SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.


                              Cities After Oil: Getting Serious about Urban Sustainability
                                                      William	
  Rees	
  
                                                             	
  


                                         Introduction: The City as Biophysical Entity

                  Accelerating	
  global	
  ecological	
  change	
  poses	
  unprecedented	
  challenges	
  to	
  the	
  

integrity,	
  and	
  even	
  the	
  survival	
  of	
  modern	
  cities.	
  Regrettably,	
  most	
  cities	
  are	
  ill-­‐equipped	
  to	
  

deal	
  with	
  the	
  problem	
  facing	
  them.	
  One	
  reason	
  for	
  this	
  lack	
  of	
  preparation	
  is	
  that,	
  while	
  

cities	
  are	
  biophysical	
  entities	
  as	
  well	
  as	
  socio-­‐cultural	
  phenomena,	
  city-­‐dwellers	
  have	
  never	
  




                                                                        T
had	
  to	
  think	
  of	
  ‘the	
  city’	
  in	
  ecological	
  terms.	
  Even	
  urban	
  scholars	
  have	
  only	
  recently	
  
                                                AF
acknowledged	
  and	
  begun	
  to	
  study	
  the	
  human	
  ecological	
  dimensions	
  of	
  urbanization	
  and	
  

cities.	
  	
  

                  With	
  this	
  slow	
  awakening,	
  the	
  terms	
  ‘urban	
  ecosystem’	
  and	
  ‘eco-­‐cities’	
  have	
  become	
  
                     R
familiar	
  to	
  those	
  interested	
  in	
  urban	
  sustainability.	
  The	
  rising	
  popularity	
  of	
  such	
  terms,	
  

however,	
  belies	
  a	
  fundamental	
  error:	
  cities	
  are	
  not	
  functional	
  ecosystems	
  (Rees	
  2003).	
  To	
  
                    D

be	
  clear:	
  ‘the	
  city’	
  is	
  certainly	
  an	
  ecologically	
  critical	
  component	
  of	
  the	
  human	
  ecosystem	
  

and	
  every	
  city	
  is	
  a	
  complex	
  system	
  (or,	
  better,	
  a	
  ‘complex	
  of	
  systems’)	
  but	
  cities	
  as	
  presently	
  

conceived	
  are	
  not	
  human	
  ecosystems.	
  	
  

                  A	
  functionally	
  complete	
  ecosystem	
  is	
  a	
  self-­‐organizing,	
  self-­‐producing,	
  solar-­‐

powered	
  complex	
  of	
  mutually	
  dependent	
  autotrophic	
  (producer)	
  and	
  heterotrophic	
  

(consumer)	
  organisms.	
  This	
  biotic	
  community	
  interacts	
  with	
  its	
  physical	
  environment	
  such	
  

that	
  the	
  flow	
  and	
  dissipation	
  of	
  energy	
  results	
  in	
  a	
  defined	
  trophic	
  (feeding)	
  structure,	
  the	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



emergence	
  of	
  biodiversity,	
  and	
  characteristic	
  material	
  cycles	
  between	
  the	
  living	
  and	
  non-­‐

living	
  components	
  (Odum	
  1971).	
  	
  

By	
  this	
  definition,	
  no	
  modern	
  city	
  qualifies	
  as	
  a	
  complete	
  human	
  ecosystem.	
  Some	
  of	
  the	
  

defining	
  parts—for	
  example,	
  virtually	
  the	
  entire	
  autotrophic	
  (producer)	
  complex—are	
  

missing	
  altogether	
  and	
  others	
  (micro-­‐consumers)	
  are	
  insufficiently	
  abundant	
  for	
  functional	
  

integrity.	
  As	
  significantly,	
  the	
  separation	
  of	
  people	
  from	
  ‘the	
  land’	
  to	
  the	
  city	
  prevents	
  the	
  

recycling	
  of	
  phosphorus,	
  nitrogen,	
  other	
  nutrients	
  and	
  organic	
  matter	
  back	
  into	
  rural	
  




                                                                          T
(agricultural	
  and	
  forest)	
  ecosystems.	
  Urbanization	
  has	
  effectively	
  transformed	
  local,	
  

integrated,	
  cyclical,	
  ecological	
  production	
  systems	
  into	
  global,	
  horizontally	
  disintegrated,	
  
                                             AF
unidirectional,	
  throughput	
  systems	
  (Rees	
  1997).	
  	
  	
  

           On	
  a	
  crude	
  but	
  illustratively	
  useful	
  level,	
  an	
  apt	
  metaphor	
  of	
  the	
  city	
  might	
  be	
  a	
  

livestock	
  feedlot	
  (Rees	
  2003).	
  Like	
  feedlots,	
  cities	
  are	
  spatial	
  nodes	
  of	
  intense	
  consumption	
  
              R
entirely	
  dependent	
  for	
  their	
  survival	
  on	
  supportive	
  ecosystems	
  increasingly	
  located	
  at	
  

great	
  distance	
  from	
  the	
  cities	
  themselves.	
  	
  In	
  ecologically	
  meaningful	
  terms,	
  urbanites	
  don’t	
  
             D


live	
  in	
  cities	
  at	
  all!	
  They	
  are	
  functionally	
  more	
  connected	
  to	
  the	
  hinterland.	
  

                                                                           	
  

                                              The Ecological Footprints of Cities	
  

     A	
  complete	
  human	
  urban	
  ecosystem	
  includes	
  not	
  only	
  the	
  city	
  per	
  se	
  but	
  also	
  the	
  entire	
  

extra-­‐urban	
  complex	
  of	
  terrestrial	
  and	
  aquatic	
  ecosystems	
  required	
  to	
  support	
  the	
  city’s	
  

human	
  population.	
  One	
  way	
  to	
  determine	
  just	
  how	
  much	
  of	
  ‘nature’	
  is	
  thus	
  appropriated	
  by	
  

cities	
  is	
  through	
  ecological	
  footprint	
  analysis	
  (Rees	
  1992,	
  Wackernagel	
  and	
  Rees,	
  1996).	
  

We	
  formally	
  define	
  the	
  ecological	
  footprint	
  (EF)	
  of	
  a	
  specified	
  population	
  as:	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



       The	
  area	
  of	
  land	
  and	
  water	
  ecosystems	
  required,	
  on	
  a	
  continuous	
  basis,	
  to	
  produce	
  the	
  

       resources	
  that	
  the	
  population	
  consumes	
  and	
  to	
  assimilate	
  the	
  wastes	
  that	
  the	
  

       population	
  produces,	
  wherever	
  on	
  Earth	
  the	
  relevant	
  land/water	
  is	
  located	
  (2006).i,	
  ii	
  	
  

Figure	
  1	
  shows	
  the	
  equivalence-­‐adjustediii	
  per	
  capita	
  EFs	
  and	
  domestic	
  biocapacities	
  for	
  a	
  

selection	
  of	
  countries	
  from	
  among	
  the	
  wealthiest	
  to	
  among	
  the	
  poorest	
  based	
  on	
  2005	
  data	
  

from	
  World	
  Wildlife	
  Fund	
  (WWF	
  2008).	
  Note	
  the	
  vastly	
  greater	
  demand	
  by	
  wealthy,	
  mainly	
  

urban	
  consumers,	
  compared	
  to	
  that	
  of	
  mainly	
  rural	
  peasants.	
  The	
  citizens	
  of	
  wasteful	
  high-­‐




                                                                          T
income	
  countries	
  like	
  the	
  US	
  and	
  Canada	
  have	
  average	
  EFs	
  of	
  6	
  to	
  almost	
  10	
  hectares,	
  EFs	
  

up	
  to	
  20	
  times	
  larger	
  than	
  the	
  EFs	
  of	
  the	
  citizens	
  of	
  the	
  world’s	
  poorest	
  countries	
  like	
  
                                              AF
Bangaldesh.	
  European	
  countries	
  and	
  Japan	
  typically	
  have	
  per	
  capita	
  EFs	
  in	
  the	
  4	
  to	
  6	
  

hectare	
  range.	
  China	
  is	
  fairly	
  representative	
  of	
  the	
  emerging	
  economies	
  which	
  show	
  

growing	
  EFs	
  of	
  1.5	
  to	
  3	
  hectares	
  per	
  capita.	
  Because	
  urban	
  industrial	
  society	
  is	
  very	
  much	
  a	
  
               R
product	
  of	
  abundant	
  cheap	
  fossil	
  fuel,	
  half	
  or	
  more	
  of	
  the	
  EF	
  of	
  rich	
  countries	
  and	
  45%	
  of	
  

humanity’s	
  global	
  EF,	
  is	
  attributable	
  to	
  the	
  carbon	
  footprint	
  (area	
  of	
  required	
  carbon-­‐sink	
  
              D


ecosystems)	
  generated	
  by	
  the	
  burning	
  of	
  fossil	
  fuels.	
  But	
  it	
  is	
  crucial	
  to	
  note	
  that,	
  even	
  the	
  

biofuels	
  utilized	
  in	
  a	
  post-­‐carbon	
  world	
  do	
  not	
  guarantee	
  its	
  cities	
  smaller	
  energy	
  eco-­‐

footprints	
  since	
  the	
  eco-­‐footprints	
  of	
  biofules	
  are	
  larger	
  than	
  the	
  fossil	
  fuels	
  they	
  allegedly	
  

displace.iv	
  Indeed,	
  although	
  we	
  are	
  familiar	
  with	
  the	
  environmental	
  degradation	
  associated	
  

with	
  the	
  consumption	
  of	
  fossil	
  fuels,	
  in	
  another	
  sense	
  our	
  consumption	
  of	
  fossil	
  fuels	
  has	
  

obscured	
  or	
  deferred	
  our	
  degradation	
  of	
  other	
  natural	
  resources.	
  

	
          In	
  this	
  sense,	
  EF	
  has	
  the	
  advantage	
  of	
  putting	
  sustainability	
  measures	
  in	
  a	
  realistic	
  

perspective,	
  by	
  providing	
  a	
  wider	
  view	
  of	
  the	
  demands	
  any	
  city	
  as	
  currently	
  conceived	
  puts	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



on	
  the	
  hinterland.	
  Most	
  countries’	
  per	
  capita	
  eco-­‐footprints	
  exceed	
  their	
  per	
  capita	
  

domestic	
  biocapacities.	
  These	
  countries	
  are	
  at	
  least	
  partially	
  dependent	
  on	
  trade	
  and	
  

exploitation	
  of	
  the	
  global	
  commons	
  to	
  maintain	
  their	
  current	
  lifestyles.	
  The	
  Netherlands,	
  

for	
  example,	
  uses	
  almost	
  four	
  times	
  as	
  much	
  productive	
  land/water	
  outside	
  its	
  borders	
  as	
  

is	
  found	
  within	
  the	
  country.	
  Japan	
  uses	
  eight	
  times	
  its	
  domestic	
  supply.	
  Such	
  countries	
  are	
  

in	
  a	
  state	
  of	
  ‘overshoot’	
  and	
  are	
  running	
  unsustainable	
  ecological	
  deficits	
  with	
  the	
  rest	
  of	
  

the	
  world.	
  




                                                                      T
	
         A	
  smaller	
  number	
  of	
  countries	
  (e.g.,	
  Canada,	
  Argentina)	
  have	
  an	
  apparent	
  surplus	
  of	
  

biocapacity	
  and	
  could	
  theoretically	
  live	
  on	
  their	
  domestic	
  ‘natural	
  incomes.’	
  The	
  surpluses	
  
                                             AF
of	
  such	
  nations,	
  however,	
  are	
  only	
  ‘apparent’	
  because	
  the	
  extra	
  biocapacity	
  is	
  generally	
  

being	
  traded	
  away	
  to	
  cover	
  the	
  ecological	
  deficits	
  of	
  other	
  countries.	
  	
  

	
         Ominously,	
  the	
  world	
  as	
  a	
  whole	
  is	
  in	
  overshoot	
  with	
  a	
  growing	
  ecological	
  deficit	
  
              R
(Figure	
  1).	
  Human	
  demand	
  already	
  exceeds	
  the	
  earth’s	
  regenerative	
  capacity	
  by	
  at	
  least	
  

30%.	
  We	
  are	
  living,	
  in	
  part,	
  by	
  depleting	
  dissipating	
  stocks	
  of	
  potentially	
  renewable	
  natural	
  
             D


capital	
  (fish,	
  forests,	
  soils,	
  etc.)	
  that	
  have	
  accumulated	
  in	
  ecosystems.	
  	
  

                                                       [INSERT	
  FIGURE	
  1]	
  

                                                                       	
  

The	
  Global	
  Reach	
  of	
  Cities	
  

           Cities,	
  of	
  course,	
  are	
  virtually	
  all	
  ecological	
  deficit.	
  Urban	
  populations	
  are	
  almost	
  

totally	
  dependent	
  on	
  rural	
  people,	
  ecosystems	
  and	
  life-­‐support	
  processes,	
  all	
  of	
  which	
  are	
  

increasingly	
  scattered	
  over	
  the	
  planet.	
  	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



	
         In	
  some	
  respects,	
  this	
  relationship	
  is	
  a	
  two-­‐way,	
  mutualistic	
  one—rural	
  people	
  

benefit	
  from	
  urban	
  markets,	
  the	
  products	
  of	
  urban	
  factories,	
  urban-­‐based	
  services,	
  

technology	
  transfers	
  from	
  urban	
  areas,	
  etc.	
  However,	
  while	
  rural	
  populations	
  have	
  

survived	
  historically	
  without	
  cities	
  the	
  ecological	
  dependence	
  of	
  urbanites	
  on	
  ‘the	
  

hinterland’	
  is	
  absolute.	
  Understanding	
  the	
  nature	
  of	
  rural-­‐urban	
  interdependence	
  is	
  

essential	
  to	
  understanding	
  the	
  total	
  human	
  ecosystem	
  and	
  to	
  urban	
  sustainability.	
  There	
  

can	
  be	
  no	
  urban	
  sustainability	
  without	
  rural	
  sustainability.	
  




                                                                        T
So,	
  just	
  how	
  great	
  is	
  a	
  typical	
  modern	
  city’s	
  biophysical	
  debt	
  to	
  the	
  global	
  countryside?	
  

Despite	
  unavoidable	
  methodological	
  and	
  data-­‐quality	
  differences,	
  urban	
  eco-­‐footprint	
  
                                                       AF
studies	
  invariably	
  show	
  that	
  the	
  EFs	
  of	
  typical	
  modern	
  high-­‐income	
  cities	
  exceed	
  their	
  

geographic	
  or	
  political	
  areas	
  by	
  two	
  to	
  three	
  orders	
  of	
  magnitude.	
  For	
  example:	
  

       •   Based	
  on	
  locally-­‐adjusted	
  per	
  capita	
  EF	
  estimates	
  (FCM	
  2005),	
  the	
  people	
  of	
  
               R
           Toronto	
  and	
  Vancouver,	
  Canada,	
  ‘occupy’	
  land	
  areas	
  outside	
  their	
  municipal	
  

           boundaries	
  that	
  are	
  292	
  and	
  390	
  times	
  larger	
  (respectively)	
  than	
  the	
  cities	
  
              D


           themselves.	
  Even	
  the	
  lower-­‐density	
  metropolitan	
  areas	
  of	
  these	
  cities	
  have	
  EFs	
  57	
  

           times	
  bigger	
  than	
  the	
  respective	
  urban	
  regions.	
  

       •   Assuming	
  that	
  the	
  average	
  citizen	
  of	
  New	
  York’s	
  more	
  densely	
  populated	
  five	
  

           boroughs	
  is	
  similar	
  to	
  the	
  national	
  average	
  of	
  9.4	
  gha,	
  the	
  city’s	
  8.2	
  million	
  people	
  

           (2.7%	
  of	
  US	
  population	
  in	
  2006)	
  have	
  a	
  total	
  eco-­‐footprint	
  of	
  77,080,000	
  gha.	
  This	
  is	
  

           963	
  times	
  larger	
  than	
  the	
  city’s	
  geographic	
  area	
  of	
  80,000	
  ha	
  and	
  equivalent	
  to	
  10%	
  

           of	
  the	
  area	
  of	
  the	
  US.	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



     •     With	
  a	
  population	
  of	
  33	
  million	
  and	
  a	
  per	
  capita	
  EF	
  of	
  about	
  4.9	
  global	
  ha,	
  greater	
  

           Tokyo’s	
  total	
  eco-­‐footprint	
  is	
  161,700,000	
  gha.	
  However,	
  the	
  entire	
  domestic	
  

           biocapacity	
  of	
  Japan	
  is	
  only	
  about	
  76,860,000	
  gha.	
  In	
  short,	
  Tokyo,	
  with	
  only	
  26%	
  of	
  

           the	
  Japan’s	
  population,	
  lives	
  on	
  an	
  area	
  of	
  productive	
  ecosystems	
  2.1	
  times	
  larger	
  

           than	
  the	
  nation’s	
  entire	
  terrestrial	
  biocapacity.v	
  

     •     Under	
  varying	
  management	
  assumptions	
  to	
  cope	
  with	
  regional	
  waste	
  management	
  

           issues,	
  Folke	
  et	
  al.	
  (1997)	
  estimated	
  that	
  the	
  29	
  largest	
  cities	
  of	
  the	
  Baltic	
  region	
  




                                                                          T
           require	
  for	
  resources	
  and	
  certain	
  categories	
  of	
  waste	
  assimilation,	
  an	
  area	
  of	
  forest,	
  

           agricultural,	
  marine,	
  and	
  wetland	
  ecosystems	
  565-­‐1130	
  times	
  larger	
  than	
  the	
  area	
  
                                             AF
           of	
  the	
  cities	
  themselves.	
  

     •     An	
  analysis	
  of	
  “ecosystem	
  appropriation	
  by	
  Hong	
  Kong”	
  shows	
  that	
  this	
  city	
  of	
  

           almost	
  seven	
  million	
  people	
  has	
  a	
  total	
  eco-­‐footprint	
  of	
  332,150	
  to	
  478,300	
  km2	
  (the	
  
              R
           range	
  reflects	
  two	
  estimates	
  of	
  carbon	
  sink	
  land	
  requirements).	
  Hong	
  Kong’s	
  eco-­‐

           footprint	
  is	
  at	
  least	
  303	
  times	
  the	
  total	
  land	
  area	
  of	
  the	
  Hong	
  Special	
  Administrative	
  
             D


           Region	
  (1097	
  km2)	
  and	
  3020	
  times	
  the	
  built-­‐up	
  area	
  of	
  the	
  city	
  (110	
  km2)	
  (Warren-­‐

           Rhodes,	
  K.	
  and	
  A.	
  Koenig	
  2001).	
  	
  

These	
  data	
  show	
  clearly	
  that,	
  in	
  material	
  terms,	
  ‘sustainable	
  city’	
  is	
  an	
  oxymoron	
  (Rees	
  

1997).	
  Modern	
  cities	
  are	
  entropic	
  black	
  holes	
  sweeping	
  up	
  the	
  productivity	
  of	
  a	
  vastly	
  

larger	
  and	
  increasingly	
  global	
  resource	
  hinterland	
  and	
  spewing	
  an	
  equivalent	
  quantity	
  of	
  

waste	
  back	
  into	
  it.	
  They	
  are	
  compact	
  nodes	
  of	
  consumption	
  living	
  quasi-­‐parasitically	
  on	
  the	
  

productivity	
  and	
  assimilative	
  capacity	
  of	
  a	
  vastly	
  larger	
  ‘undeveloped’	
  area,	
  portions	
  of	
  

which	
  may	
  be	
  thousands	
  of	
  kilometres	
  from	
  the	
  built-­‐up	
  area	
  at	
  the	
  centre.	
  	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



	
  

The	
  Vulnerability	
  of	
  Modern	
  Cities	
  

                        “Today’s	
  city	
  is	
  the	
  most	
  vulnerable	
  social	
  structure	
  ever	
  conceived	
  by	
  man.”	
  	
  

                                                                                                                -­‐-­‐Oppenheimer	
  1969	
  

           The	
  functional	
  dependence	
  of	
  cities	
  on	
  global	
  stability	
  has	
  implications	
  for	
  the	
  

security	
  of	
  urban	
  populations	
  in	
  an	
  era	
  of	
  incipient	
  energy	
  scarcity,	
  increasingly	
  erratic	
  

climate	
  and	
  other	
  forms	
  of	
  global	
  change.	
  Consider	
  the	
  example	
  of	
  Tokyo,	
  the	
  capital	
  of	
  




                                                                        T
Japan	
  and	
  the	
  world’s	
  largest	
  metropolitan	
  region.	
  Because	
  Tokyo	
  alone	
  consumes	
  twice	
  

the	
  nation’s	
  ecological	
  output,	
  Japan	
  would	
  have	
  difficulty	
  supporting	
  the	
  population	
  of	
  its	
  
                                             AF
capital	
  city	
  alone	
  without	
  massive	
  adjustments	
  to	
  its	
  prevailing	
  material	
  lifestyles	
  if	
  the	
  

country	
  were	
  required	
  to	
  subsist	
  on	
  its	
  domestic	
  biocapacity.	
  

           The	
  critical	
  point,	
  here,	
  is	
  that	
  enormous	
  cities	
  have	
  evolved	
  not	
  because	
  greater	
  
               R
size	
  confers	
  great	
  advantage	
  but	
  simply	
  because	
  they	
  could.	
  To	
  date,	
  globalization	
  and	
  trade	
  

have	
  ensured	
  the	
  availability	
  of	
  the	
  enormous	
  quantities	
  and	
  uninterrupted	
  flows	
  of	
  energy	
  
              D


and	
  other	
  material	
  resources	
  required	
  to	
  grow	
  the	
  modern	
  metropolis.	
  But	
  this	
  raises	
  a	
  

critical	
  question:	
  just	
  how	
  secure	
  is	
  any	
  megacity	
  of	
  millions,	
  or	
  even	
  a	
  relative	
  ‘town’	
  of	
  

100,000,	
  if	
  resource	
  scarcity,	
  shifting	
  climate	
  or	
  geo-­‐political	
  unrest	
  threaten	
  to	
  cut	
  it	
  off	
  

from	
  vital	
  sources	
  of	
  supply?	
  

       There	
  are	
  several	
  interrelated	
  reasons	
  to	
  believe	
  this	
  is	
  not	
  an	
  idle	
  question.	
  For	
  

example:	
  

       1. 	
  Reliable	
  food	
  supplies	
  should	
  be	
  of	
  increasing	
  concern	
  to	
  urbanizing	
  populations.	
  

            Global	
  food	
  production	
  is	
  levelling	
  off.	
  Yet,	
  just	
  to	
  keep	
  pace	
  with	
  UN	
  medium	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



          population	
  growth	
  projections,	
  agricultural	
  output	
  will	
  have	
  to	
  increase	
  over	
  50%	
  

          by	
  2050	
  and	
  improving	
  the	
  diets	
  of	
  malnourished	
  people	
  would	
  push	
  this	
  toward	
  

          100%.	
  Achieving	
  increases	
  of	
  this	
  magnitude	
  will	
  be	
  increasingly	
  difficult.	
  By	
  1990,	
  

          562	
  million	
  hectares	
  (38%)	
  of	
  the	
  world’s	
  roughly	
  1.5	
  billion	
  hectares	
  of	
  cropland	
  

          had	
  become	
  significantly	
  eroded	
  or	
  otherwise	
  degraded;	
  300	
  million	
  hectares	
  

          (21%)	
  of	
  cultivated	
  land—enough	
  to	
  feed	
  almost	
  all	
  of	
  Europe—has	
  been	
  lost	
  to	
  

          production	
  (FAO	
  2000,	
  SDIS,	
  2004).	
  	
  Depending	
  on	
  the	
  climate	
  and	
  agricultural	
  




                                                                        T
          practices,	
  we	
  are	
  still	
  destroying	
  topsoil	
  16	
  to	
  300	
  times	
  as	
  fast	
  as	
  it	
  is	
  regenerated.	
  

          So	
  far,	
  the	
  impact	
  has	
  been	
  masked	
  because	
  we	
  have	
  managed	
  to	
  substitute	
  fossil	
  
                                           AF
          fuel	
  for	
  depleted	
  soils	
  and	
  landscape	
  degradation—but	
  that	
  may	
  be	
  about	
  to	
  

          change.	
  

     2. Modern	
  cities	
  are	
  the	
  product	
  of	
  abundant	
  cheap	
  fossil	
  fuel.	
  Fossil	
  fuels,	
  especially	
  oil,	
  
             R
          currently	
  supply	
  about	
  85%	
  of	
  humanity’s	
  total	
  energy	
  demand	
  and	
  are	
  essential	
  for	
  

          electricity	
  generation,	
  transportation,	
  and	
  space	
  and	
  water	
  heating	
  in	
  much	
  of	
  the	
  
            D


          world.	
  They	
  are	
  also	
  a	
  major	
  factor	
  in	
  the	
  green	
  revolution.	
  Mechanization,	
  diesel-­‐

          powered	
  irrigation,	
  the	
  capacity	
  to	
  double-­‐crop,	
  and	
  agro-­‐chemicals	
  (fertilizers	
  and	
  

          pesticides)	
  made	
  from	
  oil	
  and	
  natural	
  gas	
  account	
  for	
  79-­‐96%	
  of	
  the	
  increased	
  

          yields	
  of	
  wheat,	
  rice	
  and	
  maize	
  production	
  since	
  1967	
  (Conforti	
  &	
  Giampietro1997,	
  

          Cassman	
  1999).	
  For	
  all	
  these	
  reasons,	
  some	
  analysts	
  argue	
  that	
  the	
  imminent	
  

          peaking	
  of	
  global	
  petroleum	
  production	
  (i.e.,	
  extraction)	
  represents	
  a	
  singular	
  event	
  

          in	
  modern	
  history	
  and	
  poses	
  a	
  greater	
  challenge	
  to	
  geopolitical	
  stability	
  and	
  urban	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



          security	
  than	
  any	
  other	
  factor	
  (Duncan	
  and	
  Youngquist	
  1999,	
  Campbell	
  1999,	
  

          Laherrere	
  2003).	
  	
  

     3. Other	
  analysts	
  see	
  climate	
  change	
  as	
  the	
  greatest	
  threat	
  to	
  modern	
  urban	
  

          civilization,	
  arguing	
  that	
  it	
  could	
  bring	
  the	
  planet	
  to	
  the	
  edge	
  of	
  anarchy	
  (e.g.,	
  

          Schwartz	
  and	
  Randall	
  2003,	
  CSIS	
  2007).	
  In	
  The	
  Age	
  of	
  Consequences,	
  Washington’s	
  

          Center	
  for	
  Strategic	
  and	
  International	
  Studies	
  (CSIS)	
  suggests	
  that	
  human-­‐induced	
  

          climate	
  change	
  driven	
  by	
  burning	
  fossil	
  fuels	
  could	
  end	
  peaceful	
  global	
  integration	
  




                                                                        T
          as	
  various	
  nations	
  contract	
  inwardly	
  to	
  conserve	
  what	
  they	
  need—or	
  expand	
  

          outwardly	
  to	
  take	
  what	
  they	
  need—for	
  survival.	
  In	
  the	
  event	
  of	
  “severe	
  climate	
  
                                            AF
          change,”	
  corresponding	
  to	
  an	
  average	
  increase	
  in	
  global	
  temperature	
  of	
  2.6°C	
  by	
  

          2040	
  (now	
  deemed	
  to	
  be	
  increasingly	
  likely),	
  major	
  nonlinear	
  changes	
  in	
  

          biophysical	
  systems	
  will	
  give	
  rise	
  to	
  major	
  nonlinear	
  socio-­‐political	
  events.	
  Shifting	
  
                  R
          climate	
  will	
  force	
  internal	
  and	
  cross-­‐border	
  migrations	
  as	
  people	
  leave	
  areas	
  where	
  

          food	
  and	
  water	
  are	
  scarce.	
  Hundreds	
  of	
  millions	
  of	
  people	
  will	
  also	
  be	
  forced	
  to	
  flee	
  
                 D


          rising	
  seas	
  and	
  areas	
  devastated	
  by	
  increasingly	
  frequent	
  droughts,	
  floods,	
  and	
  

          severe	
  storms.	
  Dramatic	
  increases	
  in	
  migration	
  combined	
  with	
  food,	
  energy	
  and	
  

          water	
  shortages	
  will	
  impose	
  great	
  pressure	
  on	
  the	
  internal	
  cohesion	
  of	
  nations.	
  War	
  

          is	
  likely	
  and	
  nuclear	
  war	
  is	
  possible	
  (CSIS	
  2007).	
  	
  

          	
  

          Even	
  moderate	
  climate	
  change	
  could	
  undermine	
  resource	
  flows	
  to	
  dependent	
  urban	
  

          areas.	
  For	
  example,	
  shifting	
  weather	
  patterns	
  will	
  certainly	
  disrupt	
  historic	
  water	
  

          availability	
  and	
  distribution	
  and	
  could	
  reduce	
  agricultural	
  output	
  in	
  remaining	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



               globally	
  significant	
  bread-­‐baskets,	
  such	
  as	
  the	
  North	
  American	
  Great	
  Plains,	
  

               increasing	
  the	
  likelihood	
  of	
  food-­‐shortages	
  in	
  distant	
  dependent	
  urban	
  regions	
  

               (Kissinger	
  and	
  Rees	
  2009).	
  

    No	
  city	
  will	
  be	
  unaffected	
  by	
  global	
  change.	
  The	
  good	
  news	
  is	
  that	
  determined	
  action	
  to	
  

    address	
  climate	
  change	
  could	
  help	
  avoid	
  the	
  peak	
  oil	
  problem	
  and	
  vice	
  versa.	
  For	
  example,	
  

    if	
  the	
  world	
  were	
  to	
  take	
  the	
  action	
  necessary	
  to	
  reduce	
  CO2	
  emissions	
  by	
  several	
  percent	
  

    per	
  year,	
  the	
  drop	
  in	
  demand	
  for	
  oil	
  would	
  keep	
  pace	
  with	
  or	
  exceed	
  the	
  anticipated	
  




                                                                          T
    decline	
  in	
  extraction	
  rate.	
     AF
                                                   Toward the ‘One Planet’ City

	
            Ours	
  is	
  a	
  world	
  already	
  in	
  overshoot	
  yet	
  both	
  population	
  and	
  per	
  capita	
  

consumption	
  continue	
  to	
  increase	
  and	
  material	
  expectations	
  continue	
  to	
  rise	
  all	
  over	
  the	
  
                 R

world.	
  This	
  is	
  a	
  fundamentally	
  unsustainable	
  situation—to	
  raise	
  just	
  the	
  present	
  world	
  

population	
  sustainably	
  to	
  North	
  American	
  material	
  standards	
  would	
  require	
  the	
  
                D


biocapacity	
  of	
  four	
  additional	
  Earth-­‐like	
  planets	
  (Rees	
  2006).	
  The	
  really	
  inconvenient	
  truth	
  

is	
  that,	
  to	
  achieve	
  sustainability	
  global	
  energy	
  and	
  material	
  throughput	
  must	
  decrease,	
  not	
  

grow.	
  

	
            Techno-­‐industrial	
  society	
  is	
  a	
  self-­‐proclaimed	
  science-­‐based	
  society	
  and	
  to	
  act	
  

consistently	
  with	
  our	
  best	
  science	
  may	
  well	
  require	
  a	
  planned	
  economic	
  contraction.	
  To	
  

avoid	
  severe	
  climate	
  change	
  the	
  world	
  will	
  have	
  to	
  decarbonize	
  by	
  at	
  least	
  80%	
  by	
  mid	
  

century.	
  To	
  achieve	
  one	
  planet	
  living,	
  North	
  Americans	
  should	
  be	
  planning	
  now	
  to	
  reduce	
  

their	
  ecological	
  footprints	
  by	
  almost	
  80%	
  from	
  the	
  current	
  level	
  of	
  9.2	
  gha	
  to	
  2.1	
  gha	
  per	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



capita.	
  (The	
  latter	
  represents	
  our	
  equitable	
  share	
  of	
  global	
  biocapacity.)	
  This,	
  in	
  turn,	
  will	
  

require	
  dramatic	
  changes	
  in	
  prevailing	
  economic	
  beliefs,	
  values,	
  and	
  particularly	
  in	
  

consumer	
  behaviour.	
  For	
  sustainability,	
  the	
  rich	
  may	
  have	
  to	
  learn	
  to	
  consume	
  less	
  in	
  order	
  

to	
  create	
  the	
  ecological	
  space	
  necessary	
  for	
  needed	
  growth	
  in	
  the	
  developing	
  world	
  (Rees	
  

2008).	
  (Fortunately,	
  ‘managing	
  without	
  growth’	
  is	
  technologically	
  and	
  economically	
  

possible	
  and	
  might	
  well	
  improve	
  quality	
  of	
  life	
  [see	
  Victor	
  2008]).	
  

	
         Regrettably,	
  there	
  is	
  scant	
  evidence	
  that	
  any	
  such	
  cultural	
  shift	
  is	
  underway.	
  Despite	
  




                                                                         T
repeated	
  warnings	
  that	
  staying	
  our	
  present	
  course	
  spells	
  catastrophe	
  for	
  billions	
  of	
  people	
  

(USC	
  1992,	
  MEA	
  2005),	
  the	
  modern	
  world	
  remains	
  mired	
  in	
  a	
  swamp	
  of	
  cognitive	
  
                                             AF
dissonance	
  and	
  collective	
  denial	
  (Rees	
  2009a).	
  To	
  date,	
  most	
  mainstream	
  responses	
  to	
  our	
  

ecological	
  conundrum	
  do	
  not	
  address	
  the	
  fundamental	
  problem	
  but	
  instead	
  seem	
  designed	
  

to	
  reproduce	
  the	
  status	
  quo	
  by	
  other	
  means.	
  Such	
  ‘innovations’	
  as	
  hybrid	
  cars,	
  green	
  
               R
buildings,	
  smart	
  growth,	
  the	
  new	
  urbanism,	
  green	
  consumerism	
  etc.,	
  assume	
  that	
  we	
  can	
  

achieve	
  sustainability	
  through	
  technological	
  innovation	
  and	
  greater	
  material	
  and	
  economic	
  
              D


efficiency.	
  This	
  is	
  a	
  conceptual	
  error—historically	
  efficiency	
  has	
  actually	
  increased	
  

consumption	
  by,	
  for	
  example,	
  raising	
  incomes	
  and	
  lowering	
  prices.	
  With	
  more	
  money	
  

chasing	
  cheaper	
  goods	
  and	
  services,	
  throughput	
  rises.	
  In	
  effect,	
  improved	
  efficiency	
  simply	
  

makes	
  industrial	
  growth-­‐bound	
  society	
  more	
  efficiently	
  unsustainable.	
  

	
  

The	
  urban	
  sustainability	
  multiplier	
  

	
         While	
  some	
  have	
  interpreted	
  the	
  consumptive	
  and	
  polluting	
  powers	
  of	
  cities	
  as	
  an	
  

anti-­‐urban	
  argument,	
  it	
  is	
  nothing	
  of	
  the	
  sort.	
  All	
  else	
  being	
  equal,	
  cities	
  actually	
  offer	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



several	
  advantages	
  over	
  more	
  dispersed	
  settlement	
  patterns	
  in	
  the	
  quest	
  for	
  sustainability.	
  

The	
  very	
  factors	
  that	
  make	
  wealthy	
  cities	
  weigh	
  so	
  heavily	
  on	
  the	
  ecosphere—the	
  

concentration	
  of	
  people	
  and	
  the	
  localized	
  intensity	
  of	
  energy/material	
  consumption	
  and	
  

waste	
  generation—give	
  cities	
  considerable	
  economic	
  and	
  technical	
  leverage	
  to	
  address	
  

global	
  change	
  by	
  shrinking	
  their	
  eco-­‐footprints	
  (see	
  Newman	
  &	
  Jennings	
  2008).	
  	
  

	
         To	
  enable	
  society	
  to	
  take	
  full	
  advantage	
  of	
  this	
  leverage,	
  state/provincial	
  and	
  

municipal	
  governments	
  must	
  create	
  the	
  land-­‐use	
  legislation	
  and	
  zoning	
  by-­‐laws	
  that	
  urban	
  




                                                                    T
planners	
  need	
  to	
  eliminate	
  sprawl	
  and	
  consolidate	
  and	
  densify	
  existing	
  built-­‐up	
  areas.	
  

Compact	
  cities—particularly	
  car-­‐free	
  compact	
  cities—are	
  vastly	
  less	
  energy-­‐	
  and	
  material-­‐
                                          AF
intensive	
  than	
  today’s	
  sprawling	
  suburban	
  cities.	
  The	
  economies	
  of	
  scale	
  and	
  

agglomeration	
  economies	
  associated	
  with	
  high-­‐density	
  settlements	
  confer	
  a	
  substantial	
  

‘urban	
  sustainability	
  multiplier’	
  on	
  cities.	
  	
  For	
  example:	
  
              R
       •   reduced per capita demand for occupied land;

       •   more ways to reduce (mostly fossil) energy consumption, particularly by motor vehicles,
             D


           by promoting walking, cycling, and public transit;

       •   more opportunities for co-housing, car-sharing and other cooperative relationships that

           lower capital requirements (consumption) per household and individual;

       •   lower biophysical and economic costs per capita of providing piped treated water, sewer

           systems, waste collection, and most other forms of infrastructure and public amenities;

       •   greater possibilities for electricity co-generation, district heating/cooling and the use of

           waste process heat from industry or power plants, to reduce the per capita use of fossil

           fuel for water and space-heating;
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



     •     the potential to implement the principles of low throughput ‘industrial ecology’ (i.e., the

           ideal of closed-circuit industrial parks in which the waste energy or materials of some

           firms are essential feed-stocks for others).

     •     a greater range of options for material recycling, re-use, re-manufacturing, and a

           concentration of the specialized skills and enterprises needed to make these things

           happen;

     •     more ‘social contagion,’ facilitating the spread of such more nearly sustainable life-style

           choices (e.g., ‘voluntary simplicity’);




                                                                       T
As	
  noted,	
  however,	
  efficiency	
  gains	
  alone	
  will	
  not	
  achieve	
  ‘one-­‐planet	
  living’.	
  Sustainability	
  
                                            AF
and	
  security	
  demand	
  that	
  cities	
  everywhere	
  become	
  less	
  consumption-­‐driven	
  and	
  more	
  

materially	
  self-­‐reliant.	
  Indeed,	
  cities	
  may	
  be	
  forced	
  down	
  this	
  unfamiliar	
  path	
  either	
  with	
  

the	
  rising	
  cost	
  of	
  oil-­‐based	
  transportation	
  or	
  the	
  needed	
  rapid	
  phase-­‐out	
  of	
  fossil	
  fuels.	
  
              R
Urban	
  designers	
  must	
  begin	
  now	
  to	
  rethink	
  cities	
  so	
  they	
  function	
  as	
  complete	
  ecosystems.	
  

This	
  is	
  the	
  ultimate	
  form	
  of	
  bio-­‐mimicry.	
  
             D


           The	
  least	
  vulnerable	
  and	
  most	
  resilient	
  urban	
  eco-­‐system	
  might	
  be	
  a	
  new	
  form	
  of	
  

regional	
  eco-­‐city	
  state	
  (or	
  bioregion)	
  in	
  which	
  a	
  densely	
  built-­‐up	
  core	
  is	
  surrounded	
  by	
  

essential	
  supportive	
  ecosystems	
  (Rees	
  2009b).vi	
  The	
  central	
  idea	
  is	
  to	
  consolidate	
  as	
  much	
  

as	
  possible	
  of	
  the	
  city’s	
  productive	
  hinterland	
  in	
  close	
  proximity	
  to	
  its	
  consumptive	
  urban	
  

core.	
  In	
  effect,	
  this	
  would	
  internalize	
  the	
  currently	
  widely	
  scattered	
  external	
  eco-­‐footprints	
  

of	
  our	
  cities	
  into	
  more	
  compact	
  and	
  manageable	
  city-­‐centred	
  regions	
  that	
  could	
  function	
  as	
  

complete	
  human	
  ecosystems.	
  Such	
  a	
  transformed	
  homeplace,	
  “rather	
  than	
  being	
  merely	
  the	
  

site	
  of	
  consumption,	
  [would],	
  through	
  its	
  very	
  design,	
  produce	
  some	
  of	
  its	
  own	
  food	
  and	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.



energy,	
  as	
  well	
  as	
  become	
  the	
  locus	
  of	
  work	
  for	
  its	
  residents”	
  (Van	
  der	
  Ryn	
  &	
  Calthorpe	
  

1986).	
  Eco-­‐city	
  states	
  would	
  be	
  less	
  of	
  a	
  burden	
  on,	
  and	
  more	
  of	
  a	
  contributor	
  to,	
  the	
  life-­‐

support	
  functions	
  of	
  the	
  ecosphere	
  than	
  contemporary	
  cities.	
  

                                                      Significantly,	
  too,	
  the	
  bioregional	
  city	
  would	
  reconnect	
  urban	
  populations	
  both	
  

physically	
  and	
  psychologically	
  to	
  ‘the	
  land.’	
  Because	
  inhabitants	
  would	
  be	
  more	
  directly	
  

dependent	
  on	
  local	
  ecosystems,	
  they	
  would	
  have	
  a	
  powerful	
  incentive—currently	
  absent—

to	
  manage	
  their	
  land	
  and	
  water	
  resources	
  sustainably	
  in	
  the	
  face	
  of	
  global	
  change.	
  (Ideally,	
  




                                                                                                                                                                                                                                   T
political	
  control	
  over	
  the	
  productive	
  land	
  and	
  resource	
  base	
  of	
  the	
  consolidated	
  region	
  

would	
  pass	
  to	
  the	
  eco-­‐city	
  state	
  governments.)	
  Less	
  reliant	
  on	
  imports,	
  their	
  populations	
  
                                                                                                                                                                                                                           AF
would	
  be	
  partially	
  insulated	
  from	
  climate	
  vagaries,	
  resource	
  shortages,	
  and	
  distant	
  violent	
  

conflicts.	
  	
  

Most	
  importantly,	
  if	
  the	
  world	
  were	
  organized	
  into	
  a	
  system	
  of	
  bioregions	
  that	
  managed	
  to	
  
                                                                    R
become	
  sustainable	
  (no	
  net	
  loss	
  of	
  natural	
  capital	
  on	
  a	
  per	
  capita	
  basis)	
  the	
  aggregate	
  effect	
  

would	
  be	
  global	
  sustainability—which	
  is,	
  after	
  all,	
  the	
  purpose	
  of	
  the	
  exercise.	
  	
  
                                                                   D


	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
i	
  	
  For	
   full	
  details	
   of	
  the	
   method,	
   including	
   inclusions,	
  e xceptions	
   and	
  l imitations,	
  s ee	
   Rees	
  (2003,	
  2006)	
  W WF	
  

            (2008)	
  and	
  various	
  links	
  at	
  http://www.footprintnetwork.org/en/index.php/GFN/	
  	
  
ii	
  	
  EFA	
  o bviously	
  does	
  n ot	
  c apture	
  the	
  e ntire	
  human	
   impact	
  on	
  Earth,	
  o nly	
  those	
  dimensions	
   for	
  which	
  the	
  

         ecosphere	
  has	
  regenerative	
  capacity.	
  For	
  example,	
  various	
  wastes	
  such	
  as	
  ozone	
  depleting	
  chemicals	
  or	
  the	
  
         toxic	
  chemical	
  residues	
  accumulating	
  in	
  our	
  food	
  chain	
  cannot	
  be	
  converted	
  into	
  a	
  corresponding	
  
         ecosystem	
  area.	
  	
  
iii	
  	
  To	
   enable	
  fair	
  comparisons	
  a mong	
  countries,	
  the	
  data	
   in	
  Figure	
  1 	
  are	
  presented	
  in	
  terms	
  o f	
  ‘ global	
  hectares’	
  

         (gha),	
  i.e.,	
  the	
  eco-­‐footprints	
  and	
  biocapacities	
  of	
  each	
  country	
  are	
  represented	
  in	
  terms	
  of	
  an	
  equivalent	
  
         area	
  of	
  global	
  average	
  productivity.	
  
iv	
  This	
  does	
  not	
  necessarily	
   mean	
  that	
  a	
   post-­‐carbon	
  world	
   will	
  have	
   a	
  s maller	
   energy	
  e co-­‐footprint.	
  For	
  

example,	
  biofuels	
  have	
  an	
  even	
  larger	
  eco-­‐footprint	
  than	
  the	
  fossil	
  fuels	
  they	
  allegedly	
  d isplace.	
  
v	
  	
  The	
  area	
  o f	
  Japan	
  is	
  only	
   a bout	
  37,770,000	
  ha	
   but	
  Japan’s	
  terrestrial	
  e cosystems	
  are	
  considerably	
   more	
  

productive	
  than	
  the	
  world	
  average.	
  This	
  increases	
  the	
  country’s	
  biocapacity	
  to	
  almost	
  77,000,000	
  gha.	
  	
  
vivi
           	
  For	
  a	
  history	
  and	
  philosophy	
  o f	
  the	
  bioregional	
  movement,	
  see	
  Carr	
  (2005).	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of
Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities
in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.
                 Cities After Oil: Getting Serious about Urban Sustainability
                                         William	
  Rees	
  
                                                	
  
                                             Figure	
  




                                                           T
                                  AF
        R
       D


                                                                                                                       	
  
Figure	
  1.	
  Per	
  Capita	
  Biocapacities	
  and	
  Ecological	
  Footprints	
  of	
  Selected	
  Countries	
  
Compared	
  to	
  the	
  World	
  Averages.	
  Source:	
  2005	
  data	
  extracted	
  from	
  WWF	
  2008	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.


                                                           References	
  
	
  
Campbell	
  C.C.	
  1999.	
  The	
  Imminent	
  Peak	
  of	
  World	
  Oil	
  Production.	
  Available	
  at:	
  
       http://www.hubbertpeak.com/campbell/commons.htm	
  
Carr,	
  M.	
  2005.	
  Bioregionalism	
  and	
  Civil	
  Society:	
  Democratic	
  Challenges	
  to	
  Corporate	
  
       Globalism.	
  Vancouver,	
  University	
  of	
  British	
  Columbia	
  Press.	
  	
  
Cassman	
  K.G.	
  1999.	
  Ecological	
  Intensification	
  of	
  Cereal	
  Production	
  Systems:	
  Yield	
  Potential,	
  
       Soil	
  Quality,	
  and	
  Precision	
  Agriculture.	
  Proc.	
  Natl	
  Acad.	
  Sci.	
  96:	
  5952-­‐5959	
  
Conforti	
  P.	
  and	
  M.	
  Giampietro.	
  1997.	
  Fossil	
  Energy	
  Use	
  in	
  Agriculture:	
  An	
  International	
  
       Comparison.	
  Agriculture,	
  Ecosystems	
  and	
  Environment	
  65:	
  231-­‐243.	
  
CSIS.	
  2007.	
  The	
  Age	
  of	
  Consequences:	
  The	
  Foreign	
  Policy	
  and	
  National	
  Security	
  Implications	
  
     of	
  Climate	
  Change.	
  Center	
  for	
  Strategic	
  and	
  International	
  Studies,	
  Washington.	
  Available	
  
     at:	
  http://www.csis.org/media/csis/pubs/071105_ageofconsequences.pdf)	
  	
  
Duncan	
  R.C.	
  and	
  Youngquist,	
  W.	
  1999.	
  Encircling	
  the	
  Peak	
  of	
  World	
  Oil	
  Production.	
  Natural	
  




                                                                   T
       Resources	
  Research	
  8	
  (3):	
  219-­‐232.	
  
FAO.	
  2000.	
  Land	
  Resource	
  Potential	
  and	
  Constraints	
  at	
  Regional	
  and	
  Country	
  Levels.	
  Land	
  
       and	
  Water	
  Development	
  Division,	
  Food	
  and	
  Agriculture	
  Organization	
  of	
  the	
  United	
  
                                         AF
       Nations,	
  	
  Rome.	
  
FCM.	
  2005.	
  Ecological	
  Footprints	
  of	
  Canadian	
  Municipalities	
  and	
  Regions.	
  Report	
  for	
  the	
  
     ‘Federation	
  of	
  Canadian	
  Municipalities’	
  prepared	
  by	
  Anielski	
  Management,	
  Edmonton,	
  
     Alberta.	
  Available	
  at:	
  
     http://www.anielski.com/Documents/EFA%20Report%20FINAL%20Feb%202.pdf	
  	
  
Folke,	
  C.,	
  A.	
  Jansson,	
  J.	
  Larsson,	
  and	
  R.	
  Costanza.	
  1997.	
  Ecosystem	
  appropriation	
  by	
  cities,	
  
             R
     Ambio	
  26:	
  167-­‐172.	
  
Kissinger,	
  M.	
  &	
  W.E.	
  Rees.	
  2009.	
  Footprints	
  on	
  the	
  prairies:	
  Degradation	
  and	
  sustainability	
  
     of	
  Canadian	
  agricultural	
  land	
  in	
  a	
  globalizing	
  world.	
  Ecological	
  Economics	
  (in	
  press).	
  
Laherrere	
  J.	
  2003.	
  Forecast	
  of	
  oil	
  and	
  gas	
  supply	
  to	
  2050.	
  New	
  Delhi:	
  Paper	
  presented	
  to	
  
            D

       “Petrotech	
  2003.”	
  Available	
  at:	
  
       http://www.hubbertpeak.com/laherrere/Petrotech090103.pdf	
  	
  
MEA.	
  2005.	
  Living	
  Beyond	
  Our	
  Means:	
  Natural	
  Assets	
  and	
  Human	
  Well-­‐Being	
  (Statement	
  
     from	
  the	
  Board).	
  Millennium	
  Ecosystem	
  Assessment.	
  Available	
  at:	
  
     http://www.millenniumassessment.org/documents/document.429.aspx.pdf	
  	
  
Newman,	
  P.	
  &	
  I.	
  Jennings.	
  2008.	
  Cities	
  as	
  Sustainable	
  Ecosystems.	
  Island	
  Press,	
  Washington.	
  
Odum,	
  E.P.	
  1971.	
  Fundamentals	
  of	
  Ecology.	
  W.B	
  Saunders,	
  Philadelphia.	
  
Oppenheimer,	
  M.	
  1969.	
  Urban	
  Guerilla.	
  Quadrangle,	
  London.	
  
Rees,	
  W.	
  E.	
  1992.	
  Ecological	
  footprints	
  and	
  appropriated	
  carrying	
  capacity:	
  what	
  urban	
  
       economics	
  leaves	
  out.	
  Environment	
  and	
  Urbanization	
  4	
  (2):	
  120-­‐130.	
  
Rees,	
  W.E.	
  1997.	
  Is	
  ‘Sustainable	
  City’	
  an	
  Oxymoron?	
  Local	
  Environment	
  2	
  (3):	
  303-­‐310.	
  
Rees,	
  W.E.	
  2003.	
  Understanding	
  Urban	
  Ecosystems:	
  An	
  Ecological	
  Economics	
  Perspective.	
  
     Chapter	
  in	
  Alan	
  Berkowitz	
  et	
  al.(eds).	
  Understanding	
  Urban	
  Ecosystems.	
  Springer-­‐Verlag,	
  	
  
     New	
  York.	
  
Much of the content in this paper has been edited, expanded, and recently published as:

Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First
Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New
Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.
Rees,	
  W.E.	
  2006.	
  Ecological	
  footprints	
  and	
  Biocapacity:	
  Essential	
  Elements	
  in	
  Sustainability	
  
  assessment.	
  Chapter	
  9	
  in	
  Jo	
  Dewulf	
  and	
  Herman	
  Van	
  Langenhove,	
  eds.	
  Renewables-­Based	
  
  Technology:	
  Sustainability	
  Assessment.	
  John	
  Wiley	
  and	
  Sons,	
  Chichester,	
  UK.	
  
Rees,	
  W.E.	
  2008.	
  Human	
  Nature,	
  Eco-­‐Footprints	
  and	
  Environmental	
  Injustice.	
  Local	
  
  Environment,	
  The	
  International	
  Journal	
  of	
  Justice	
  and	
  Sustainability	
  	
  13	
  (8):	
  685	
  –	
  701.	
  
Rees,	
  W.E.	
  2009a.	
  	
  The	
  Ecological	
  Crisis	
  and	
  Self-­‐Delusion:	
  Implications	
  for	
  the	
  Building	
  
  Sector.	
  Building	
  Research	
  and	
  Information	
  (in	
  press).	
  
Rees,	
  W.E.	
  2009b.	
  More	
  Sustainable	
  Cities.	
  	
  SCIENTIFIC	
  AMERICAN	
  –	
  Earth	
  3.0	
  19	
  (1):	
  19	
  
  (Spring	
  2009)	
  
Schwartz,	
  P.	
  and	
  D.	
  Randall.	
  2003.	
  An	
  Abrupt	
  Climate	
  Change	
  Scenario	
  and	
  Its	
  Implications	
  
  for	
  United	
  States	
  National	
  Security.	
  A	
  report	
  commissioned	
  by	
  the	
  U.S.	
  Defense	
  
  Department.	
  October	
  2003.	
  
SDIS.	
  2004.	
  Disappearing	
  Land:	
  Soil	
  Degradation.	
  Sustainable	
  Development	
  Information	
  
  Service,	
  Global	
  Trends.	
  World	
  Resources	
  Institute,	
  Washington.	
  	
  
UCS.	
  1992.	
  World	
  Scientists’	
  Warning	
  to	
  Humanity.	
  Available	
  at:	
  
  http://www.ucsusa.org/about/1992-­‐world-­‐scientists.html	
  	
  




                                                                    T
Van	
  der	
  Ryn,	
  S.	
  and	
  P.	
  Calthorpe.	
  1986.	
  Sustainable	
  Communities:	
  A	
  New	
  Synthesis	
  for	
  Cities	
  
  and	
  Towns.	
  Sierra	
  Club	
  Books,	
  San	
  Francisco.	
  
Victor,	
  P.	
  2008.	
  Managing	
  Without	
  Growth:	
  Slower	
  by	
  Design,	
  Not	
  Disaster.	
  Edward	
  Elgar,	
  
                                          AF
  Cheltenham,	
  UK.	
  	
  
   Wackernagel, M. and W.E. Rees. 1996. Our Ecological Footprint: Reducing Human Impact
   on the Earth. New Society Publishers, Gabriola Isld, BC.
Warren-­‐Rhodes,	
  K.	
  and	
  A.	
  Koenig	
  2001.	
  Ecosystem	
  appropriation	
  by	
  Hong	
  Kong	
  and	
  its	
  
     implications	
  for	
  sustainable	
  development.	
  Ecological	
  Economics	
  39	
  (3):	
  347-­‐359.	
  
WWF.	
  2008.	
  Living	
  Planet	
  Report	
  2008.	
  World	
  Wide	
  Fund	
  for	
  Nature,	
  Gland,	
  Switzerland.	
  
             R
	
  
            D

Weitere ähnliche Inhalte

Was ist angesagt?

Design Thesis - Strengthening Community Through the Post-Industrial Landscape
Design Thesis - Strengthening Community Through the Post-Industrial LandscapeDesign Thesis - Strengthening Community Through the Post-Industrial Landscape
Design Thesis - Strengthening Community Through the Post-Industrial LandscapeMatthew Greene
 
Urban Design as an Art of Survival: Redefinition of Urbanity in Contemporary ...
Urban Design as an Art of Survival: Redefinition of Urbanity in Contemporary ...Urban Design as an Art of Survival: Redefinition of Urbanity in Contemporary ...
Urban Design as an Art of Survival: Redefinition of Urbanity in Contemporary ...Penn Institute for Urban Research
 
Rejuvenative cities (Philips Design)
Rejuvenative cities (Philips Design)Rejuvenative cities (Philips Design)
Rejuvenative cities (Philips Design)Luann Liu
 
urban drought resilience-proposed research
urban drought resilience-proposed researchurban drought resilience-proposed research
urban drought resilience-proposed researchLarryBaker
 
Development induced displacement
Development induced displacementDevelopment induced displacement
Development induced displacementSatyam Rai
 
DEVELOPMENT INDUCED DISPLACEMENT AND REHABILITATION
DEVELOPMENT INDUCED DISPLACEMENT AND REHABILITATIONDEVELOPMENT INDUCED DISPLACEMENT AND REHABILITATION
DEVELOPMENT INDUCED DISPLACEMENT AND REHABILITATIONVismaya Nithin
 
Sustainable Cities: Urban Ecology
Sustainable Cities: Urban EcologySustainable Cities: Urban Ecology
Sustainable Cities: Urban EcologyAnuradha Mukherji
 
Stephen graham Nature, Cities and the ‘Anthropocene’
Stephen graham Nature, Cities and the ‘Anthropocene’Stephen graham Nature, Cities and the ‘Anthropocene’
Stephen graham Nature, Cities and the ‘Anthropocene’Stephen Graham
 
Artigo ecology and sociedade
Artigo ecology and sociedadeArtigo ecology and sociedade
Artigo ecology and sociedadeElizete Santos
 
UrbanizationinProgressDaft_Lopez_Final
UrbanizationinProgressDaft_Lopez_FinalUrbanizationinProgressDaft_Lopez_Final
UrbanizationinProgressDaft_Lopez_FinalChristina Lopez
 
Relationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversityRelationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversityVitor Vieira Vasconcelos
 
coevolution_brochure
coevolution_brochurecoevolution_brochure
coevolution_brochureKenneth Kay
 
Urbanisation(ecology)
Urbanisation(ecology)Urbanisation(ecology)
Urbanisation(ecology)Nipun Maurya
 

Was ist angesagt? (20)

Design Thesis - Strengthening Community Through the Post-Industrial Landscape
Design Thesis - Strengthening Community Through the Post-Industrial LandscapeDesign Thesis - Strengthening Community Through the Post-Industrial Landscape
Design Thesis - Strengthening Community Through the Post-Industrial Landscape
 
Urban Design as an Art of Survival: Redefinition of Urbanity in Contemporary ...
Urban Design as an Art of Survival: Redefinition of Urbanity in Contemporary ...Urban Design as an Art of Survival: Redefinition of Urbanity in Contemporary ...
Urban Design as an Art of Survival: Redefinition of Urbanity in Contemporary ...
 
course 30/6 Maria Kaika
course 30/6 Maria Kaika course 30/6 Maria Kaika
course 30/6 Maria Kaika
 
Rejuvenative cities (Philips Design)
Rejuvenative cities (Philips Design)Rejuvenative cities (Philips Design)
Rejuvenative cities (Philips Design)
 
urban drought resilience-proposed research
urban drought resilience-proposed researchurban drought resilience-proposed research
urban drought resilience-proposed research
 
Nepal
NepalNepal
Nepal
 
Basics of urban ecology
Basics of urban ecologyBasics of urban ecology
Basics of urban ecology
 
Ecocity PPt
Ecocity PPtEcocity PPt
Ecocity PPt
 
Development induced displacement
Development induced displacementDevelopment induced displacement
Development induced displacement
 
DEVELOPMENT INDUCED DISPLACEMENT AND REHABILITATION
DEVELOPMENT INDUCED DISPLACEMENT AND REHABILITATIONDEVELOPMENT INDUCED DISPLACEMENT AND REHABILITATION
DEVELOPMENT INDUCED DISPLACEMENT AND REHABILITATION
 
Nepal
NepalNepal
Nepal
 
Sustainable Cities: Urban Ecology
Sustainable Cities: Urban EcologySustainable Cities: Urban Ecology
Sustainable Cities: Urban Ecology
 
Stephen graham Nature, Cities and the ‘Anthropocene’
Stephen graham Nature, Cities and the ‘Anthropocene’Stephen graham Nature, Cities and the ‘Anthropocene’
Stephen graham Nature, Cities and the ‘Anthropocene’
 
Artigo ecology and sociedade
Artigo ecology and sociedadeArtigo ecology and sociedade
Artigo ecology and sociedade
 
Human settlement
Human settlementHuman settlement
Human settlement
 
UrbanizationinProgressDaft_Lopez_Final
UrbanizationinProgressDaft_Lopez_FinalUrbanizationinProgressDaft_Lopez_Final
UrbanizationinProgressDaft_Lopez_Final
 
The Land Ethic (part 1)
The Land Ethic (part 1)The Land Ethic (part 1)
The Land Ethic (part 1)
 
Relationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversityRelationships among socioeconomic affluence, yard management, and biodiversity
Relationships among socioeconomic affluence, yard management, and biodiversity
 
coevolution_brochure
coevolution_brochurecoevolution_brochure
coevolution_brochure
 
Urbanisation(ecology)
Urbanisation(ecology)Urbanisation(ecology)
Urbanisation(ecology)
 

Andere mochten auch

Future of hydropower
Future of hydropowerFuture of hydropower
Future of hydropowerIbrahim R
 
Akosombo dam by zdh
Akosombo dam by zdhAkosombo dam by zdh
Akosombo dam by zdhambreenali
 
PHYSICAL PLANNING STRATEGIES of NATIONAL HIGH-TECHNOLOGY INDUSTRIAL DEVELO...
PHYSICAL PLANNING STRATEGIES  of  NATIONAL HIGH-TECHNOLOGY INDUSTRIAL  DEVELO...PHYSICAL PLANNING STRATEGIES  of  NATIONAL HIGH-TECHNOLOGY INDUSTRIAL  DEVELO...
PHYSICAL PLANNING STRATEGIES of NATIONAL HIGH-TECHNOLOGY INDUSTRIAL DEVELO...Penn Institute for Urban Research
 
Strategies for metropolitan planning
Strategies for metropolitan planningStrategies for metropolitan planning
Strategies for metropolitan planningASRufai
 

Andere mochten auch (7)

Future of hydropower
Future of hydropowerFuture of hydropower
Future of hydropower
 
Akosombo dam
Akosombo damAkosombo dam
Akosombo dam
 
Akosombo dam by zdh
Akosombo dam by zdhAkosombo dam by zdh
Akosombo dam by zdh
 
PHYSICAL PLANNING STRATEGIES of NATIONAL HIGH-TECHNOLOGY INDUSTRIAL DEVELO...
PHYSICAL PLANNING STRATEGIES  of  NATIONAL HIGH-TECHNOLOGY INDUSTRIAL  DEVELO...PHYSICAL PLANNING STRATEGIES  of  NATIONAL HIGH-TECHNOLOGY INDUSTRIAL  DEVELO...
PHYSICAL PLANNING STRATEGIES of NATIONAL HIGH-TECHNOLOGY INDUSTRIAL DEVELO...
 
PlaNYC: A Greener, Greater New York
PlaNYC: A Greener, Greater New YorkPlaNYC: A Greener, Greater New York
PlaNYC: A Greener, Greater New York
 
Gunagzhou Travel Guide
Gunagzhou Travel GuideGunagzhou Travel Guide
Gunagzhou Travel Guide
 
Strategies for metropolitan planning
Strategies for metropolitan planningStrategies for metropolitan planning
Strategies for metropolitan planning
 

Ähnlich wie Cities After Oil

Probst Thesis Final Draft_05-07-2014
Probst Thesis Final Draft_05-07-2014Probst Thesis Final Draft_05-07-2014
Probst Thesis Final Draft_05-07-2014Elijah Probst
 
urbanecology and urban design redevelopment
urbanecology and urban design redevelopmenturbanecology and urban design redevelopment
urbanecology and urban design redevelopmentSumita Singh
 
Introduction to human settlement and housing
Introduction to human settlement and housingIntroduction to human settlement and housing
Introduction to human settlement and housingty0385
 
MULTIFUNCTIONAL AND MULTILAYER DIMENSIONS OF EVOLVING CITIES FOR A SUSTAINAB...
MULTIFUNCTIONAL AND MULTILAYER DIMENSIONS OF  EVOLVING CITIES FOR A SUSTAINAB...MULTIFUNCTIONAL AND MULTILAYER DIMENSIONS OF  EVOLVING CITIES FOR A SUSTAINAB...
MULTIFUNCTIONAL AND MULTILAYER DIMENSIONS OF EVOLVING CITIES FOR A SUSTAINAB...Sai Bhaskar Reddy Nakka
 
The water footprint of Italy
The water footprint of ItalyThe water footprint of Italy
The water footprint of ItalyMarta Antonelli
 
03071375.2020.1738787.pdf
03071375.2020.1738787.pdf03071375.2020.1738787.pdf
03071375.2020.1738787.pdfr b
 
1. Does US Have An Urban Sustainability Agenda For 21st Century
1. Does US Have An Urban Sustainability Agenda For 21st Century 1. Does US Have An Urban Sustainability Agenda For 21st Century
1. Does US Have An Urban Sustainability Agenda For 21st Century NewmanMirela
 
Sustainable dev szabo_a
Sustainable dev szabo_aSustainable dev szabo_a
Sustainable dev szabo_aAntal Szabo
 
Human Ecology and Our Society’s Carrying CapacityECS 11130 A.docx
Human Ecology and Our Society’s Carrying CapacityECS 11130 A.docxHuman Ecology and Our Society’s Carrying CapacityECS 11130 A.docx
Human Ecology and Our Society’s Carrying CapacityECS 11130 A.docxwellesleyterresa
 
Intelligent sustainable liveable cities
Intelligent sustainable liveable cities Intelligent sustainable liveable cities
Intelligent sustainable liveable cities Derek Clements-Croome
 
Sustainable Urban Development: Bioregionalistic Vision for Small Towns
Sustainable Urban Development: Bioregionalistic Vision for Small TownsSustainable Urban Development: Bioregionalistic Vision for Small Towns
Sustainable Urban Development: Bioregionalistic Vision for Small TownsIEREK Press
 

Ähnlich wie Cities After Oil (20)

Urbanization And Urban Growth
Urbanization And Urban GrowthUrbanization And Urban Growth
Urbanization And Urban Growth
 
Probst Thesis Final Draft_05-07-2014
Probst Thesis Final Draft_05-07-2014Probst Thesis Final Draft_05-07-2014
Probst Thesis Final Draft_05-07-2014
 
Sustainable Cities
Sustainable CitiesSustainable Cities
Sustainable Cities
 
urbanecology and urban design redevelopment
urbanecology and urban design redevelopmenturbanecology and urban design redevelopment
urbanecology and urban design redevelopment
 
Urbanization: Planting Forests in Pots
Urbanization: Planting Forests in PotsUrbanization: Planting Forests in Pots
Urbanization: Planting Forests in Pots
 
Urbanization: Brief History & Future Outlooks
Urbanization: Brief History & Future OutlooksUrbanization: Brief History & Future Outlooks
Urbanization: Brief History & Future Outlooks
 
Introduction to human settlement and housing
Introduction to human settlement and housingIntroduction to human settlement and housing
Introduction to human settlement and housing
 
powerpoint presentation
powerpoint presentationpowerpoint presentation
powerpoint presentation
 
MULTIFUNCTIONAL AND MULTILAYER DIMENSIONS OF EVOLVING CITIES FOR A SUSTAINAB...
MULTIFUNCTIONAL AND MULTILAYER DIMENSIONS OF  EVOLVING CITIES FOR A SUSTAINAB...MULTIFUNCTIONAL AND MULTILAYER DIMENSIONS OF  EVOLVING CITIES FOR A SUSTAINAB...
MULTIFUNCTIONAL AND MULTILAYER DIMENSIONS OF EVOLVING CITIES FOR A SUSTAINAB...
 
Getting Serious About Urban Sustainability
Getting Serious About Urban Sustainability Getting Serious About Urban Sustainability
Getting Serious About Urban Sustainability
 
The water footprint of Italy
The water footprint of ItalyThe water footprint of Italy
The water footprint of Italy
 
03071375.2020.1738787.pdf
03071375.2020.1738787.pdf03071375.2020.1738787.pdf
03071375.2020.1738787.pdf
 
Xzy
XzyXzy
Xzy
 
1. Does US Have An Urban Sustainability Agenda For 21st Century
1. Does US Have An Urban Sustainability Agenda For 21st Century 1. Does US Have An Urban Sustainability Agenda For 21st Century
1. Does US Have An Urban Sustainability Agenda For 21st Century
 
Ecocity PPt
Ecocity PPtEcocity PPt
Ecocity PPt
 
Sustainable dev szabo_a
Sustainable dev szabo_aSustainable dev szabo_a
Sustainable dev szabo_a
 
Human Ecology and Our Society’s Carrying CapacityECS 11130 A.docx
Human Ecology and Our Society’s Carrying CapacityECS 11130 A.docxHuman Ecology and Our Society’s Carrying CapacityECS 11130 A.docx
Human Ecology and Our Society’s Carrying CapacityECS 11130 A.docx
 
Urbanization
UrbanizationUrbanization
Urbanization
 
Intelligent sustainable liveable cities
Intelligent sustainable liveable cities Intelligent sustainable liveable cities
Intelligent sustainable liveable cities
 
Sustainable Urban Development: Bioregionalistic Vision for Small Towns
Sustainable Urban Development: Bioregionalistic Vision for Small TownsSustainable Urban Development: Bioregionalistic Vision for Small Towns
Sustainable Urban Development: Bioregionalistic Vision for Small Towns
 

Mehr von Penn Institute for Urban Research

Human Capital-Centered Regionalism in Economic Development: A Case of Analyti...
Human Capital-Centered Regionalism in Economic Development: A Case of Analyti...Human Capital-Centered Regionalism in Economic Development: A Case of Analyti...
Human Capital-Centered Regionalism in Economic Development: A Case of Analyti...Penn Institute for Urban Research
 
The Benefits of Smart Grid Technology for Buildings, Cities, and Sustainability
The Benefits of Smart Grid Technology for Buildings, Cities, and SustainabilityThe Benefits of Smart Grid Technology for Buildings, Cities, and Sustainability
The Benefits of Smart Grid Technology for Buildings, Cities, and SustainabilityPenn Institute for Urban Research
 
Chairman of the Federal Energy Regulatory Commission Jon Wellinghoff
Chairman of the Federal Energy Regulatory Commission Jon WellinghoffChairman of the Federal Energy Regulatory Commission Jon Wellinghoff
Chairman of the Federal Energy Regulatory Commission Jon WellinghoffPenn Institute for Urban Research
 

Mehr von Penn Institute for Urban Research (20)

Michael Meehan
Michael MeehanMichael Meehan
Michael Meehan
 
Matt Kwatinetz
Matt KwatinetzMatt Kwatinetz
Matt Kwatinetz
 
James Finlay: Top 10 EE Concept Missteps
James Finlay: Top 10 EE Concept MisstepsJames Finlay: Top 10 EE Concept Missteps
James Finlay: Top 10 EE Concept Missteps
 
Tim Weaver
Tim WeaverTim Weaver
Tim Weaver
 
Nancy Peter
Nancy PeterNancy Peter
Nancy Peter
 
Erika Kitzmiller
Erika KitzmillerErika Kitzmiller
Erika Kitzmiller
 
Anne Bradley Mitchell
Anne Bradley MitchellAnne Bradley Mitchell
Anne Bradley Mitchell
 
Shahana Chattaraj
Shahana ChattarajShahana Chattaraj
Shahana Chattaraj
 
Human Capital-Centered Regionalism in Economic Development: A Case of Analyti...
Human Capital-Centered Regionalism in Economic Development: A Case of Analyti...Human Capital-Centered Regionalism in Economic Development: A Case of Analyti...
Human Capital-Centered Regionalism in Economic Development: A Case of Analyti...
 
The Bull & the Ballot Box: Art Museum Economic Strategies
The Bull & the Ballot Box: Art Museum Economic StrategiesThe Bull & the Ballot Box: Art Museum Economic Strategies
The Bull & the Ballot Box: Art Museum Economic Strategies
 
The Park of a Thousand Pieces
The Park of a Thousand PiecesThe Park of a Thousand Pieces
The Park of a Thousand Pieces
 
The Park of a Thousand Pieces
The Park of a Thousand PiecesThe Park of a Thousand Pieces
The Park of a Thousand Pieces
 
Susan Covino - Smart Grids and Microgrids
Susan Covino - Smart Grids and MicrogridsSusan Covino - Smart Grids and Microgrids
Susan Covino - Smart Grids and Microgrids
 
The Benefits of Smart Grid Technology for Buildings, Cities, and Sustainability
The Benefits of Smart Grid Technology for Buildings, Cities, and SustainabilityThe Benefits of Smart Grid Technology for Buildings, Cities, and Sustainability
The Benefits of Smart Grid Technology for Buildings, Cities, and Sustainability
 
Michael Smith - Envision Charlotte
Michael Smith - Envision CharlotteMichael Smith - Envision Charlotte
Michael Smith - Envision Charlotte
 
Matthew Summy - Illinois Science and Technology Coalition
Matthew Summy - Illinois Science and Technology CoalitionMatthew Summy - Illinois Science and Technology Coalition
Matthew Summy - Illinois Science and Technology Coalition
 
Doug Laub - Living City Block
Doug Laub - Living City BlockDoug Laub - Living City Block
Doug Laub - Living City Block
 
Brewster McCracken - Pecan Street Project
Brewster McCracken - Pecan Street ProjectBrewster McCracken - Pecan Street Project
Brewster McCracken - Pecan Street Project
 
Wayne Gardner - Pennsylvania Public Utility Commission
Wayne Gardner - Pennsylvania Public Utility CommissionWayne Gardner - Pennsylvania Public Utility Commission
Wayne Gardner - Pennsylvania Public Utility Commission
 
Chairman of the Federal Energy Regulatory Commission Jon Wellinghoff
Chairman of the Federal Energy Regulatory Commission Jon WellinghoffChairman of the Federal Energy Regulatory Commission Jon Wellinghoff
Chairman of the Federal Energy Regulatory Commission Jon Wellinghoff
 

Kürzlich hochgeladen

MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 

Kürzlich hochgeladen (20)

MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 

Cities After Oil

  • 1. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. Cities After Oil: Getting Serious about Urban Sustainability William  Rees     Introduction: The City as Biophysical Entity Accelerating  global  ecological  change  poses  unprecedented  challenges  to  the   integrity,  and  even  the  survival  of  modern  cities.  Regrettably,  most  cities  are  ill-­‐equipped  to   deal  with  the  problem  facing  them.  One  reason  for  this  lack  of  preparation  is  that,  while   cities  are  biophysical  entities  as  well  as  socio-­‐cultural  phenomena,  city-­‐dwellers  have  never   T had  to  think  of  ‘the  city’  in  ecological  terms.  Even  urban  scholars  have  only  recently   AF acknowledged  and  begun  to  study  the  human  ecological  dimensions  of  urbanization  and   cities.     With  this  slow  awakening,  the  terms  ‘urban  ecosystem’  and  ‘eco-­‐cities’  have  become   R familiar  to  those  interested  in  urban  sustainability.  The  rising  popularity  of  such  terms,   however,  belies  a  fundamental  error:  cities  are  not  functional  ecosystems  (Rees  2003).  To   D be  clear:  ‘the  city’  is  certainly  an  ecologically  critical  component  of  the  human  ecosystem   and  every  city  is  a  complex  system  (or,  better,  a  ‘complex  of  systems’)  but  cities  as  presently   conceived  are  not  human  ecosystems.     A  functionally  complete  ecosystem  is  a  self-­‐organizing,  self-­‐producing,  solar-­‐ powered  complex  of  mutually  dependent  autotrophic  (producer)  and  heterotrophic   (consumer)  organisms.  This  biotic  community  interacts  with  its  physical  environment  such   that  the  flow  and  dissipation  of  energy  results  in  a  defined  trophic  (feeding)  structure,  the  
  • 2. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. emergence  of  biodiversity,  and  characteristic  material  cycles  between  the  living  and  non-­‐ living  components  (Odum  1971).     By  this  definition,  no  modern  city  qualifies  as  a  complete  human  ecosystem.  Some  of  the   defining  parts—for  example,  virtually  the  entire  autotrophic  (producer)  complex—are   missing  altogether  and  others  (micro-­‐consumers)  are  insufficiently  abundant  for  functional   integrity.  As  significantly,  the  separation  of  people  from  ‘the  land’  to  the  city  prevents  the   recycling  of  phosphorus,  nitrogen,  other  nutrients  and  organic  matter  back  into  rural   T (agricultural  and  forest)  ecosystems.  Urbanization  has  effectively  transformed  local,   integrated,  cyclical,  ecological  production  systems  into  global,  horizontally  disintegrated,   AF unidirectional,  throughput  systems  (Rees  1997).       On  a  crude  but  illustratively  useful  level,  an  apt  metaphor  of  the  city  might  be  a   livestock  feedlot  (Rees  2003).  Like  feedlots,  cities  are  spatial  nodes  of  intense  consumption   R entirely  dependent  for  their  survival  on  supportive  ecosystems  increasingly  located  at   great  distance  from  the  cities  themselves.    In  ecologically  meaningful  terms,  urbanites  don’t   D live  in  cities  at  all!  They  are  functionally  more  connected  to  the  hinterland.     The Ecological Footprints of Cities   A  complete  human  urban  ecosystem  includes  not  only  the  city  per  se  but  also  the  entire   extra-­‐urban  complex  of  terrestrial  and  aquatic  ecosystems  required  to  support  the  city’s   human  population.  One  way  to  determine  just  how  much  of  ‘nature’  is  thus  appropriated  by   cities  is  through  ecological  footprint  analysis  (Rees  1992,  Wackernagel  and  Rees,  1996).   We  formally  define  the  ecological  footprint  (EF)  of  a  specified  population  as:  
  • 3. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. The  area  of  land  and  water  ecosystems  required,  on  a  continuous  basis,  to  produce  the   resources  that  the  population  consumes  and  to  assimilate  the  wastes  that  the   population  produces,  wherever  on  Earth  the  relevant  land/water  is  located  (2006).i,  ii     Figure  1  shows  the  equivalence-­‐adjustediii  per  capita  EFs  and  domestic  biocapacities  for  a   selection  of  countries  from  among  the  wealthiest  to  among  the  poorest  based  on  2005  data   from  World  Wildlife  Fund  (WWF  2008).  Note  the  vastly  greater  demand  by  wealthy,  mainly   urban  consumers,  compared  to  that  of  mainly  rural  peasants.  The  citizens  of  wasteful  high-­‐ T income  countries  like  the  US  and  Canada  have  average  EFs  of  6  to  almost  10  hectares,  EFs   up  to  20  times  larger  than  the  EFs  of  the  citizens  of  the  world’s  poorest  countries  like   AF Bangaldesh.  European  countries  and  Japan  typically  have  per  capita  EFs  in  the  4  to  6   hectare  range.  China  is  fairly  representative  of  the  emerging  economies  which  show   growing  EFs  of  1.5  to  3  hectares  per  capita.  Because  urban  industrial  society  is  very  much  a   R product  of  abundant  cheap  fossil  fuel,  half  or  more  of  the  EF  of  rich  countries  and  45%  of   humanity’s  global  EF,  is  attributable  to  the  carbon  footprint  (area  of  required  carbon-­‐sink   D ecosystems)  generated  by  the  burning  of  fossil  fuels.  But  it  is  crucial  to  note  that,  even  the   biofuels  utilized  in  a  post-­‐carbon  world  do  not  guarantee  its  cities  smaller  energy  eco-­‐ footprints  since  the  eco-­‐footprints  of  biofules  are  larger  than  the  fossil  fuels  they  allegedly   displace.iv  Indeed,  although  we  are  familiar  with  the  environmental  degradation  associated   with  the  consumption  of  fossil  fuels,  in  another  sense  our  consumption  of  fossil  fuels  has   obscured  or  deferred  our  degradation  of  other  natural  resources.     In  this  sense,  EF  has  the  advantage  of  putting  sustainability  measures  in  a  realistic   perspective,  by  providing  a  wider  view  of  the  demands  any  city  as  currently  conceived  puts  
  • 4. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. on  the  hinterland.  Most  countries’  per  capita  eco-­‐footprints  exceed  their  per  capita   domestic  biocapacities.  These  countries  are  at  least  partially  dependent  on  trade  and   exploitation  of  the  global  commons  to  maintain  their  current  lifestyles.  The  Netherlands,   for  example,  uses  almost  four  times  as  much  productive  land/water  outside  its  borders  as   is  found  within  the  country.  Japan  uses  eight  times  its  domestic  supply.  Such  countries  are   in  a  state  of  ‘overshoot’  and  are  running  unsustainable  ecological  deficits  with  the  rest  of   the  world.   T   A  smaller  number  of  countries  (e.g.,  Canada,  Argentina)  have  an  apparent  surplus  of   biocapacity  and  could  theoretically  live  on  their  domestic  ‘natural  incomes.’  The  surpluses   AF of  such  nations,  however,  are  only  ‘apparent’  because  the  extra  biocapacity  is  generally   being  traded  away  to  cover  the  ecological  deficits  of  other  countries.       Ominously,  the  world  as  a  whole  is  in  overshoot  with  a  growing  ecological  deficit   R (Figure  1).  Human  demand  already  exceeds  the  earth’s  regenerative  capacity  by  at  least   30%.  We  are  living,  in  part,  by  depleting  dissipating  stocks  of  potentially  renewable  natural   D capital  (fish,  forests,  soils,  etc.)  that  have  accumulated  in  ecosystems.     [INSERT  FIGURE  1]     The  Global  Reach  of  Cities   Cities,  of  course,  are  virtually  all  ecological  deficit.  Urban  populations  are  almost   totally  dependent  on  rural  people,  ecosystems  and  life-­‐support  processes,  all  of  which  are   increasingly  scattered  over  the  planet.    
  • 5. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.   In  some  respects,  this  relationship  is  a  two-­‐way,  mutualistic  one—rural  people   benefit  from  urban  markets,  the  products  of  urban  factories,  urban-­‐based  services,   technology  transfers  from  urban  areas,  etc.  However,  while  rural  populations  have   survived  historically  without  cities  the  ecological  dependence  of  urbanites  on  ‘the   hinterland’  is  absolute.  Understanding  the  nature  of  rural-­‐urban  interdependence  is   essential  to  understanding  the  total  human  ecosystem  and  to  urban  sustainability.  There   can  be  no  urban  sustainability  without  rural  sustainability.   T So,  just  how  great  is  a  typical  modern  city’s  biophysical  debt  to  the  global  countryside?   Despite  unavoidable  methodological  and  data-­‐quality  differences,  urban  eco-­‐footprint   AF studies  invariably  show  that  the  EFs  of  typical  modern  high-­‐income  cities  exceed  their   geographic  or  political  areas  by  two  to  three  orders  of  magnitude.  For  example:   • Based  on  locally-­‐adjusted  per  capita  EF  estimates  (FCM  2005),  the  people  of   R Toronto  and  Vancouver,  Canada,  ‘occupy’  land  areas  outside  their  municipal   boundaries  that  are  292  and  390  times  larger  (respectively)  than  the  cities   D themselves.  Even  the  lower-­‐density  metropolitan  areas  of  these  cities  have  EFs  57   times  bigger  than  the  respective  urban  regions.   • Assuming  that  the  average  citizen  of  New  York’s  more  densely  populated  five   boroughs  is  similar  to  the  national  average  of  9.4  gha,  the  city’s  8.2  million  people   (2.7%  of  US  population  in  2006)  have  a  total  eco-­‐footprint  of  77,080,000  gha.  This  is   963  times  larger  than  the  city’s  geographic  area  of  80,000  ha  and  equivalent  to  10%   of  the  area  of  the  US.  
  • 6. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. • With  a  population  of  33  million  and  a  per  capita  EF  of  about  4.9  global  ha,  greater   Tokyo’s  total  eco-­‐footprint  is  161,700,000  gha.  However,  the  entire  domestic   biocapacity  of  Japan  is  only  about  76,860,000  gha.  In  short,  Tokyo,  with  only  26%  of   the  Japan’s  population,  lives  on  an  area  of  productive  ecosystems  2.1  times  larger   than  the  nation’s  entire  terrestrial  biocapacity.v   • Under  varying  management  assumptions  to  cope  with  regional  waste  management   issues,  Folke  et  al.  (1997)  estimated  that  the  29  largest  cities  of  the  Baltic  region   T require  for  resources  and  certain  categories  of  waste  assimilation,  an  area  of  forest,   agricultural,  marine,  and  wetland  ecosystems  565-­‐1130  times  larger  than  the  area   AF of  the  cities  themselves.   • An  analysis  of  “ecosystem  appropriation  by  Hong  Kong”  shows  that  this  city  of   almost  seven  million  people  has  a  total  eco-­‐footprint  of  332,150  to  478,300  km2  (the   R range  reflects  two  estimates  of  carbon  sink  land  requirements).  Hong  Kong’s  eco-­‐ footprint  is  at  least  303  times  the  total  land  area  of  the  Hong  Special  Administrative   D Region  (1097  km2)  and  3020  times  the  built-­‐up  area  of  the  city  (110  km2)  (Warren-­‐ Rhodes,  K.  and  A.  Koenig  2001).     These  data  show  clearly  that,  in  material  terms,  ‘sustainable  city’  is  an  oxymoron  (Rees   1997).  Modern  cities  are  entropic  black  holes  sweeping  up  the  productivity  of  a  vastly   larger  and  increasingly  global  resource  hinterland  and  spewing  an  equivalent  quantity  of   waste  back  into  it.  They  are  compact  nodes  of  consumption  living  quasi-­‐parasitically  on  the   productivity  and  assimilative  capacity  of  a  vastly  larger  ‘undeveloped’  area,  portions  of   which  may  be  thousands  of  kilometres  from  the  built-­‐up  area  at  the  centre.    
  • 7. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press.   The  Vulnerability  of  Modern  Cities   “Today’s  city  is  the  most  vulnerable  social  structure  ever  conceived  by  man.”     -­‐-­‐Oppenheimer  1969   The  functional  dependence  of  cities  on  global  stability  has  implications  for  the   security  of  urban  populations  in  an  era  of  incipient  energy  scarcity,  increasingly  erratic   climate  and  other  forms  of  global  change.  Consider  the  example  of  Tokyo,  the  capital  of   T Japan  and  the  world’s  largest  metropolitan  region.  Because  Tokyo  alone  consumes  twice   the  nation’s  ecological  output,  Japan  would  have  difficulty  supporting  the  population  of  its   AF capital  city  alone  without  massive  adjustments  to  its  prevailing  material  lifestyles  if  the   country  were  required  to  subsist  on  its  domestic  biocapacity.   The  critical  point,  here,  is  that  enormous  cities  have  evolved  not  because  greater   R size  confers  great  advantage  but  simply  because  they  could.  To  date,  globalization  and  trade   have  ensured  the  availability  of  the  enormous  quantities  and  uninterrupted  flows  of  energy   D and  other  material  resources  required  to  grow  the  modern  metropolis.  But  this  raises  a   critical  question:  just  how  secure  is  any  megacity  of  millions,  or  even  a  relative  ‘town’  of   100,000,  if  resource  scarcity,  shifting  climate  or  geo-­‐political  unrest  threaten  to  cut  it  off   from  vital  sources  of  supply?   There  are  several  interrelated  reasons  to  believe  this  is  not  an  idle  question.  For   example:   1.  Reliable  food  supplies  should  be  of  increasing  concern  to  urbanizing  populations.   Global  food  production  is  levelling  off.  Yet,  just  to  keep  pace  with  UN  medium  
  • 8. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. population  growth  projections,  agricultural  output  will  have  to  increase  over  50%   by  2050  and  improving  the  diets  of  malnourished  people  would  push  this  toward   100%.  Achieving  increases  of  this  magnitude  will  be  increasingly  difficult.  By  1990,   562  million  hectares  (38%)  of  the  world’s  roughly  1.5  billion  hectares  of  cropland   had  become  significantly  eroded  or  otherwise  degraded;  300  million  hectares   (21%)  of  cultivated  land—enough  to  feed  almost  all  of  Europe—has  been  lost  to   production  (FAO  2000,  SDIS,  2004).    Depending  on  the  climate  and  agricultural   T practices,  we  are  still  destroying  topsoil  16  to  300  times  as  fast  as  it  is  regenerated.   So  far,  the  impact  has  been  masked  because  we  have  managed  to  substitute  fossil   AF fuel  for  depleted  soils  and  landscape  degradation—but  that  may  be  about  to   change.   2. Modern  cities  are  the  product  of  abundant  cheap  fossil  fuel.  Fossil  fuels,  especially  oil,   R currently  supply  about  85%  of  humanity’s  total  energy  demand  and  are  essential  for   electricity  generation,  transportation,  and  space  and  water  heating  in  much  of  the   D world.  They  are  also  a  major  factor  in  the  green  revolution.  Mechanization,  diesel-­‐ powered  irrigation,  the  capacity  to  double-­‐crop,  and  agro-­‐chemicals  (fertilizers  and   pesticides)  made  from  oil  and  natural  gas  account  for  79-­‐96%  of  the  increased   yields  of  wheat,  rice  and  maize  production  since  1967  (Conforti  &  Giampietro1997,   Cassman  1999).  For  all  these  reasons,  some  analysts  argue  that  the  imminent   peaking  of  global  petroleum  production  (i.e.,  extraction)  represents  a  singular  event   in  modern  history  and  poses  a  greater  challenge  to  geopolitical  stability  and  urban  
  • 9. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. security  than  any  other  factor  (Duncan  and  Youngquist  1999,  Campbell  1999,   Laherrere  2003).     3. Other  analysts  see  climate  change  as  the  greatest  threat  to  modern  urban   civilization,  arguing  that  it  could  bring  the  planet  to  the  edge  of  anarchy  (e.g.,   Schwartz  and  Randall  2003,  CSIS  2007).  In  The  Age  of  Consequences,  Washington’s   Center  for  Strategic  and  International  Studies  (CSIS)  suggests  that  human-­‐induced   climate  change  driven  by  burning  fossil  fuels  could  end  peaceful  global  integration   T as  various  nations  contract  inwardly  to  conserve  what  they  need—or  expand   outwardly  to  take  what  they  need—for  survival.  In  the  event  of  “severe  climate   AF change,”  corresponding  to  an  average  increase  in  global  temperature  of  2.6°C  by   2040  (now  deemed  to  be  increasingly  likely),  major  nonlinear  changes  in   biophysical  systems  will  give  rise  to  major  nonlinear  socio-­‐political  events.  Shifting   R climate  will  force  internal  and  cross-­‐border  migrations  as  people  leave  areas  where   food  and  water  are  scarce.  Hundreds  of  millions  of  people  will  also  be  forced  to  flee   D rising  seas  and  areas  devastated  by  increasingly  frequent  droughts,  floods,  and   severe  storms.  Dramatic  increases  in  migration  combined  with  food,  energy  and   water  shortages  will  impose  great  pressure  on  the  internal  cohesion  of  nations.  War   is  likely  and  nuclear  war  is  possible  (CSIS  2007).       Even  moderate  climate  change  could  undermine  resource  flows  to  dependent  urban   areas.  For  example,  shifting  weather  patterns  will  certainly  disrupt  historic  water   availability  and  distribution  and  could  reduce  agricultural  output  in  remaining  
  • 10. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. globally  significant  bread-­‐baskets,  such  as  the  North  American  Great  Plains,   increasing  the  likelihood  of  food-­‐shortages  in  distant  dependent  urban  regions   (Kissinger  and  Rees  2009).   No  city  will  be  unaffected  by  global  change.  The  good  news  is  that  determined  action  to   address  climate  change  could  help  avoid  the  peak  oil  problem  and  vice  versa.  For  example,   if  the  world  were  to  take  the  action  necessary  to  reduce  CO2  emissions  by  several  percent   per  year,  the  drop  in  demand  for  oil  would  keep  pace  with  or  exceed  the  anticipated   T decline  in  extraction  rate.   AF Toward the ‘One Planet’ City   Ours  is  a  world  already  in  overshoot  yet  both  population  and  per  capita   consumption  continue  to  increase  and  material  expectations  continue  to  rise  all  over  the   R world.  This  is  a  fundamentally  unsustainable  situation—to  raise  just  the  present  world   population  sustainably  to  North  American  material  standards  would  require  the   D biocapacity  of  four  additional  Earth-­‐like  planets  (Rees  2006).  The  really  inconvenient  truth   is  that,  to  achieve  sustainability  global  energy  and  material  throughput  must  decrease,  not   grow.     Techno-­‐industrial  society  is  a  self-­‐proclaimed  science-­‐based  society  and  to  act   consistently  with  our  best  science  may  well  require  a  planned  economic  contraction.  To   avoid  severe  climate  change  the  world  will  have  to  decarbonize  by  at  least  80%  by  mid   century.  To  achieve  one  planet  living,  North  Americans  should  be  planning  now  to  reduce   their  ecological  footprints  by  almost  80%  from  the  current  level  of  9.2  gha  to  2.1  gha  per  
  • 11. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. capita.  (The  latter  represents  our  equitable  share  of  global  biocapacity.)  This,  in  turn,  will   require  dramatic  changes  in  prevailing  economic  beliefs,  values,  and  particularly  in   consumer  behaviour.  For  sustainability,  the  rich  may  have  to  learn  to  consume  less  in  order   to  create  the  ecological  space  necessary  for  needed  growth  in  the  developing  world  (Rees   2008).  (Fortunately,  ‘managing  without  growth’  is  technologically  and  economically   possible  and  might  well  improve  quality  of  life  [see  Victor  2008]).     Regrettably,  there  is  scant  evidence  that  any  such  cultural  shift  is  underway.  Despite   T repeated  warnings  that  staying  our  present  course  spells  catastrophe  for  billions  of  people   (USC  1992,  MEA  2005),  the  modern  world  remains  mired  in  a  swamp  of  cognitive   AF dissonance  and  collective  denial  (Rees  2009a).  To  date,  most  mainstream  responses  to  our   ecological  conundrum  do  not  address  the  fundamental  problem  but  instead  seem  designed   to  reproduce  the  status  quo  by  other  means.  Such  ‘innovations’  as  hybrid  cars,  green   R buildings,  smart  growth,  the  new  urbanism,  green  consumerism  etc.,  assume  that  we  can   achieve  sustainability  through  technological  innovation  and  greater  material  and  economic   D efficiency.  This  is  a  conceptual  error—historically  efficiency  has  actually  increased   consumption  by,  for  example,  raising  incomes  and  lowering  prices.  With  more  money   chasing  cheaper  goods  and  services,  throughput  rises.  In  effect,  improved  efficiency  simply   makes  industrial  growth-­‐bound  society  more  efficiently  unsustainable.     The  urban  sustainability  multiplier     While  some  have  interpreted  the  consumptive  and  polluting  powers  of  cities  as  an   anti-­‐urban  argument,  it  is  nothing  of  the  sort.  All  else  being  equal,  cities  actually  offer  
  • 12. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. several  advantages  over  more  dispersed  settlement  patterns  in  the  quest  for  sustainability.   The  very  factors  that  make  wealthy  cities  weigh  so  heavily  on  the  ecosphere—the   concentration  of  people  and  the  localized  intensity  of  energy/material  consumption  and   waste  generation—give  cities  considerable  economic  and  technical  leverage  to  address   global  change  by  shrinking  their  eco-­‐footprints  (see  Newman  &  Jennings  2008).       To  enable  society  to  take  full  advantage  of  this  leverage,  state/provincial  and   municipal  governments  must  create  the  land-­‐use  legislation  and  zoning  by-­‐laws  that  urban   T planners  need  to  eliminate  sprawl  and  consolidate  and  densify  existing  built-­‐up  areas.   Compact  cities—particularly  car-­‐free  compact  cities—are  vastly  less  energy-­‐  and  material-­‐ AF intensive  than  today’s  sprawling  suburban  cities.  The  economies  of  scale  and   agglomeration  economies  associated  with  high-­‐density  settlements  confer  a  substantial   ‘urban  sustainability  multiplier’  on  cities.    For  example:   R • reduced per capita demand for occupied land; • more ways to reduce (mostly fossil) energy consumption, particularly by motor vehicles, D by promoting walking, cycling, and public transit; • more opportunities for co-housing, car-sharing and other cooperative relationships that lower capital requirements (consumption) per household and individual; • lower biophysical and economic costs per capita of providing piped treated water, sewer systems, waste collection, and most other forms of infrastructure and public amenities; • greater possibilities for electricity co-generation, district heating/cooling and the use of waste process heat from industry or power plants, to reduce the per capita use of fossil fuel for water and space-heating;
  • 13. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. • the potential to implement the principles of low throughput ‘industrial ecology’ (i.e., the ideal of closed-circuit industrial parks in which the waste energy or materials of some firms are essential feed-stocks for others). • a greater range of options for material recycling, re-use, re-manufacturing, and a concentration of the specialized skills and enterprises needed to make these things happen; • more ‘social contagion,’ facilitating the spread of such more nearly sustainable life-style choices (e.g., ‘voluntary simplicity’); T As  noted,  however,  efficiency  gains  alone  will  not  achieve  ‘one-­‐planet  living’.  Sustainability   AF and  security  demand  that  cities  everywhere  become  less  consumption-­‐driven  and  more   materially  self-­‐reliant.  Indeed,  cities  may  be  forced  down  this  unfamiliar  path  either  with   the  rising  cost  of  oil-­‐based  transportation  or  the  needed  rapid  phase-­‐out  of  fossil  fuels.   R Urban  designers  must  begin  now  to  rethink  cities  so  they  function  as  complete  ecosystems.   This  is  the  ultimate  form  of  bio-­‐mimicry.   D The  least  vulnerable  and  most  resilient  urban  eco-­‐system  might  be  a  new  form  of   regional  eco-­‐city  state  (or  bioregion)  in  which  a  densely  built-­‐up  core  is  surrounded  by   essential  supportive  ecosystems  (Rees  2009b).vi  The  central  idea  is  to  consolidate  as  much   as  possible  of  the  city’s  productive  hinterland  in  close  proximity  to  its  consumptive  urban   core.  In  effect,  this  would  internalize  the  currently  widely  scattered  external  eco-­‐footprints   of  our  cities  into  more  compact  and  manageable  city-­‐centred  regions  that  could  function  as   complete  human  ecosystems.  Such  a  transformed  homeplace,  “rather  than  being  merely  the   site  of  consumption,  [would],  through  its  very  design,  produce  some  of  its  own  food  and  
  • 14. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. energy,  as  well  as  become  the  locus  of  work  for  its  residents”  (Van  der  Ryn  &  Calthorpe   1986).  Eco-­‐city  states  would  be  less  of  a  burden  on,  and  more  of  a  contributor  to,  the  life-­‐ support  functions  of  the  ecosphere  than  contemporary  cities.   Significantly,  too,  the  bioregional  city  would  reconnect  urban  populations  both   physically  and  psychologically  to  ‘the  land.’  Because  inhabitants  would  be  more  directly   dependent  on  local  ecosystems,  they  would  have  a  powerful  incentive—currently  absent— to  manage  their  land  and  water  resources  sustainably  in  the  face  of  global  change.  (Ideally,   T political  control  over  the  productive  land  and  resource  base  of  the  consolidated  region   would  pass  to  the  eco-­‐city  state  governments.)  Less  reliant  on  imports,  their  populations   AF would  be  partially  insulated  from  climate  vagaries,  resource  shortages,  and  distant  violent   conflicts.     Most  importantly,  if  the  world  were  organized  into  a  system  of  bioregions  that  managed  to   R become  sustainable  (no  net  loss  of  natural  capital  on  a  per  capita  basis)  the  aggregate  effect   would  be  global  sustainability—which  is,  after  all,  the  purpose  of  the  exercise.     D                                                                                                                 i    For   full  details   of  the   method,   including   inclusions,  e xceptions   and  l imitations,  s ee   Rees  (2003,  2006)  W WF   (2008)  and  various  links  at  http://www.footprintnetwork.org/en/index.php/GFN/     ii    EFA  o bviously  does  n ot  c apture  the  e ntire  human   impact  on  Earth,  o nly  those  dimensions   for  which  the   ecosphere  has  regenerative  capacity.  For  example,  various  wastes  such  as  ozone  depleting  chemicals  or  the   toxic  chemical  residues  accumulating  in  our  food  chain  cannot  be  converted  into  a  corresponding   ecosystem  area.     iii    To   enable  fair  comparisons  a mong  countries,  the  data   in  Figure  1  are  presented  in  terms  o f  ‘ global  hectares’   (gha),  i.e.,  the  eco-­‐footprints  and  biocapacities  of  each  country  are  represented  in  terms  of  an  equivalent   area  of  global  average  productivity.   iv  This  does  not  necessarily   mean  that  a   post-­‐carbon  world   will  have   a  s maller   energy  e co-­‐footprint.  For   example,  biofuels  have  an  even  larger  eco-­‐footprint  than  the  fossil  fuels  they  allegedly  d isplace.   v    The  area  o f  Japan  is  only   a bout  37,770,000  ha   but  Japan’s  terrestrial  e cosystems  are  considerably   more   productive  than  the  world  average.  This  increases  the  country’s  biocapacity  to  almost  77,000,000  gha.     vivi  For  a  history  and  philosophy  o f  the  bioregional  movement,  see  Carr  (2005).  
  • 15. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. Cities After Oil: Getting Serious about Urban Sustainability William  Rees     Figure   T AF R D   Figure  1.  Per  Capita  Biocapacities  and  Ecological  Footprints  of  Selected  Countries   Compared  to  the  World  Averages.  Source:  2005  data  extracted  from  WWF  2008  
  • 16. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. References     Campbell  C.C.  1999.  The  Imminent  Peak  of  World  Oil  Production.  Available  at:   http://www.hubbertpeak.com/campbell/commons.htm   Carr,  M.  2005.  Bioregionalism  and  Civil  Society:  Democratic  Challenges  to  Corporate   Globalism.  Vancouver,  University  of  British  Columbia  Press.     Cassman  K.G.  1999.  Ecological  Intensification  of  Cereal  Production  Systems:  Yield  Potential,   Soil  Quality,  and  Precision  Agriculture.  Proc.  Natl  Acad.  Sci.  96:  5952-­‐5959   Conforti  P.  and  M.  Giampietro.  1997.  Fossil  Energy  Use  in  Agriculture:  An  International   Comparison.  Agriculture,  Ecosystems  and  Environment  65:  231-­‐243.   CSIS.  2007.  The  Age  of  Consequences:  The  Foreign  Policy  and  National  Security  Implications   of  Climate  Change.  Center  for  Strategic  and  International  Studies,  Washington.  Available   at:  http://www.csis.org/media/csis/pubs/071105_ageofconsequences.pdf)     Duncan  R.C.  and  Youngquist,  W.  1999.  Encircling  the  Peak  of  World  Oil  Production.  Natural   T Resources  Research  8  (3):  219-­‐232.   FAO.  2000.  Land  Resource  Potential  and  Constraints  at  Regional  and  Country  Levels.  Land   and  Water  Development  Division,  Food  and  Agriculture  Organization  of  the  United   AF Nations,    Rome.   FCM.  2005.  Ecological  Footprints  of  Canadian  Municipalities  and  Regions.  Report  for  the   ‘Federation  of  Canadian  Municipalities’  prepared  by  Anielski  Management,  Edmonton,   Alberta.  Available  at:   http://www.anielski.com/Documents/EFA%20Report%20FINAL%20Feb%202.pdf     Folke,  C.,  A.  Jansson,  J.  Larsson,  and  R.  Costanza.  1997.  Ecosystem  appropriation  by  cities,   R Ambio  26:  167-­‐172.   Kissinger,  M.  &  W.E.  Rees.  2009.  Footprints  on  the  prairies:  Degradation  and  sustainability   of  Canadian  agricultural  land  in  a  globalizing  world.  Ecological  Economics  (in  press).   Laherrere  J.  2003.  Forecast  of  oil  and  gas  supply  to  2050.  New  Delhi:  Paper  presented  to   D “Petrotech  2003.”  Available  at:   http://www.hubbertpeak.com/laherrere/Petrotech090103.pdf     MEA.  2005.  Living  Beyond  Our  Means:  Natural  Assets  and  Human  Well-­‐Being  (Statement   from  the  Board).  Millennium  Ecosystem  Assessment.  Available  at:   http://www.millenniumassessment.org/documents/document.429.aspx.pdf     Newman,  P.  &  I.  Jennings.  2008.  Cities  as  Sustainable  Ecosystems.  Island  Press,  Washington.   Odum,  E.P.  1971.  Fundamentals  of  Ecology.  W.B  Saunders,  Philadelphia.   Oppenheimer,  M.  1969.  Urban  Guerilla.  Quadrangle,  London.   Rees,  W.  E.  1992.  Ecological  footprints  and  appropriated  carrying  capacity:  what  urban   economics  leaves  out.  Environment  and  Urbanization  4  (2):  120-­‐130.   Rees,  W.E.  1997.  Is  ‘Sustainable  City’  an  Oxymoron?  Local  Environment  2  (3):  303-­‐310.   Rees,  W.E.  2003.  Understanding  Urban  Ecosystems:  An  Ecological  Economics  Perspective.   Chapter  in  Alan  Berkowitz  et  al.(eds).  Understanding  Urban  Ecosystems.  Springer-­‐Verlag,     New  York.  
  • 17. Much of the content in this paper has been edited, expanded, and recently published as: Rees, W.E. 2011. Getting Serious about Urban Sustainability: Eco-Footprints and the Vulnerability of Twenty-First Century Cities. Chap 5 in: Trudi Bunting, Pierre Filion and Ryan Walker(eds). Canadian Cities in Transition: New Directions in the Twenty-First Century, Fourth Edition. Oxford University Press. Rees,  W.E.  2006.  Ecological  footprints  and  Biocapacity:  Essential  Elements  in  Sustainability   assessment.  Chapter  9  in  Jo  Dewulf  and  Herman  Van  Langenhove,  eds.  Renewables-­Based   Technology:  Sustainability  Assessment.  John  Wiley  and  Sons,  Chichester,  UK.   Rees,  W.E.  2008.  Human  Nature,  Eco-­‐Footprints  and  Environmental  Injustice.  Local   Environment,  The  International  Journal  of  Justice  and  Sustainability    13  (8):  685  –  701.   Rees,  W.E.  2009a.    The  Ecological  Crisis  and  Self-­‐Delusion:  Implications  for  the  Building   Sector.  Building  Research  and  Information  (in  press).   Rees,  W.E.  2009b.  More  Sustainable  Cities.    SCIENTIFIC  AMERICAN  –  Earth  3.0  19  (1):  19   (Spring  2009)   Schwartz,  P.  and  D.  Randall.  2003.  An  Abrupt  Climate  Change  Scenario  and  Its  Implications   for  United  States  National  Security.  A  report  commissioned  by  the  U.S.  Defense   Department.  October  2003.   SDIS.  2004.  Disappearing  Land:  Soil  Degradation.  Sustainable  Development  Information   Service,  Global  Trends.  World  Resources  Institute,  Washington.     UCS.  1992.  World  Scientists’  Warning  to  Humanity.  Available  at:   http://www.ucsusa.org/about/1992-­‐world-­‐scientists.html     T Van  der  Ryn,  S.  and  P.  Calthorpe.  1986.  Sustainable  Communities:  A  New  Synthesis  for  Cities   and  Towns.  Sierra  Club  Books,  San  Francisco.   Victor,  P.  2008.  Managing  Without  Growth:  Slower  by  Design,  Not  Disaster.  Edward  Elgar,   AF Cheltenham,  UK.     Wackernagel, M. and W.E. Rees. 1996. Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers, Gabriola Isld, BC. Warren-­‐Rhodes,  K.  and  A.  Koenig  2001.  Ecosystem  appropriation  by  Hong  Kong  and  its   implications  for  sustainable  development.  Ecological  Economics  39  (3):  347-­‐359.   WWF.  2008.  Living  Planet  Report  2008.  World  Wide  Fund  for  Nature,  Gland,  Switzerland.   R   D