconfinamento da carga explosiva (fato este com maior probabilidade de ocorrer quando se utiliza 2 separadores),  Maior irregularidade da face remanescente, A análise de fragmentação é feita a partir dos resultados do percentual de matacões (Nº de matacões por volume de rocha desmontada). A figura 11.11 apresenta os resultados medidos durante os anos de 2001 e 2002 (fig.11.11) e posteriormente os dados relativos aos desmontes utilizando o sistema eletrônico. Essas informações foram cedidas pela empresa. Figura 7 - Índice de mataco gerados pelos desmontes feitos de janeirode 2001 a setembro de 2002 na Pedreira Cantareira.
  • 12. 12 A princípio esses resultados são insignificantes, entretanto o que deve ser observado é que a razão de carga utilizada até setembro/2001 era de carga de 750 g/m³. Com uma redução gradativa, inicialmente 650 g/m³ e dois separadores, conseguem atualmente trabalhar com uma razão de 600 g/m³. SUGESTÕES A partir destas análises anteriores, enumero algumas sugestões para obtermos melhoria dos resultados dos desmontes praticados na unidade de Mairiporã da Holcim: 1. Marcação da malha de perfuração - Todas as marcações das malhas devem ser feitas utilizando-se o “laser profile”, com a face totalmente limpa. A marcação deve sempre objetivar o melhor alinhamento possível dos furos. 2. Perfuração. Devemos minimizar ao máximo os desvios através de: ♦ Correto posicionamento da perfuratriz (com as sapatas perpendiculares à face), ♦ Controle de pressão do avanço da perfuratriz. 3. Carga por espera. Com a possibilidade do aumento da carga por espera podemos utilizar: ♦ Emulsão com maior densidade, ♦ Tampões superiores menores (1,8m), ♦ Furos com somente 01 “deck” (sempre se observando os limites de PPV), ♦ Aumento do diâmetro dos furos (de 76mm para 80 mm inicialmente). 4. Nº de linhas. Nas regiões aonde poderemos trabalhar com apenas 01 “deck”, devemos trabalhar com 03 carreiras de furos, melhorando a performance do desmonte. 5. N.º de detonadores. Iniciar a carga explosiva, nas regiões de 01 “deck”, em 02 pontos com diferença mínima de tempo (de 1 a 4 ms) a fim de se obter trens de ondas mecânicas em sentidos opostos na região mediana da bancada. Este encontro aumenta a geração de fraturas (principalmente no encontro de ondas de compressão com ondas de cisalhamento), portanto, diminui o tamanho dos fragmentos. 6. Tempos mínimos entre furos. RESULTADOS OBTIDOS Os resultados foram fornecidos pela empresa que está implantando no mercado brasileiro.  20 a 35 % de aumento na fragmentação da rocha;  Formação de pilhas uniformes;  48 % dos níveis de vibração;  10 a 15 % de redução nos custos de escavação e britagem. REFERÊNCIAS BIBLIOGRAFICAS Cameron, A & Hagan, T (1996) Curso Internacional de Desmonte de Rocha com Explosivo para Minas a Céu Aberto e Subterrâneas. IBRAM. Cintra, H. B. (1997) – Engenharia de Explosivos.
  • 13. 13 Crosby, W. A. (1998) Drilling and Blasting in Open Pits and Quarries – Mining resource engineering Limited, 1555 sydenham Road, R.R.#8, Kingston, Ontario, Canada, Vol. 1 e 2.. Dowding, C. H. & Aimone, C. T. (1993) Mining Engineering Handbook p. 722 – 978. Eston, S. M. (1998) Uma Análise dos Níveis de Vibração Associados a Detonação - tese(Livre Docência) - Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia de Minas, São Paulo- SP. Hartman, H.L. (Ed.) (1992) - SME Mining Engineering Handbook - AIME Hermann, C. (1968) – Manual de Perfuração de Rocha – São Paulo, Polígono, Cap. C. 2 – 5, p. 96 – 141. Langefors, U. & Kihlstrom, B. (1997) The Modern Technique of Rock Blasting - John Wiley & Sons. 2nd edition. Munaretti, H.(1997) - “Avaliação da Utilização de Anfo Fabricado In Situ em Pedreira de Calcário” , Cap. 9 e 10, UFRS, Porto Alegre. Scott, A., ed. (1996) - Open Pit Blast Design: analysis and optimization – queens land, Julius Kruttschnitt Mineral research Center, 1996.(Monograph Series in Mining and Mineral Processing, 1). Silva, C. M. (2000) Desenvolvimento de Tecnologia Eletrohidráulica Aplicada ao Desmonte de Rochas em Áreas Urbanas – EPUSP. 2001, S. Paulo/SP. Silva, V. C. (1998), Desmonte de Rochas com Explosivos IETEC – Belo Horizonte –MG.