SlideShare ist ein Scribd-Unternehmen logo
1 von 40
http://www.lct.ugent.be 1  Laboratory for Chemical Technology, Universiteit Gent 2  Syntroleum Corp., Tulsa, OK, rabhari@syntroleum.com  Steam Cracking of Renewable Naphtha Kevin M. Van Geem  1 , Ramin Abhari  2 , Steven P. Pyl  1 , Marie-Françoise Reyniers  1  and Guy B. Marin  1   Ethylene Producers Conference March 22-25, 2010, San Antonio, TX, USA
[object Object],[object Object],[object Object],[object Object],[object Object],Outline EPC, San Atonio, TX, 22/03/2010
[object Object],[object Object],[object Object],[object Object],[object Object],Introduction EPC, San Atonio, TX, 22/03/2010 Feedstock Process Diesel, Jet,  Naphtha
Bio-Synfining™ Feedstocks EPC, San Atonio, TX, 22/03/2010 U.S. sources ~ 360,000 BPD (16 million tonne/y) hydrocarbon equivalent …and increasing
[object Object],[object Object],[object Object],[object Object],Outline EPC, San Atonio, TX, 22/03/2010
Chemistry EPC, San Atonio, TX, 22/03/2010 Paraffinic  hydrocarbons  from bio oils via  hydrodeoxygenation  (Eqs 1a-b) and  hydrocracking   (Eq 2)
Process EPC, San Atonio, TX, 22/03/2010 Simple, low capital cost process
Feed pretreatment EPC, San Atonio, TX, 22/03/2010
Feed pretreatment EPC, San Atonio, TX, 22/03/2010 Acid wash removes 95% of solubilized metals and phosphorus
Hydrodeoxygenation EPC, San Atonio, TX, 22/03/2010 Stable catalyst: activity/selectivity
Hydrocracker product yields: JET EPC, San Atonio, TX, 22/03/2010 Hydrocracker distillate consistent – jet fuel flash point dictates naphtha end point
[object Object],[object Object],[object Object],[object Object],[object Object],Outline EPC, San Atonio, TX, 22/03/2010 Feedstock analysis
GC  GC set-up EPC, San Atonio, TX, 22/03/2010 4-port 2-way valve Liq. CO 2  in valves jets 2nd dim. column 1st dim. column 2nd dim. column 1st dim. column cooling carrier gas cooling cooling Tof-MS FID
GC  GC analysis renewable naphtha EPC, San Atonio, TX, 22/03/2010 Separation based on boiling point Separation based on polarity
Offline renewable naphtha analysis: Tof-MS EPC, San Atonio, TX, 22/03/2010
Group type separation EPC, San Atonio, TX, 22/03/2010 C9 e: di-naphthenes f: (iso)paraffins g: mono-naphthenes n and isoparaffins aromatics naphthenes Group type separation by selecting specific  ions in the Tof-MS chromatogram Visualusation of ppb amounts of components
Group type separation: no oxygenates EPC, San Atonio, TX, 22/03/2010 Separation based on boiling point Separation based on polarity
Detailed PIONA EPC, San Atonio, TX, 22/03/2010 C9 Identification of over 300 different individual components     Quantification in to 300 components P I O N A SUM 3 0.17 0.00 0.00 0.00 0.00 0.17 4 1.45 0.93 0.00 0.00 0.00 2.38 5 4.41 4.77 0.00 0.00 0.00 9.18 6 7.49 9.57 0.00 1.02 0.00 18.07 7 7.66 12.38 0.00 1.34 0.10 21.49 8 5.39 10.72 0.02 1.64 0.29 18.06 9 3.13 10.34 0.25 1.64 0.32 15.67 10 1.19 6.27 0.06 0.60 0.09 8.21 11 0.24 2.09 0.00 0.04 0.00 2.38 12 0.06 0.56 0.00 0.00 0.00 0.62 13 0.04 0.17 0.00 0.00 0.00 0.20 14 0.03 0.07 0.00 0.00 0.00 0.11 15 0.69 0.14 0.00 0.00 0.00 0.83 16 0.68 0.31 0.00 0.00 0.00 0.99 17 0.34 0.55 0.00 0.00 0.00 0.89 18 0.17 0.60 0.00 0.00 0.00 0.77 SUM 33.14 59.46 0.33 6.28 0.80 100.00
[object Object],[object Object],[object Object],[object Object],[object Object],Outline EPC, San Atonio, TX, 22/03/2010 Pilot plant test
Pilot plant set-up EPC, San Atonio, TX, 22/03/2010
Pilot plant set-up EPC, San Atonio, TX, 22/03/2010
Nitrogen is used as internal standard  Methane functions as a second internal standard Pilot plant set-up EPC, San Atonio, TX, 22/03/2010
Pilot plant set-up EPC, San Atonio, TX, 22/03/2010 Heated transfer line to GC  GC
Online GC  GC Tof-MS chromatogram  EPC, San Atonio, TX, 22/03/2010 Division of  GC  GC chromatogram  in a 1-dimensional and 2-dimensional part
Online GC  GC Tof-MS chromatogram  EPC, San Atonio, TX, 22/03/2010
Online GC  GC FID chromatogram  EPC, San Atonio, TX, 22/03/2010 Reduced peak overlap when using GC  GC allows more accurate quantification COT = 820°C  COT = 865°C
Detailed effluent  with GC  GC FID EPC, San Atonio, TX, 22/03/2010 Over 100 components are identified and quantified each run  Product Yield  (wt%) COT = 820°C COT = 835°C COT = 850°C COT = 865°C hydrogen 0.71 0.80 0.88 0.96 CO 0.32 0.32 0.23 0.18 CO2 0.15 0.03 0.07 0.03 methane 13.55 15.28 16.28 17.67 ethylene 27.26 29.87 30.85 32.02 ethane 4.22 4.19 4.16 4.09 propylene 19.51 18.85 17.59 16.39 propane 0.72 0.66 0.60 0.54 isobutene  3.96 3.60 3.09 2.60 Trans 2-butene  3.16 2.40 1.73 1.13 Cis 2-butene  0.85 0.65 0.53 0.41 1-butene  0.61 0.50 0.57 0.47 1,3-butadiene  5.80 5.33 5.42 5.13 n-butane  0.49 0.34 0.27 0.18 benzene  3.18 4.42 5.58 6.02 toluene  1.62 2.05 2.08 2.46 Et-benzene  0.18 0.21 0.20 0.18 m-xylene  0.24 0.26 0.24 0.26 p-xylene  0.10 0.10 0.05 0.13 styrene  0.30 0.46 0.59 0.73 o-xylene  0.11 0.12 0.12 0.13 indene  0.11 0.21 0.25 0.31 naphthalene  0.15 0.23 0.32 0.43
Simulated trends with COILSIM1D EPC, San Atonio, TX, 22/03/2010
Pilot plant coking run EPC, San Atonio, TX, 22/03/2010 Feed Renewable Naphtha + 100 ppm DMDS Renewable Naphtha  Time on stream 1h 5h 1h 5h Conditions         HC-flow (kg/hr) 4.008 3.990 4.008 3.996 H 2 O-flow (kg/hr) 1.764 1.812 1.728 1.800 Dilution (kg/kg) 0.440 0.454 0.431 0.450 COT (°C) 850 850 850 850 COP (bar abs) 1.64 1.69 1.67 1.66 hydrogen 0.88 0.87 0.93 0.89 CO 0.05 0.06 0.30 0.12 CO 2 0.00 0.00 0.04 0.01 methane 15.99 16.10 16.39 16.48 ethylene 31.21 31.20 30.90 31.13 ethane 4.11 4.29 4.23 4.21 propylene 18.27 18.34 17.52 17.63 1-butene  1.78 1.76 1.66 1.59 1,3-butadiene  5.70 5.61 5.13 5.35 benzene  5.38 5.46 5.58 5.60 toluene  2.18 2.28 2.38 2.24 styrene  0.64 0.61 0.56 0.45 naphthalene  0.38 0.39 0.29 0.40
Measured coke yields EPC, San Atonio, TX, 22/03/2010 0 1 2 3 4 5 6 7 8 Renewable Naphtha Renewable  Naphtha + 100ppm DMDS Ethane Petroleum  Naphtha Condensate
Run length simulation EPC, San Atonio, TX, 22/03/2010 TLE inlet inlet Reactor coil Type Number of reactors Number of passes Reactor length Internal reactor diameter (passes 1-4) External reactor diameter (passes 1-4) Internal reactor diameter (passes 5-6) External reactor diameter (passes 5-6) Wall thickness Naphtha flow rate per reactor coil Steam dilution CIT (a) COP (b) GK I Split coil 8 6 53.89 m 0.080 m 0.096 m 0.114 m 0.130 m 0.008 m 2785 kg h -1 0.70 kg/kg 620 °C 1.45 10 5  Pa Feedstock characteristics PINA analysis (wt%) n-praffins isoparaffins naphthenes aromatics ASTM D86 BP (wt%) IBP 50% FBP Specific density  37.0 wt% 33.0 wt% 18.0 wt% 12.0 wt% 36.0 94.5 161.0 0.706 Outlet specification  Ethylene yield  28.6 wt%
Simulated run length with COILSIM1D EPC, San Atonio, TX, 22/03/2010 Simulated Run length :  Renewable Naphtha 158 days   Fossil based Naphtha 83 days (Industrial 85 days)
[object Object],[object Object],[object Object],[object Object],[object Object],Outline EPC, San Atonio, TX, 22/03/2010
Commercialization status EPC, San Atonio, TX, 22/03/2010 ,[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],Outline EPC, San Atonio, TX, 22/03/2010
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Conclusions EPC, San Atonio, TX, 22/03/2010
Thank you for your attention!
GC  GC: Optimization Offline analysis EPC, San Atonio, TX, 22/03/2010 a  dimethyl polysiloxane ( Restek );  b  50% phenyl polysilphenylene-siloxane ( SGE ) Detector FID, 300°C Tof-MS, 35-400 amu Injection 0.2 μl, split flow 150 ml/min, 250°C First column Rtx-1 PONA a   50 m L × 0.25 mm I.D. × 0.5 μm df Second column BPX-50 b   2 m L × 0.15 mm I.D. × 0.15 μm df Oven temperature 50°C    250°C at 3°C/min Modulation Period 4 s Carrier gas He, constant flow  2.1 ml/min He, constant flow  1.6 ml/min
Other GC’s EPC, San Atonio, TX, 22/03/2010 a  dime thyl polysiloxane ( Restek ) PGA DHA Injection Gas injection, 55°C Gas injection, 250°C Carrier gas He He Pre-column Hayesep N (2 m L × 1/8” I.D.) - Column Carbosphere (1.8 m L × 1/8” I.D.) Rtx-1 PONA a   (50 m L × 0.2 mm I.D. × 0.55 μm df) Oven temperature 55°C -40°C    40°C (5°C/min)    90°C (3°C/min)    250°C (5°C/min) Detector TCD, 160°C FID, 250°C
Other GC’s EPC, San Atonio, TX, 22/03/2010 a  dime thyl polysiloxane ( Restek );  b  Al 2 O 3 /KCl ( Restek ) RGA Channel 1 Channel 2 Channel 3 Injection Gas injection, 80°C Gas injection, 80°C Gas injection, 80°C Carrier gas He He N 2 Pre-column Rtx-1 a (15 m L × 0.53 mm I.D. × 3 μm df) Hayesep Q (0.25 m L × 1/8” I.D.) Hayesep T (1 m L × 1/8” I.D.) Column Rt-Alumina BOND b (25 m L × 0.53 mm I.D. × 15 μm df) Hayesep N  (1 m L× 1/8” I.D.),  Molsieve 5A (1 m L × 1/8” I.D.) Carbosphere (2 m L × 1/8” I.D.) Oven temperature 50    120°C at 5°C/min 80°C 80°C Detector FID, 200°C TCD, 160°C TCD, 160°C

Weitere ähnliche Inhalte

Was ist angesagt?

Study of stationary combustion source fine particulate matter
Study of stationary combustion source fine particulate matterStudy of stationary combustion source fine particulate matter
Study of stationary combustion source fine particulate matterEnrique Posada
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsGerard B. Hawkins
 
Sweetening and sulfur recovery of sour associated gas and lean acid gas in th...
Sweetening and sulfur recovery of sour associated gas and lean acid gas in th...Sweetening and sulfur recovery of sour associated gas and lean acid gas in th...
Sweetening and sulfur recovery of sour associated gas and lean acid gas in th...Frames
 
Sweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastSweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastFrames
 
Final Year Thesis.PDF
Final Year Thesis.PDFFinal Year Thesis.PDF
Final Year Thesis.PDFOmer Farooqi
 
SULFUR RECOVERY UNIT DESIGN
SULFUR RECOVERY UNIT DESIGNSULFUR RECOVERY UNIT DESIGN
SULFUR RECOVERY UNIT DESIGNTosin Orimoyegun
 
Natural gas processing: Production of LPG
Natural gas processing: Production of LPG Natural gas processing: Production of LPG
Natural gas processing: Production of LPG Asma-ul Husna
 
GAS SWEETENING PROCESSES
GAS SWEETENING PROCESSESGAS SWEETENING PROCESSES
GAS SWEETENING PROCESSESRisman Hatibi
 
State of the art in the pu sub sector-technology options and trends
State of the art in the pu sub sector-technology options and trendsState of the art in the pu sub sector-technology options and trends
State of the art in the pu sub sector-technology options and trendsUNEP OzonAction
 
Amm plant description
Amm plant descriptionAmm plant description
Amm plant descriptionameermudasar
 
SRU Troubleshooting
SRU TroubleshootingSRU Troubleshooting
SRU TroubleshootingAhmed Omran
 
Exp9 distillation of_crude_oil
Exp9 distillation of_crude_oilExp9 distillation of_crude_oil
Exp9 distillation of_crude_oilmuhammed keklik
 
Pre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementPre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementGerard B. Hawkins
 
Scion instruments refinery gas analyzer saranalab mandiri analitika
Scion instruments refinery gas analyzer saranalab mandiri analitikaScion instruments refinery gas analyzer saranalab mandiri analitika
Scion instruments refinery gas analyzer saranalab mandiri analitikaSaranaLaboratorium
 
Analysis of Diesel Range Organics (DRO) and Motor/Lube Oil Range Organics (OR...
Analysis of Diesel Range Organics (DRO) and Motor/Lube Oil Range Organics (OR...Analysis of Diesel Range Organics (DRO) and Motor/Lube Oil Range Organics (OR...
Analysis of Diesel Range Organics (DRO) and Motor/Lube Oil Range Organics (OR...Shimadzu Scientific Instruments
 

Was ist angesagt? (20)

Biodiesel Process Flow Diagram
Biodiesel Process Flow DiagramBiodiesel Process Flow Diagram
Biodiesel Process Flow Diagram
 
Study of stationary combustion source fine particulate matter
Study of stationary combustion source fine particulate matterStudy of stationary combustion source fine particulate matter
Study of stationary combustion source fine particulate matter
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen Plants
 
Sweetening and sulfur recovery of sour associated gas and lean acid gas in th...
Sweetening and sulfur recovery of sour associated gas and lean acid gas in th...Sweetening and sulfur recovery of sour associated gas and lean acid gas in th...
Sweetening and sulfur recovery of sour associated gas and lean acid gas in th...
 
Naptha cracking
Naptha crackingNaptha cracking
Naptha cracking
 
Cracking process
Cracking processCracking process
Cracking process
 
GSU AND GDU
GSU AND GDUGSU AND GDU
GSU AND GDU
 
Sweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastSweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle east
 
Final Year Thesis.PDF
Final Year Thesis.PDFFinal Year Thesis.PDF
Final Year Thesis.PDF
 
Selection of amine solvents for CO2 capture from natural gas power plant - pr...
Selection of amine solvents for CO2 capture from natural gas power plant - pr...Selection of amine solvents for CO2 capture from natural gas power plant - pr...
Selection of amine solvents for CO2 capture from natural gas power plant - pr...
 
SULFUR RECOVERY UNIT DESIGN
SULFUR RECOVERY UNIT DESIGNSULFUR RECOVERY UNIT DESIGN
SULFUR RECOVERY UNIT DESIGN
 
Natural gas processing: Production of LPG
Natural gas processing: Production of LPG Natural gas processing: Production of LPG
Natural gas processing: Production of LPG
 
GAS SWEETENING PROCESSES
GAS SWEETENING PROCESSESGAS SWEETENING PROCESSES
GAS SWEETENING PROCESSES
 
State of the art in the pu sub sector-technology options and trends
State of the art in the pu sub sector-technology options and trendsState of the art in the pu sub sector-technology options and trends
State of the art in the pu sub sector-technology options and trends
 
Amm plant description
Amm plant descriptionAmm plant description
Amm plant description
 
SRU Troubleshooting
SRU TroubleshootingSRU Troubleshooting
SRU Troubleshooting
 
Exp9 distillation of_crude_oil
Exp9 distillation of_crude_oilExp9 distillation of_crude_oil
Exp9 distillation of_crude_oil
 
Pre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementPre-reformer Operations Technical Supplement
Pre-reformer Operations Technical Supplement
 
Scion instruments refinery gas analyzer saranalab mandiri analitika
Scion instruments refinery gas analyzer saranalab mandiri analitikaScion instruments refinery gas analyzer saranalab mandiri analitika
Scion instruments refinery gas analyzer saranalab mandiri analitika
 
Analysis of Diesel Range Organics (DRO) and Motor/Lube Oil Range Organics (OR...
Analysis of Diesel Range Organics (DRO) and Motor/Lube Oil Range Organics (OR...Analysis of Diesel Range Organics (DRO) and Motor/Lube Oil Range Organics (OR...
Analysis of Diesel Range Organics (DRO) and Motor/Lube Oil Range Organics (OR...
 

Ähnlich wie Steam Cracking Of Renewable Naphtha

Day 1 pm l zhao
Day 1 pm l zhaoDay 1 pm l zhao
Day 1 pm l zhaoperezg55
 
Cwea Me Hg Presentation Er
Cwea Me Hg Presentation ErCwea Me Hg Presentation Er
Cwea Me Hg Presentation Ernoel_enoki
 
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Pratap Jung Rai
 
Junior Design Project Usf
Junior Design Project  UsfJunior Design Project  Usf
Junior Design Project UsfE449257
 
Bioethanol production from lignocellulosic, whey, and starch.pptx
Bioethanol production from lignocellulosic, whey, and starch.pptxBioethanol production from lignocellulosic, whey, and starch.pptx
Bioethanol production from lignocellulosic, whey, and starch.pptxAsmamawTesfaw1
 
Hydrogen production by a thermally integrated ATR based fuel processor
Hydrogen production by a thermally integrated ATR based fuel processorHydrogen production by a thermally integrated ATR based fuel processor
Hydrogen production by a thermally integrated ATR based fuel processorAntonio Ricca
 
236th ECS Meeting , Atlanta, Georgia, USA 2019
236th ECS Meeting , Atlanta, Georgia, USA 2019236th ECS Meeting , Atlanta, Georgia, USA 2019
236th ECS Meeting , Atlanta, Georgia, USA 2019Samindi Jayawickrama
 
Combining Methods CAN/CGSB-3.0 and ASTM D-5580 in a Single GC Platform
Combining Methods CAN/CGSB-3.0 and ASTM D-5580 in a Single GC Platform Combining Methods CAN/CGSB-3.0 and ASTM D-5580 in a Single GC Platform
Combining Methods CAN/CGSB-3.0 and ASTM D-5580 in a Single GC Platform Shimadzu Scientific Instruments
 
Lessons learned from injecting liquid activated carbon suspension
Lessons learned from injecting liquid activated carbon suspensionLessons learned from injecting liquid activated carbon suspension
Lessons learned from injecting liquid activated carbon suspensionAntea Group
 
Ultrasound-assisted Virgin Olive Oil Extraction by Low-scale Industrial Mill
Ultrasound-assisted Virgin Olive Oil Extraction by Low-scale Industrial MillUltrasound-assisted Virgin Olive Oil Extraction by Low-scale Industrial Mill
Ultrasound-assisted Virgin Olive Oil Extraction by Low-scale Industrial MillBeatriz de Almeida
 
2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINALSandra Broekema
 
Heat Recovery System to Save the Fuel (Bagasse) by Eliminating the Feedwater ...
Heat Recovery System to Save the Fuel (Bagasse) by Eliminating the Feedwater ...Heat Recovery System to Save the Fuel (Bagasse) by Eliminating the Feedwater ...
Heat Recovery System to Save the Fuel (Bagasse) by Eliminating the Feedwater ...IRJET Journal
 

Ähnlich wie Steam Cracking Of Renewable Naphtha (20)

Day 1 pm l zhao
Day 1 pm l zhaoDay 1 pm l zhao
Day 1 pm l zhao
 
Cwea Me Hg Presentation Er
Cwea Me Hg Presentation ErCwea Me Hg Presentation Er
Cwea Me Hg Presentation Er
 
NOS 2009
NOS 2009NOS 2009
NOS 2009
 
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
 
Junior Design Project Usf
Junior Design Project  UsfJunior Design Project  Usf
Junior Design Project Usf
 
Posterviena
PostervienaPosterviena
Posterviena
 
Bioethanol production from lignocellulosic, whey, and starch.pptx
Bioethanol production from lignocellulosic, whey, and starch.pptxBioethanol production from lignocellulosic, whey, and starch.pptx
Bioethanol production from lignocellulosic, whey, and starch.pptx
 
Selection of amine solvents for CO2 capture from natural gas power plant
Selection of amine solvents for CO2 capture from natural gas power plantSelection of amine solvents for CO2 capture from natural gas power plant
Selection of amine solvents for CO2 capture from natural gas power plant
 
Hydrogen production by a thermally integrated ATR based fuel processor
Hydrogen production by a thermally integrated ATR based fuel processorHydrogen production by a thermally integrated ATR based fuel processor
Hydrogen production by a thermally integrated ATR based fuel processor
 
236th ECS Meeting , Atlanta, Georgia, USA 2019
236th ECS Meeting , Atlanta, Georgia, USA 2019236th ECS Meeting , Atlanta, Georgia, USA 2019
236th ECS Meeting , Atlanta, Georgia, USA 2019
 
Presentation PX
Presentation PXPresentation PX
Presentation PX
 
Post-combustion CO2 capture from natural gas combined cycles by solvent suppo...
Post-combustion CO2 capture from natural gas combined cycles by solvent suppo...Post-combustion CO2 capture from natural gas combined cycles by solvent suppo...
Post-combustion CO2 capture from natural gas combined cycles by solvent suppo...
 
Combining Methods CAN/CGSB-3.0 and ASTM D-5580 in a Single GC Platform
Combining Methods CAN/CGSB-3.0 and ASTM D-5580 in a Single GC Platform Combining Methods CAN/CGSB-3.0 and ASTM D-5580 in a Single GC Platform
Combining Methods CAN/CGSB-3.0 and ASTM D-5580 in a Single GC Platform
 
Lessons learned from injecting liquid activated carbon suspension
Lessons learned from injecting liquid activated carbon suspensionLessons learned from injecting liquid activated carbon suspension
Lessons learned from injecting liquid activated carbon suspension
 
Snehesh-Presentation-PDF
Snehesh-Presentation-PDFSnehesh-Presentation-PDF
Snehesh-Presentation-PDF
 
Ultrasound-assisted Virgin Olive Oil Extraction by Low-scale Industrial Mill
Ultrasound-assisted Virgin Olive Oil Extraction by Low-scale Industrial MillUltrasound-assisted Virgin Olive Oil Extraction by Low-scale Industrial Mill
Ultrasound-assisted Virgin Olive Oil Extraction by Low-scale Industrial Mill
 
2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL
 
Heat Recovery System to Save the Fuel (Bagasse) by Eliminating the Feedwater ...
Heat Recovery System to Save the Fuel (Bagasse) by Eliminating the Feedwater ...Heat Recovery System to Save the Fuel (Bagasse) by Eliminating the Feedwater ...
Heat Recovery System to Save the Fuel (Bagasse) by Eliminating the Feedwater ...
 
Pittcon 2002
Pittcon 2002Pittcon 2002
Pittcon 2002
 
chitosan as plant growth promoters
chitosan as plant growth promoterschitosan as plant growth promoters
chitosan as plant growth promoters
 

Steam Cracking Of Renewable Naphtha

  • 1. http://www.lct.ugent.be 1 Laboratory for Chemical Technology, Universiteit Gent 2 Syntroleum Corp., Tulsa, OK, rabhari@syntroleum.com Steam Cracking of Renewable Naphtha Kevin M. Van Geem 1 , Ramin Abhari 2 , Steven P. Pyl 1 , Marie-Françoise Reyniers 1 and Guy B. Marin 1 Ethylene Producers Conference March 22-25, 2010, San Antonio, TX, USA
  • 2.
  • 3.
  • 4. Bio-Synfining™ Feedstocks EPC, San Atonio, TX, 22/03/2010 U.S. sources ~ 360,000 BPD (16 million tonne/y) hydrocarbon equivalent …and increasing
  • 5.
  • 6. Chemistry EPC, San Atonio, TX, 22/03/2010 Paraffinic hydrocarbons from bio oils via hydrodeoxygenation (Eqs 1a-b) and hydrocracking (Eq 2)
  • 7. Process EPC, San Atonio, TX, 22/03/2010 Simple, low capital cost process
  • 8. Feed pretreatment EPC, San Atonio, TX, 22/03/2010
  • 9. Feed pretreatment EPC, San Atonio, TX, 22/03/2010 Acid wash removes 95% of solubilized metals and phosphorus
  • 10. Hydrodeoxygenation EPC, San Atonio, TX, 22/03/2010 Stable catalyst: activity/selectivity
  • 11. Hydrocracker product yields: JET EPC, San Atonio, TX, 22/03/2010 Hydrocracker distillate consistent – jet fuel flash point dictates naphtha end point
  • 12.
  • 13. GC  GC set-up EPC, San Atonio, TX, 22/03/2010 4-port 2-way valve Liq. CO 2 in valves jets 2nd dim. column 1st dim. column 2nd dim. column 1st dim. column cooling carrier gas cooling cooling Tof-MS FID
  • 14. GC  GC analysis renewable naphtha EPC, San Atonio, TX, 22/03/2010 Separation based on boiling point Separation based on polarity
  • 15. Offline renewable naphtha analysis: Tof-MS EPC, San Atonio, TX, 22/03/2010
  • 16. Group type separation EPC, San Atonio, TX, 22/03/2010 C9 e: di-naphthenes f: (iso)paraffins g: mono-naphthenes n and isoparaffins aromatics naphthenes Group type separation by selecting specific ions in the Tof-MS chromatogram Visualusation of ppb amounts of components
  • 17. Group type separation: no oxygenates EPC, San Atonio, TX, 22/03/2010 Separation based on boiling point Separation based on polarity
  • 18. Detailed PIONA EPC, San Atonio, TX, 22/03/2010 C9 Identification of over 300 different individual components  Quantification in to 300 components P I O N A SUM 3 0.17 0.00 0.00 0.00 0.00 0.17 4 1.45 0.93 0.00 0.00 0.00 2.38 5 4.41 4.77 0.00 0.00 0.00 9.18 6 7.49 9.57 0.00 1.02 0.00 18.07 7 7.66 12.38 0.00 1.34 0.10 21.49 8 5.39 10.72 0.02 1.64 0.29 18.06 9 3.13 10.34 0.25 1.64 0.32 15.67 10 1.19 6.27 0.06 0.60 0.09 8.21 11 0.24 2.09 0.00 0.04 0.00 2.38 12 0.06 0.56 0.00 0.00 0.00 0.62 13 0.04 0.17 0.00 0.00 0.00 0.20 14 0.03 0.07 0.00 0.00 0.00 0.11 15 0.69 0.14 0.00 0.00 0.00 0.83 16 0.68 0.31 0.00 0.00 0.00 0.99 17 0.34 0.55 0.00 0.00 0.00 0.89 18 0.17 0.60 0.00 0.00 0.00 0.77 SUM 33.14 59.46 0.33 6.28 0.80 100.00
  • 19.
  • 20. Pilot plant set-up EPC, San Atonio, TX, 22/03/2010
  • 21. Pilot plant set-up EPC, San Atonio, TX, 22/03/2010
  • 22. Nitrogen is used as internal standard Methane functions as a second internal standard Pilot plant set-up EPC, San Atonio, TX, 22/03/2010
  • 23. Pilot plant set-up EPC, San Atonio, TX, 22/03/2010 Heated transfer line to GC  GC
  • 24. Online GC  GC Tof-MS chromatogram EPC, San Atonio, TX, 22/03/2010 Division of GC  GC chromatogram in a 1-dimensional and 2-dimensional part
  • 25. Online GC  GC Tof-MS chromatogram EPC, San Atonio, TX, 22/03/2010
  • 26. Online GC  GC FID chromatogram EPC, San Atonio, TX, 22/03/2010 Reduced peak overlap when using GC  GC allows more accurate quantification COT = 820°C COT = 865°C
  • 27. Detailed effluent with GC  GC FID EPC, San Atonio, TX, 22/03/2010 Over 100 components are identified and quantified each run Product Yield (wt%) COT = 820°C COT = 835°C COT = 850°C COT = 865°C hydrogen 0.71 0.80 0.88 0.96 CO 0.32 0.32 0.23 0.18 CO2 0.15 0.03 0.07 0.03 methane 13.55 15.28 16.28 17.67 ethylene 27.26 29.87 30.85 32.02 ethane 4.22 4.19 4.16 4.09 propylene 19.51 18.85 17.59 16.39 propane 0.72 0.66 0.60 0.54 isobutene 3.96 3.60 3.09 2.60 Trans 2-butene 3.16 2.40 1.73 1.13 Cis 2-butene 0.85 0.65 0.53 0.41 1-butene 0.61 0.50 0.57 0.47 1,3-butadiene 5.80 5.33 5.42 5.13 n-butane 0.49 0.34 0.27 0.18 benzene 3.18 4.42 5.58 6.02 toluene 1.62 2.05 2.08 2.46 Et-benzene 0.18 0.21 0.20 0.18 m-xylene 0.24 0.26 0.24 0.26 p-xylene 0.10 0.10 0.05 0.13 styrene 0.30 0.46 0.59 0.73 o-xylene 0.11 0.12 0.12 0.13 indene 0.11 0.21 0.25 0.31 naphthalene 0.15 0.23 0.32 0.43
  • 28. Simulated trends with COILSIM1D EPC, San Atonio, TX, 22/03/2010
  • 29. Pilot plant coking run EPC, San Atonio, TX, 22/03/2010 Feed Renewable Naphtha + 100 ppm DMDS Renewable Naphtha Time on stream 1h 5h 1h 5h Conditions         HC-flow (kg/hr) 4.008 3.990 4.008 3.996 H 2 O-flow (kg/hr) 1.764 1.812 1.728 1.800 Dilution (kg/kg) 0.440 0.454 0.431 0.450 COT (°C) 850 850 850 850 COP (bar abs) 1.64 1.69 1.67 1.66 hydrogen 0.88 0.87 0.93 0.89 CO 0.05 0.06 0.30 0.12 CO 2 0.00 0.00 0.04 0.01 methane 15.99 16.10 16.39 16.48 ethylene 31.21 31.20 30.90 31.13 ethane 4.11 4.29 4.23 4.21 propylene 18.27 18.34 17.52 17.63 1-butene 1.78 1.76 1.66 1.59 1,3-butadiene 5.70 5.61 5.13 5.35 benzene 5.38 5.46 5.58 5.60 toluene 2.18 2.28 2.38 2.24 styrene 0.64 0.61 0.56 0.45 naphthalene 0.38 0.39 0.29 0.40
  • 30. Measured coke yields EPC, San Atonio, TX, 22/03/2010 0 1 2 3 4 5 6 7 8 Renewable Naphtha Renewable Naphtha + 100ppm DMDS Ethane Petroleum Naphtha Condensate
  • 31. Run length simulation EPC, San Atonio, TX, 22/03/2010 TLE inlet inlet Reactor coil Type Number of reactors Number of passes Reactor length Internal reactor diameter (passes 1-4) External reactor diameter (passes 1-4) Internal reactor diameter (passes 5-6) External reactor diameter (passes 5-6) Wall thickness Naphtha flow rate per reactor coil Steam dilution CIT (a) COP (b) GK I Split coil 8 6 53.89 m 0.080 m 0.096 m 0.114 m 0.130 m 0.008 m 2785 kg h -1 0.70 kg/kg 620 °C 1.45 10 5 Pa Feedstock characteristics PINA analysis (wt%) n-praffins isoparaffins naphthenes aromatics ASTM D86 BP (wt%) IBP 50% FBP Specific density 37.0 wt% 33.0 wt% 18.0 wt% 12.0 wt% 36.0 94.5 161.0 0.706 Outlet specification Ethylene yield 28.6 wt%
  • 32. Simulated run length with COILSIM1D EPC, San Atonio, TX, 22/03/2010 Simulated Run length : Renewable Naphtha 158 days Fossil based Naphtha 83 days (Industrial 85 days)
  • 33.
  • 34.
  • 35.
  • 36.
  • 37. Thank you for your attention!
  • 38. GC  GC: Optimization Offline analysis EPC, San Atonio, TX, 22/03/2010 a dimethyl polysiloxane ( Restek ); b 50% phenyl polysilphenylene-siloxane ( SGE ) Detector FID, 300°C Tof-MS, 35-400 amu Injection 0.2 μl, split flow 150 ml/min, 250°C First column Rtx-1 PONA a 50 m L × 0.25 mm I.D. × 0.5 μm df Second column BPX-50 b 2 m L × 0.15 mm I.D. × 0.15 μm df Oven temperature 50°C  250°C at 3°C/min Modulation Period 4 s Carrier gas He, constant flow 2.1 ml/min He, constant flow 1.6 ml/min
  • 39. Other GC’s EPC, San Atonio, TX, 22/03/2010 a dime thyl polysiloxane ( Restek ) PGA DHA Injection Gas injection, 55°C Gas injection, 250°C Carrier gas He He Pre-column Hayesep N (2 m L × 1/8” I.D.) - Column Carbosphere (1.8 m L × 1/8” I.D.) Rtx-1 PONA a (50 m L × 0.2 mm I.D. × 0.55 μm df) Oven temperature 55°C -40°C  40°C (5°C/min)  90°C (3°C/min)  250°C (5°C/min) Detector TCD, 160°C FID, 250°C
  • 40. Other GC’s EPC, San Atonio, TX, 22/03/2010 a dime thyl polysiloxane ( Restek ); b Al 2 O 3 /KCl ( Restek ) RGA Channel 1 Channel 2 Channel 3 Injection Gas injection, 80°C Gas injection, 80°C Gas injection, 80°C Carrier gas He He N 2 Pre-column Rtx-1 a (15 m L × 0.53 mm I.D. × 3 μm df) Hayesep Q (0.25 m L × 1/8” I.D.) Hayesep T (1 m L × 1/8” I.D.) Column Rt-Alumina BOND b (25 m L × 0.53 mm I.D. × 15 μm df) Hayesep N (1 m L× 1/8” I.D.), Molsieve 5A (1 m L × 1/8” I.D.) Carbosphere (2 m L × 1/8” I.D.) Oven temperature 50  120°C at 5°C/min 80°C 80°C Detector FID, 200°C TCD, 160°C TCD, 160°C

Hinweis der Redaktion

  1. The information about which components and their quantities are available is crucial to gain better insight in a side phenomenon in steam cracking, the coke formation in the reactor coil. The latter depends strongly on the quantities of these polyaromatic hydrocarbons, and hence,