SlideShare ist ein Scribd-Unternehmen logo
1 von 31
A microarray is a tool for analyzing gene expression that
consists of a small membrane or glass slide containing
samples of many genes arranged in a regular pattern.
A microarray works by exploiting the ability of a given
mRNA molecule to bind specifically to, or hybridize to, the
DNA template from which it originated.
By using an array containing many DNA samples, scientists
can determine, in a single experiment, the expression
levels of hundreds or thousands of genes within a cell by
measuring the amount of mRNA bound to each site on the
array.
With the aid of a computer, the amount of mRNA bound
to the spots on the microarray is precisely measured,
generating a profile of gene expression in the cell.
The basic premise of the DNA microarray is that
RNA samples or targets are hybridized to known
cDNAs/oligo probes on the arrays.
Microarrays were originally designed to measure gene
expression levels of a few genes. Recently, high
density microarrays have been developed which have
allowed the global analysis of gene expression or the
transcriptome.
This global analysis allows one to determine the
cellular function of genes, the nature and regulation
of biochemical pathways, and the regulatory
mechanisms at play during certain signalling conditions
or diseases
DNA Microarrays are small, solid supports onto which the
sequences from thousands of different genes are
immobilized, or attached, at fixed locations.
The supports themselves are usually glass microscope
slides, the size of two side-by-side pinky fingers, but can
also be silicon chips or nylon membranes. The DNA is
printed, spotted, or actually synthesized directly onto the
support.
It is important that the gene sequences in a microarray
are attached to their support in an orderly or fixed way,
because a researcher uses the location of each spot in the
array to identify a particular gene sequence. The spots
themselves can be DNA, cDNA, or oligonucleotides.
• Timeline of Recent DNA Microarray Developments
• 1991: Photolithographic printing (Affymetrix)
• 1994: First cDNA collections are deve;oped at
Stranford
• 1995: Quantitative monitoring of gene expression
patterns with a complementary DNA microarray.
• 1996: Commercialization of arrays (Affymetrix)
• 1997: Genome- wide expression monitoring in S.
cerevisiae (yeast)
• 2000: Portraits/ Signatures of cancer.
• 2003: Introduction into clinical practices
• 2004: Whole human genome on one microarray
Microarray-based comparative genomic hybridization
(array-CGH) is a technique by which variations in copy
numbers between two genomes can be analyzed using
DNA microarrays.
Array CGH has been used to survey chromosomal
amplifications and deletions in fetal aneuploidies or
cancer tissues.
Array comparative genomic hybridization (also CMA,
Chromosomal Microarray Analysis, Microarray-based
comparative genomic hybridization, array CGH, aCGH, or
Virtual Karyotype) is a technique to detect genomic copy
number variations at a higher resolution level than
chromosome-based comparative genomic hybridization
(CGH).
Dedicated tools are needed to analyse the results of
such experiments, which include appropriate visualisation,
and to take into consideration the physical relation in
• Comparative genomic hybridization (CGH) microarray is
an emerging tool in bioclinical research that allows to
identify genomic alterations with a higher resolution
than the conventional CGH
• To study aberrations of the genome, investigators
competitively hybridize fluorescein-labeled normal and
pathological samples to an array containing clones
designed to cover certain areas of the genome.
• Once hybridization has been performed, the signal
intensities of the dyes are quantified. Thus, this
technique provides a means to quantitatively measure
DNA copy-number changes and to map them directly
onto a genomic sequence. In oncology, where
carcinogenesis is associated with complex chromosomic
alterations, CGH arrays can be used for detailed
analysis of genomic changes in copy number (in terms of
gains or loss of genetic information) in the tumor
sample.
• Manufacturing of Microarrays
For microarray production, two different
approaches are used:
• 1. Synthesis on the chip; and
• 2. bulk synthesis with subsequent deposition
on the chip.
The first method is applicable to
generate chemical libraries, for example, of
short oligonucleotides or peptides; the
second method may also be adapted to long
polynucleotides or proteins, or any of the
many receptors.
.

. .

. .

.

.

.

. .

. .

.

.

Spotting technique.
Nimblegen Maskless Array Synthesis

These "virtual masks" reflect the desired pattern of UV light with
individually addressable aluminum mirrors controlled by the
computer. The DMD controls the pattern of UV light projected on
the microscope slide in the reaction chamber, which is coupled to
the DNA synthesizer. The UV light selectively cleaves a UV-labile
protecting group at the precise location where the next nucleotide
will be coupled. The patterns are coordinated with the DNA
synthesis chemistry in a parallel, combinatorial manner such that
385,000 to 2.1 million unique probe features are synthesized in a
single array.
RNA

RNA

NORMAL CELLS

CANCER CELLS
mRNA
tRNA
rRNA

ELUTION BUFFER

Bead
containing poly
T chain
TT

TTT

T

T

WASHING SOLUTION
mRNA

tRNA
mRNA
rRNA
G

A

C

G

U

A

A

A

mRNA

C

T

G

C

A

T

T

T

cDNA

G

A
C
Normal cells.

G

T

A

A

A

mRNA

G

A

C

G

U

A

A

A

cDNA

C

T

G

C

A

T

T

T

G

A

C

G

T

A

A

A

Cancer cells.
Array CGH
Reference DNA (cy5)

Array containing
probes corresponding to
genomic DNA

Mix and hybridize
to array

Test DNA (cy3)

Scan and analyze image
Gene 1

Gene 2

Gene 3
In this schematic:

GREEN represents Control DNA, where either DNA or cDNA
derived from normal tissue is hybridized to the target DNA.
RED represents Sample DNA, where either DNA or cDNA is
derived from diseased tissue hybridized to the target DNA.

YELLOW represents a combination of Control and Sample DNA,
where both hybridized equally to the target DNA.
BLACK represents areas where neither the Control nor Sample
DNA hybridized to the target DNA.
Each spot on an array is associated with a particular gene. Each
color in an array represents either healthy (control) or diseased
(sample) tissue. Depending on the type of array used, the location
and intensity of a color will tell us whether the gene, or mutation,
is present in either the control and/or sample DNA. It will also
provide an estimate of the expression level of the gene(s) in the
sample and control DNA.
DNA microarrays have been used to examine the gene
expression
changes
under
diseases
such
as
cancer. Tumour profiling using DNA microarrays allows
the analysis of the development and the progression of
such complex diseases.
Using DNA microarrays, one can examine targets for
drug discovery and potential diagnostic and prognostic
biomarkers for many complex diseases.
DNA microarrays are used commonly to detect viruses
and other pathogens from blood samples and thus can
be used as a pathogen detection method.
DNA microarrays have been more recently used to
identify inheritable markers, and therefore have been
used as a genotyping tool.
SNP chips based on DNA microarray technology have
allowed the high throughput profiling of single
nucleotide polymorphisms using a chip or array
approach. This has allowed polymorphisms to be more
quickly assayed and also their relavence to disease to
DNA microarrays are better than other
profiling methods (such as SAGE, SH, PCR
methods) in that they are:

Easier to use
Are
high-throughput
(can
analyze
thousands of
genes or markers at
a time)
Generate large amounts of data in little
time

Do not require large-scale sequencing
- Allow the quantitation of thousands of
genes from many samples
• High-throughput
– Identify: candidate genes, patterns

• Compare two different populations
– wild type vs. evolved
– normal tissue vs. cancerous tissue
• Studing specific chromosomal regions.
•Parental diagnosis
•Disease diagnosis like cancer
•Gene expression
•Chromosomal abberations.
•Determines gain and loss of chromosomal
regions
• Do not necessarily reflect true levels of
proteins - protein levels are regulated by
translation initiation & degradation as well
• Generally, do not “prove” new biology - simply
suggest genes involved in a process, a
hypothesis that will require traditional
experimental verification
• Expensive! $20-$100K to make your own /
buy enough to get publishable data
Identification of disease genes by whole genome CGH arrays
Lisenka E.L.M. Vissers, Joris A. Veltman*, Ad Geurts van Kessel and Han G. Brunner
Department of Human Genetics
<http://www.nimblegen.com/>
<http://www.affymetrix.com/>
<http://smd.stanford.edu/resources/resinfshtml>
Validation of Sequence-Optimized 70-base Oligonucleotides for Use on DNA
Microarrays (http://www.westburg.nl/download/arrayposter.pdf). By John Ten Bosch,
Chris Seidel, Sajeev Batra, Hugh Lam, Nico Tuason, Sepp Saljoughi, and Robert
Saul.
Assessment of the specificity and Sensitivity of the oligonucleotides (50 mer )
microarrays. By Dr. Susanne Schröder1, Dr. Jaqueline Weber2, and Dr. Hubert Paul 1
WG Biotech AG, Microarray Development1 and Department of Bioinformatics2.

50 nucleotide long probes on microarrays enable high signal intensity and high
specificity. By Dr. Susanne Schröder1, Dr. Jaqueline Weber2, and Dr. Hubert Paul1
MWG Biotech AG,microarray Development1and Department of Bioinformatics 2,
Anzinger Str. 7, 85560 Ebersberg, Germany.
Optimization of Oligonucleotide - based DNA microarrays. By Angela Relogio,
Christian Aschwager, Alexandra Ritcher, Wilhelm Ansorge and Juan Valcarel.
An experimental loop design for the detection of constitutional
chromosomal aberrations by array CGH
by: Joke Allemeersch, Steven Van Vooren, Femke Hannes, Bart De Moor,
Joris Vermeesch, Yves Moreau
Assessment of the sensitivity and specificity of oligonucleotide (50mer)
microarrays
Michael D. Kane, Timothy A. Jatkoe, Craig R. Stumpf, Jia Lu1, Jeffrey D.
Thomas and Steven J. Madore*

DNA Microarrays: Background, Interactive
Databases, and Hands-on Data Analysis A. Malcolm Campbell1 and
Laurie J. Heyer2
Microarray CGH
Ben Beheshti, Paul C. Park, Ilan Braude, and Jeremy A. Squire
http/www.wikipedia.com

Search engines:

Weitere ähnliche Inhalte

Was ist angesagt?

DNA MICROARRAY
DNA MICROARRAYDNA MICROARRAY
DNA MICROARRAYrishabhaks
 
Next Generation Sequencing of DNA
Next Generation Sequencing of DNANext Generation Sequencing of DNA
Next Generation Sequencing of DNAmaryamshah13
 
Clinical proteomics in diseases lecture, 2014
Clinical proteomics in diseases lecture, 2014Clinical proteomics in diseases lecture, 2014
Clinical proteomics in diseases lecture, 2014Mohammad Hessam Rafiee
 
Presentation on Fluorescence in-Situ Hybridization (FISH)
Presentation on Fluorescence in-Situ Hybridization (FISH)Presentation on Fluorescence in-Situ Hybridization (FISH)
Presentation on Fluorescence in-Situ Hybridization (FISH)Dr. Kaushik Kumar Panigrahi
 
Next generation sequencing
Next  generation  sequencingNext  generation  sequencing
Next generation sequencingNidhi Singh
 
Tracking introgressions using FISH and GISH
Tracking introgressions using FISH and GISHTracking introgressions using FISH and GISH
Tracking introgressions using FISH and GISHvipulkelkar1
 
Functional genomics
Functional genomicsFunctional genomics
Functional genomicsPawan Kumar
 
NEXT GENERATION SEQUENCING
NEXT GENERATION SEQUENCINGNEXT GENERATION SEQUENCING
NEXT GENERATION SEQUENCINGBilal Nizami
 
DNA microarray final ppt.
DNA microarray final ppt.DNA microarray final ppt.
DNA microarray final ppt.Aashish Patel
 
Next Generation Sequencing (NGS)
Next Generation Sequencing (NGS)Next Generation Sequencing (NGS)
Next Generation Sequencing (NGS)LOGESWARAN KA
 
Microarray (DNA and SNP microarray)
Microarray (DNA and SNP microarray)Microarray (DNA and SNP microarray)
Microarray (DNA and SNP microarray)Hamza Khan
 
Forward and reverse genetics
Forward and reverse geneticsForward and reverse genetics
Forward and reverse geneticsSrishti Singh
 
Next generation sequencing
Next generation sequencingNext generation sequencing
Next generation sequencingPALANIANANTH.S
 

Was ist angesagt? (20)

DNA microarray
DNA microarrayDNA microarray
DNA microarray
 
SNP
SNPSNP
SNP
 
DNA MICROARRAY
DNA MICROARRAYDNA MICROARRAY
DNA MICROARRAY
 
Next Generation Sequencing of DNA
Next Generation Sequencing of DNANext Generation Sequencing of DNA
Next Generation Sequencing of DNA
 
Clinical proteomics in diseases lecture, 2014
Clinical proteomics in diseases lecture, 2014Clinical proteomics in diseases lecture, 2014
Clinical proteomics in diseases lecture, 2014
 
Cancer Proteomics
Cancer ProteomicsCancer Proteomics
Cancer Proteomics
 
Gene expression profiling
Gene expression profilingGene expression profiling
Gene expression profiling
 
Presentation on Fluorescence in-Situ Hybridization (FISH)
Presentation on Fluorescence in-Situ Hybridization (FISH)Presentation on Fluorescence in-Situ Hybridization (FISH)
Presentation on Fluorescence in-Situ Hybridization (FISH)
 
Ngs ppt
Ngs pptNgs ppt
Ngs ppt
 
Next generation sequencing
Next  generation  sequencingNext  generation  sequencing
Next generation sequencing
 
Cancer genome
Cancer genomeCancer genome
Cancer genome
 
Tracking introgressions using FISH and GISH
Tracking introgressions using FISH and GISHTracking introgressions using FISH and GISH
Tracking introgressions using FISH and GISH
 
Functional genomics
Functional genomicsFunctional genomics
Functional genomics
 
NEXT GENERATION SEQUENCING
NEXT GENERATION SEQUENCINGNEXT GENERATION SEQUENCING
NEXT GENERATION SEQUENCING
 
DNA microarray final ppt.
DNA microarray final ppt.DNA microarray final ppt.
DNA microarray final ppt.
 
Ppt snp detection
Ppt snp detectionPpt snp detection
Ppt snp detection
 
Next Generation Sequencing (NGS)
Next Generation Sequencing (NGS)Next Generation Sequencing (NGS)
Next Generation Sequencing (NGS)
 
Microarray (DNA and SNP microarray)
Microarray (DNA and SNP microarray)Microarray (DNA and SNP microarray)
Microarray (DNA and SNP microarray)
 
Forward and reverse genetics
Forward and reverse geneticsForward and reverse genetics
Forward and reverse genetics
 
Next generation sequencing
Next generation sequencingNext generation sequencing
Next generation sequencing
 

Andere mochten auch

Dna microarray (dna chips)
Dna microarray (dna chips)Dna microarray (dna chips)
Dna microarray (dna chips)Rachana Tiwari
 
Advanced Techniques In Molecular Cytogenetics Karyotyping, FISH, CGH, SKY
Advanced Techniques In Molecular Cytogenetics Karyotyping, FISH, CGH, SKYAdvanced Techniques In Molecular Cytogenetics Karyotyping, FISH, CGH, SKY
Advanced Techniques In Molecular Cytogenetics Karyotyping, FISH, CGH, SKYDr. Akshay Joshi
 
DNA microarray
DNA microarrayDNA microarray
DNA microarrayS Rasouli
 
Fluorescence in situ Hybridization FISH #glok92
Fluorescence in situ Hybridization FISH #glok92Fluorescence in situ Hybridization FISH #glok92
Fluorescence in situ Hybridization FISH #glok92glok Productions
 
Karyotyping
KaryotypingKaryotyping
Karyotypingwildask
 
Fluorescent in-situ Hybridization (FISH)
Fluorescent in-situ Hybridization (FISH)Fluorescent in-situ Hybridization (FISH)
Fluorescent in-situ Hybridization (FISH)BioGenex
 
Array cgh ftnw
Array cgh ftnwArray cgh ftnw
Array cgh ftnw鋒博 蔡
 
CGH in the PGD program: a new tool for improved IVF outcomes?
CGH in the PGD program: a new tool for improved IVF outcomes? CGH in the PGD program: a new tool for improved IVF outcomes?
CGH in the PGD program: a new tool for improved IVF outcomes? Genea Limited
 
Microarray and its application
Microarray and its applicationMicroarray and its application
Microarray and its applicationprateek kumar
 
96376562 northern-blotting
96376562 northern-blotting96376562 northern-blotting
96376562 northern-blottingTha Matsuyama
 
Genomica - Microarreglos de DNA
Genomica - Microarreglos de DNAGenomica - Microarreglos de DNA
Genomica - Microarreglos de DNAUlises Urzua
 
Karyotype
KaryotypeKaryotype
KaryotypeSBG404
 

Andere mochten auch (20)

MICROARRAY
MICROARRAYMICROARRAY
MICROARRAY
 
Dna microarray (dna chips)
Dna microarray (dna chips)Dna microarray (dna chips)
Dna microarray (dna chips)
 
Microarray
MicroarrayMicroarray
Microarray
 
Advanced Techniques In Molecular Cytogenetics Karyotyping, FISH, CGH, SKY
Advanced Techniques In Molecular Cytogenetics Karyotyping, FISH, CGH, SKYAdvanced Techniques In Molecular Cytogenetics Karyotyping, FISH, CGH, SKY
Advanced Techniques In Molecular Cytogenetics Karyotyping, FISH, CGH, SKY
 
DNA microarray
DNA microarrayDNA microarray
DNA microarray
 
Microarray Analysis
Microarray AnalysisMicroarray Analysis
Microarray Analysis
 
DNA microarray
DNA microarrayDNA microarray
DNA microarray
 
Fluorescence in situ Hybridization FISH #glok92
Fluorescence in situ Hybridization FISH #glok92Fluorescence in situ Hybridization FISH #glok92
Fluorescence in situ Hybridization FISH #glok92
 
Karyotyping
KaryotypingKaryotyping
Karyotyping
 
Fluorescent in-situ Hybridization (FISH)
Fluorescent in-situ Hybridization (FISH)Fluorescent in-situ Hybridization (FISH)
Fluorescent in-situ Hybridization (FISH)
 
Array cgh ftnw
Array cgh ftnwArray cgh ftnw
Array cgh ftnw
 
Micro array analysis
Micro array analysisMicro array analysis
Micro array analysis
 
CGH in the PGD program: a new tool for improved IVF outcomes?
CGH in the PGD program: a new tool for improved IVF outcomes? CGH in the PGD program: a new tool for improved IVF outcomes?
CGH in the PGD program: a new tool for improved IVF outcomes?
 
Microarray
MicroarrayMicroarray
Microarray
 
Microarray and its application
Microarray and its applicationMicroarray and its application
Microarray and its application
 
Rnaseq forgenefinding
Rnaseq forgenefindingRnaseq forgenefinding
Rnaseq forgenefinding
 
96376562 northern-blotting
96376562 northern-blotting96376562 northern-blotting
96376562 northern-blotting
 
Genomica - Microarreglos de DNA
Genomica - Microarreglos de DNAGenomica - Microarreglos de DNA
Genomica - Microarreglos de DNA
 
Karyotypes - Various
Karyotypes - VariousKaryotypes - Various
Karyotypes - Various
 
Karyotype
KaryotypeKaryotype
Karyotype
 

Ähnlich wie Microarray CGH

Applications of microarray
Applications of microarrayApplications of microarray
Applications of microarrayprateek kumar
 
A comprehensive study of microarray
A comprehensive study of microarrayA comprehensive study of microarray
A comprehensive study of microarrayPRABAL SINGH
 
DNA micro array by kk sahu
DNA micro array by kk sahuDNA micro array by kk sahu
DNA micro array by kk sahuKAUSHAL SAHU
 
Toxicogenomics: microarray
Toxicogenomics: microarrayToxicogenomics: microarray
Toxicogenomics: microarrayEden D'souza
 
Microarray @ujjwal sirohi
Microarray @ujjwal sirohiMicroarray @ujjwal sirohi
Microarray @ujjwal sirohiujjwal sirohi
 
DNA microarray ppt
DNA microarray pptDNA microarray ppt
DNA microarray pptMohit Kohli
 
DNA microarray.pdfghghvjjsjsjdhdhdhddhdhdjdhd
DNA microarray.pdfghghvjjsjsjdhdhdhddhdhdjdhdDNA microarray.pdfghghvjjsjsjdhdhdhddhdhdjdhd
DNA microarray.pdfghghvjjsjsjdhdhdhddhdhdjdhdMusaMusa68
 
Dna microarray and its role in plant pathology
Dna microarray and its role in plant pathologyDna microarray and its role in plant pathology
Dna microarray and its role in plant pathologyAbhilasha Sharma
 
Nucleic acid microarray.pptx
Nucleic acid microarray.pptxNucleic acid microarray.pptx
Nucleic acid microarray.pptxashharnomani
 
Microarray technology, biochip, DNA chip
Microarray technology, biochip, DNA chip Microarray technology, biochip, DNA chip
Microarray technology, biochip, DNA chip KAUSHAL SAHU
 
Genomics seminar
Genomics seminarGenomics seminar
Genomics seminarS Rasouli
 

Ähnlich wie Microarray CGH (20)

Applications of microarray
Applications of microarrayApplications of microarray
Applications of microarray
 
A comprehensive study of microarray
A comprehensive study of microarrayA comprehensive study of microarray
A comprehensive study of microarray
 
DNA Microarray
DNA MicroarrayDNA Microarray
DNA Microarray
 
DNA micro array by kk sahu
DNA micro array by kk sahuDNA micro array by kk sahu
DNA micro array by kk sahu
 
Toxicogenomics: microarray
Toxicogenomics: microarrayToxicogenomics: microarray
Toxicogenomics: microarray
 
Microarray @ujjwal sirohi
Microarray @ujjwal sirohiMicroarray @ujjwal sirohi
Microarray @ujjwal sirohi
 
microarrary
microarrarymicroarrary
microarrary
 
MICROARRAY.pptx
MICROARRAY.pptxMICROARRAY.pptx
MICROARRAY.pptx
 
DNA microarray ppt
DNA microarray pptDNA microarray ppt
DNA microarray ppt
 
DNA microarray.pdfghghvjjsjsjdhdhdhddhdhdjdhd
DNA microarray.pdfghghvjjsjsjdhdhdhddhdhdjdhdDNA microarray.pdfghghvjjsjsjdhdhdhddhdhdjdhd
DNA microarray.pdfghghvjjsjsjdhdhdhddhdhdjdhd
 
Dna microarray and its role in plant pathology
Dna microarray and its role in plant pathologyDna microarray and its role in plant pathology
Dna microarray and its role in plant pathology
 
Nucleic acid microarray.pptx
Nucleic acid microarray.pptxNucleic acid microarray.pptx
Nucleic acid microarray.pptx
 
Microarray
Microarray Microarray
Microarray
 
Microarray technology, biochip, DNA chip
Microarray technology, biochip, DNA chip Microarray technology, biochip, DNA chip
Microarray technology, biochip, DNA chip
 
Dn amicroarray
Dn amicroarrayDn amicroarray
Dn amicroarray
 
DNA Microarray notes.pdf
DNA Microarray notes.pdfDNA Microarray notes.pdf
DNA Microarray notes.pdf
 
DNA Microarray notes.pdf
DNA Microarray notes.pdfDNA Microarray notes.pdf
DNA Microarray notes.pdf
 
Genomics seminar
Genomics seminarGenomics seminar
Genomics seminar
 
Biomed central
Biomed centralBiomed central
Biomed central
 
Microarray.pptx
Microarray.pptxMicroarray.pptx
Microarray.pptx
 

Kürzlich hochgeladen

USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 

Kürzlich hochgeladen (20)

OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 

Microarray CGH

  • 1.
  • 2.
  • 3. A microarray is a tool for analyzing gene expression that consists of a small membrane or glass slide containing samples of many genes arranged in a regular pattern. A microarray works by exploiting the ability of a given mRNA molecule to bind specifically to, or hybridize to, the DNA template from which it originated. By using an array containing many DNA samples, scientists can determine, in a single experiment, the expression levels of hundreds or thousands of genes within a cell by measuring the amount of mRNA bound to each site on the array. With the aid of a computer, the amount of mRNA bound to the spots on the microarray is precisely measured, generating a profile of gene expression in the cell.
  • 4. The basic premise of the DNA microarray is that RNA samples or targets are hybridized to known cDNAs/oligo probes on the arrays. Microarrays were originally designed to measure gene expression levels of a few genes. Recently, high density microarrays have been developed which have allowed the global analysis of gene expression or the transcriptome. This global analysis allows one to determine the cellular function of genes, the nature and regulation of biochemical pathways, and the regulatory mechanisms at play during certain signalling conditions or diseases
  • 5. DNA Microarrays are small, solid supports onto which the sequences from thousands of different genes are immobilized, or attached, at fixed locations. The supports themselves are usually glass microscope slides, the size of two side-by-side pinky fingers, but can also be silicon chips or nylon membranes. The DNA is printed, spotted, or actually synthesized directly onto the support. It is important that the gene sequences in a microarray are attached to their support in an orderly or fixed way, because a researcher uses the location of each spot in the array to identify a particular gene sequence. The spots themselves can be DNA, cDNA, or oligonucleotides.
  • 6. • Timeline of Recent DNA Microarray Developments • 1991: Photolithographic printing (Affymetrix) • 1994: First cDNA collections are deve;oped at Stranford • 1995: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. • 1996: Commercialization of arrays (Affymetrix) • 1997: Genome- wide expression monitoring in S. cerevisiae (yeast) • 2000: Portraits/ Signatures of cancer. • 2003: Introduction into clinical practices • 2004: Whole human genome on one microarray
  • 7. Microarray-based comparative genomic hybridization (array-CGH) is a technique by which variations in copy numbers between two genomes can be analyzed using DNA microarrays. Array CGH has been used to survey chromosomal amplifications and deletions in fetal aneuploidies or cancer tissues. Array comparative genomic hybridization (also CMA, Chromosomal Microarray Analysis, Microarray-based comparative genomic hybridization, array CGH, aCGH, or Virtual Karyotype) is a technique to detect genomic copy number variations at a higher resolution level than chromosome-based comparative genomic hybridization (CGH). Dedicated tools are needed to analyse the results of such experiments, which include appropriate visualisation, and to take into consideration the physical relation in
  • 8. • Comparative genomic hybridization (CGH) microarray is an emerging tool in bioclinical research that allows to identify genomic alterations with a higher resolution than the conventional CGH • To study aberrations of the genome, investigators competitively hybridize fluorescein-labeled normal and pathological samples to an array containing clones designed to cover certain areas of the genome. • Once hybridization has been performed, the signal intensities of the dyes are quantified. Thus, this technique provides a means to quantitatively measure DNA copy-number changes and to map them directly onto a genomic sequence. In oncology, where carcinogenesis is associated with complex chromosomic alterations, CGH arrays can be used for detailed analysis of genomic changes in copy number (in terms of gains or loss of genetic information) in the tumor sample.
  • 9.
  • 10.
  • 11. • Manufacturing of Microarrays For microarray production, two different approaches are used: • 1. Synthesis on the chip; and • 2. bulk synthesis with subsequent deposition on the chip. The first method is applicable to generate chemical libraries, for example, of short oligonucleotides or peptides; the second method may also be adapted to long polynucleotides or proteins, or any of the many receptors.
  • 12.
  • 13. . . . . . . . . . . . . . . Spotting technique.
  • 14. Nimblegen Maskless Array Synthesis These "virtual masks" reflect the desired pattern of UV light with individually addressable aluminum mirrors controlled by the computer. The DMD controls the pattern of UV light projected on the microscope slide in the reaction chamber, which is coupled to the DNA synthesizer. The UV light selectively cleaves a UV-labile protecting group at the precise location where the next nucleotide will be coupled. The patterns are coordinated with the DNA synthesis chemistry in a parallel, combinatorial manner such that 385,000 to 2.1 million unique probe features are synthesized in a single array.
  • 15.
  • 17. mRNA tRNA rRNA ELUTION BUFFER Bead containing poly T chain TT TTT T T WASHING SOLUTION mRNA tRNA mRNA rRNA
  • 19. Array CGH Reference DNA (cy5) Array containing probes corresponding to genomic DNA Mix and hybridize to array Test DNA (cy3) Scan and analyze image
  • 20.
  • 22.
  • 23.
  • 24. In this schematic: GREEN represents Control DNA, where either DNA or cDNA derived from normal tissue is hybridized to the target DNA. RED represents Sample DNA, where either DNA or cDNA is derived from diseased tissue hybridized to the target DNA. YELLOW represents a combination of Control and Sample DNA, where both hybridized equally to the target DNA. BLACK represents areas where neither the Control nor Sample DNA hybridized to the target DNA. Each spot on an array is associated with a particular gene. Each color in an array represents either healthy (control) or diseased (sample) tissue. Depending on the type of array used, the location and intensity of a color will tell us whether the gene, or mutation, is present in either the control and/or sample DNA. It will also provide an estimate of the expression level of the gene(s) in the sample and control DNA.
  • 25. DNA microarrays have been used to examine the gene expression changes under diseases such as cancer. Tumour profiling using DNA microarrays allows the analysis of the development and the progression of such complex diseases. Using DNA microarrays, one can examine targets for drug discovery and potential diagnostic and prognostic biomarkers for many complex diseases. DNA microarrays are used commonly to detect viruses and other pathogens from blood samples and thus can be used as a pathogen detection method. DNA microarrays have been more recently used to identify inheritable markers, and therefore have been used as a genotyping tool. SNP chips based on DNA microarray technology have allowed the high throughput profiling of single nucleotide polymorphisms using a chip or array approach. This has allowed polymorphisms to be more quickly assayed and also their relavence to disease to
  • 26. DNA microarrays are better than other profiling methods (such as SAGE, SH, PCR methods) in that they are: Easier to use Are high-throughput (can analyze thousands of genes or markers at a time) Generate large amounts of data in little time Do not require large-scale sequencing - Allow the quantitation of thousands of genes from many samples
  • 27. • High-throughput – Identify: candidate genes, patterns • Compare two different populations – wild type vs. evolved – normal tissue vs. cancerous tissue • Studing specific chromosomal regions.
  • 28. •Parental diagnosis •Disease diagnosis like cancer •Gene expression •Chromosomal abberations. •Determines gain and loss of chromosomal regions
  • 29. • Do not necessarily reflect true levels of proteins - protein levels are regulated by translation initiation & degradation as well • Generally, do not “prove” new biology - simply suggest genes involved in a process, a hypothesis that will require traditional experimental verification • Expensive! $20-$100K to make your own / buy enough to get publishable data
  • 30. Identification of disease genes by whole genome CGH arrays Lisenka E.L.M. Vissers, Joris A. Veltman*, Ad Geurts van Kessel and Han G. Brunner Department of Human Genetics <http://www.nimblegen.com/> <http://www.affymetrix.com/> <http://smd.stanford.edu/resources/resinfshtml> Validation of Sequence-Optimized 70-base Oligonucleotides for Use on DNA Microarrays (http://www.westburg.nl/download/arrayposter.pdf). By John Ten Bosch, Chris Seidel, Sajeev Batra, Hugh Lam, Nico Tuason, Sepp Saljoughi, and Robert Saul. Assessment of the specificity and Sensitivity of the oligonucleotides (50 mer ) microarrays. By Dr. Susanne Schröder1, Dr. Jaqueline Weber2, and Dr. Hubert Paul 1 WG Biotech AG, Microarray Development1 and Department of Bioinformatics2. 50 nucleotide long probes on microarrays enable high signal intensity and high specificity. By Dr. Susanne Schröder1, Dr. Jaqueline Weber2, and Dr. Hubert Paul1 MWG Biotech AG,microarray Development1and Department of Bioinformatics 2, Anzinger Str. 7, 85560 Ebersberg, Germany. Optimization of Oligonucleotide - based DNA microarrays. By Angela Relogio, Christian Aschwager, Alexandra Ritcher, Wilhelm Ansorge and Juan Valcarel.
  • 31. An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH by: Joke Allemeersch, Steven Van Vooren, Femke Hannes, Bart De Moor, Joris Vermeesch, Yves Moreau Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays Michael D. Kane, Timothy A. Jatkoe, Craig R. Stumpf, Jia Lu1, Jeffrey D. Thomas and Steven J. Madore* DNA Microarrays: Background, Interactive Databases, and Hands-on Data Analysis A. Malcolm Campbell1 and Laurie J. Heyer2 Microarray CGH Ben Beheshti, Paul C. Park, Ilan Braude, and Jeremy A. Squire http/www.wikipedia.com Search engines:

Hinweis der Redaktion

  1. Less than 200 micron. The numbers of spotsmay vary from less than 100 to many 100 000. The molecules are attached to a solid support that can be made from glass,silicon or a polymer
  2. &quot;array&quot; as &quot;to place in an orderly arrangement&quot;.
  3. In the 1980&apos;s, bacterial colonies were spotted on nylon membranes with different genomic inserts or cDNAsThe 1990&apos;s resulted in the emergence of ink-jet spotting methods which allowed the in situ synthesis of 60-mer oligo spots on glass slides.Affymetrix further developed DNA microarrays which were based on high-density 25-mer oligos from human cDNA sequences.
  4. Some variations among normal individualsCan cause defects in human developmentContributors to cancerCan effect function and gene expression
  5. Currently, over 50,000 cDNA probes can be spotted onto a 25X75mm slide by robotic printing. It is thus possible to array the entire human genome compliment using this high-density array approach (e.g. Affymetrix Arrays).The central process in all biochip or microarray experiments is a bindingevent, the hybridisation. One binding partner (either receptor or ligand,probe or target) is immobilised within a small but well-defined area on a flatsolid support of glass or polymer; referred to as the “spot” or “feature” ofthe microarray. There are also examples of prestructured slides, structuredfor example by microcavities (nanotiter plates) or by chemical structuringas well as by electronic features, such as microelectrodes. 103-106 of features per array, 105-106 of probes per featureall probes within a feature contain the same sequenceeach feature has a different sequence
  6. . Dna sequences are build up using light directed chemical synthesis.first a substrate with a ntd is fixed ontu the chip at specific locations.ntd has a protecting group x that blocks polymerisation.this protector group is photoliable. And is released on exposure to uvlight.without the protector polymerization and chain build up occur.a filter is added to the chip so that some of the ntds are exposed to light.thesedeprotected groups are then free to add the next nucleotide to the chain.by altering the position of the filter, fodor can build a gene chip with an array of different sequences about 20 ntdslong.fodder added a cdna probe to the gene chip he can simultaneously add tens of thousands of different seq s at the same time.when a cdna probe is added on chip thousands of different seqs can b analysed at the same time.since this entire process is done with a computer the matctingseqs can b quickly pinpointed .and then be matched to available dnaseq in gene database.Affymetrix gene chipsPhotolithography technology from computer industry allows building many 25-mers
  7. Developed by Pat Brown’s lab at StanfordPCR products of full-length genes (&gt;100nt)
  8. 60 mers.
  9. The RNA from 2 or more specimens are compared.  The RNA from each specimen is reverse transcribed using RT-PCR to cDNA (complementary cDNA). The cDNA is labeled with two different fluorescent dyes which are colored differently (red and green), with Cy3 and Cy5.
  10. The cDNA probes are hybridized to the DNA microarray. The DNA array is then washed.
  11. Fluorescent hybridization signals are scanned and detected using laser confocal devices. Data is the filtered and processed.
  12. Data analysis is conducted using DNA Microarray bioinformatic tools and/or image processing software.The signal intesities of the spots are correlated with the concentrations of target mRNA samples. Data mining is also conducted using statistical programs and algorithms to determine if the gene of interest is up-regulated, down-regulated, or unchanged.Data is then organized using a database. Gene Annotation can be then performed on the data, with GO (gene ontology) analysis, clustering analysis (which groups similar genes and pathways together), and analysis of pathways and networks of genes.Results are interpreted as log2 ratios (test intensity/reference intensity
  13. In case of a deletion in the test DNA, less test DNA will bind to the corresponding spots and the red label of the reference DNA will prevail; gains in the test genome can be identified by a dominance of the green label of the test DNA. Spots, representing sequences with the same copy number in the test genome relative to the reference genome appear yellow. For BAC arrays, an excess of repetitive Cot DNA (blue spheres) has to be added in order to suppress otherwise unspecifically binding repetitive sequences. Using our array CGH platform, we have been able to detect heterozygous deletion as small as 80kb.
  14. This evolving technology is, however, somewhat hampered by the large DNA input requirement—a minimum of 150,000 copies of a human genome, or 0.5 μg, are generally needed per sample to process one CGH array.When compared with conventional karyotyping, array CGH provides a higher resolution, a higher dynamic range and better possibilities for automation. In addition, it allows for direct linking of copy number alterations to known genomic sequences. Examples of substrates used for hybridization are bacterial artificial chromosomes (BACs) , cDNAs , oligonucleotides and exon-specific PCR products .