SlideShare ist ein Scribd-Unternehmen logo
1 von 18
AVANCE DE FROMULACION, BOCETO,PREFACTIBILIDAD PARA LA HIDROGENACIION
DE ETILENO
1. OBJETIVOS
• Buscar información sobre la hidrogenación catalítica del etileno para la obtención de
etano
• Plantear la formulación, boceto y pre factibilidad para la obtención de etano a partir de
la hidrogenación de etileno
2. FUNDAMENTO TEORICO
HIDROGENACIÓN DE ALQUENOS
Los alquenos reaccionan con hidrógeno en presencia de un catalizador adecuado para
formar productos de adición. Los alcanos saturados correspondientes. Platino y paladio
son los dos catalizadores utilizados para la mayoría de las hidrogenaciones de alquenos.
El paladio suele emplearse finamente dividido y con un mineral inerte, como carbón, a
manera de soporte para maximizar el área superficial (Pd/C). El platino se emplea
generalmente como PtO2, reactivo llamado catalizador de Adams.
La reacción de hidrogenación ha resultado difícil de estudiar mecanísticamente. Sin
embargo, la experiencia ha demostrado que la hidrogenación suele ocurrir con
estereoquímica sin; ambos hidrógenos se unen al doble enlace desde la misma cara. El
primer paso de la reacción es la adsorción del hidrógeno en la superficie del catalizador.
Después se forma un complejo entre el catalizador y el alqueno mediante la superposición
de orbitales vacantes del metal con el orbital pi lleno del alqueno, a continuación el
producto saturado se separa del catalizador.
LaHidrogenaciónCatalítica
En la hidrogenación, la energía de activación es muy alta y, por lo tanto, esta reacción no se
llevará a cabo muy fácilmente sin el uso de condiciones especiales, tales como una
temperatura y una presión muy altas. Sin embargo, si se añade una pequeña cantidad de un
compuesto metálico a base de paladio, platino o níquel a la mezcla de alqueno/hidrógeno, la
reacción de hidrogenación se produce mucho más fácilmente. El metal actúa como un
catalizador para esta reacción. Por lo tanto, la hidrogenación catalítica es la adición de
hidrógeno a un compuesto químico insaturado usando un catalizador metálico para acelerar la
reacción.
La hidrogenación catalítica (Ni, Pt, Pd) conduce primero a la formación de un alqueno y luego a
la del alcano correspondiente.
. Al agitar bajo una ligera presión de hidrógeno en presencia de una pequeña cantidad de un
catalizador, los alquenos se convierten suave y cuantitativamente en alcanos con el mismo
esqueleto carbonado.
La hidrogenación es de dos tipos generales: (a) heterogénea (dos fases) y (b) homogénea (una
fase). En ambos casos, el catalizador provoca la adición de hidrógeno molecular, H2, al doble
enlace.
•  La hidrogenación heterogénea : es el método clásico, todavía muy utilizado. El
catalizador es algún metal dividido finamente, por lo común platino, paladio o níquel. Se
agita una solución del alqueno bajo una ligera presión de hidrógeno gas en presencia de
una pequeña cantidad del catalizador. La reacción es rápida y suave y, una vez completa,
simplemente se filtra la solución del producto saturado del catalizador insoluble.
 La hidrogenación homogénea: mucho más moderna, ofrece una flexibilidad imposible
de alcanzar con los catalizadores antiguos. Mediante modificaciones en los catalizadores,
puede llevarse a cabo la hidrogenación con una selectividad sin precedente. Los catalizadores
son complejos orgánicos de metales de transición, como rodio o iridio: por ejemplo, el
catalizador de Wilkinson. Son solubles en disolventes orgánicos y la hidrogenación se efectúa
así en una sola fase, la solución. Lo inconveniente del método está en la dificultad de
separación del catalizador y el producto una vez terminada la reacción. Sin embargo, se están
desarrollando métodos para evitar esta dificultad: el catalizador se une incorporado
químicamente a un polímero sólido insoluble (una molécula gigante), lo que permite una
filtración fácil al final de la reacción. De esta manera, la hidrogenación homogénea se convierte
en heterogénea, pero el modo de acción parece permanecer igual. En el capítulo 20
estudiaremos con algún detalle estos catalizadores: su estructura, cómo trabajan y, en
particular, cómo permiten el control estereoquímico de la hidrogenación y de muchas otras
reacciones
Proceso
La hidrogenación tiene tres componentes, el sustrato saturado, el hidrógeno y,
invariablemente, un catalizador. La reacción de reducción se lleva a cabo a diferentes
temperaturas y presiones dependiendo del sustrato y la actividad del catalizador
Sustrato:
La adición de H2 a un alqueno proporciona un alcano en la reacción protypical:
1.- CATALIZADOR
La longevidad del catalizador requiere también un material soporte que no se derrumbe o
desintegre durante su preparación y uso. Bentonitas y montmorillonitas extraídas con HCl para
reducir su contenido en aluminio tienen mejores propiedades mecánicas y mayor absortividad
del ácido que la celita
Los catalizadores heterogéneos
- Los catalizadores heterogéneos para la hidrogenación son más comunes
industrialmente. Al igual que en los catalizadores homogéneos, la actividad se ajusta a
través de cambios en el medio ambiente en todo el metal, es decir, la esfera de
coordinación. Diferentes caras de un catalizador heterogéneo cristalina muestran
actividades distintas, por ejemplo. Del mismo modo, los catalizadores heterogéneos se
ven afectados por sus soportes, es decir, el material sobre el con el catalizador
heterogéneo está obligado.
En muchos casos, las modificaciones altamente empíricos implican "venenos" selectivos. Por lo
tanto, un catalizador cuidadosamente elegido puede ser utilizado para hidrogenar algunos
grupos funcionales sin que afecten a otros, tales como la hidrogenación de alquenos sin tocar
los anillos aromáticos, o la hidrogenación selectiva de alquinos a alquenos utilizando
catalizador de Lindlar. Por ejemplo, cuando se coloca el catalizador de paladio sobre sulfato de
bario y después se trató con quinolina, el catalizador resultante reduce alquinos sólo la medida
de lo alquenos. El catalizador de Lindlar se ha aplicado a la conversión de fenilacetileno a
estireno.
Hidrogenación asimétrica también es posible a través de la catálisis heterogénea en un metal
que es modificado por un ligando quiral.
Fuentes de hidrógeno
Para la hidrogenación, la fuente obvia de hidrógeno es en sí mismo gas H2, que es típicamente
disponible en el comercio dentro del medio de almacenamiento de un cilindro presurizado. El
proceso de hidrogenación utiliza a menudo mayor que 1 atmósfera de H2, por lo general
transporta desde los cilindros y, a veces aumentada por "bombas de refuerzo". El hidrógeno
gaseoso se produce industrialmente a partir de hidrocarburos por el proceso conocido como
reformado con vapor.
• Transferencia de hidrogenación
El hidrógeno también puede ser extraído de "hidrógeno"-donantes en lugar de gas de
H2. Donantes de hidrógeno, que a menudo sirven como disolventes incluyen hidrazina,
dihidronaftaleno, dihidroantraceno, isopropanol, y el ácido fórmico. En la síntesis
orgánica, hidrogenación de transferencia es útil para la reducción asimétrica de
sustratos insaturados polares, tales como cetonas, aldehídos, e iminas.
• Hidrogenación electrolítica
Sustratos polares tales como las cetonas pueden ser hidrogenados
electroquímicamente, el uso de disolventes próticos y equivalentes reductores como la
fuente de hidrógeno.
Termodinámica y el mecanismo
La hidrogenación es una reacción fuertemente exotérmica. En la hidrogenación de aceites
vegetales y ácidos grasos, por ejemplo, el calor liberado es de aproximadamente 25 kcal por
mol, suficiente para elevar la temperatura del aceite por 1.6 a 1.7 C por número de yodo gota.
El mecanismo de hidrogenación catalizada por metal de alquenos y alquinos se ha estudiado
ampliamente. En primer lugar el etiquetado de isótopos de deuterio utilizando confirma la
regioquímica de la adición:
RCH = CH2 D2? RCHDCH2D
Aplicaciones industriales
La hidrogenación catalítica tiene diversos usos industriales. Con mayor frecuencia, la
hidrogenación industrial depende de catalizadores heterogéneos.
En los procesos petroquímicos, la hidrogenación se utiliza para convertir alquenos y
compuestos aromáticos en alcanos y cicloalcanos saturados, que son menos tóxicos y menos
reactiva. Por ejemplo, aguarrás mineral es generalmente hidrogenado. Hidrocraqueo de
residuos pesados en diesel es otra aplicación. En isomerización y los procesos de reformado
catalítico, un poco de presión de hidrógeno se mantiene a hydrogenolyze coque formado sobre
el catalizador y prevenir su acumulación.
El equipo utilizado para la hidrogenación
Químico banco de hoy tiene tres opciones principales de los equipos de hidrogenación:
• Hidrogenación por lotes en condiciones atmosféricas
• Hidrogenación por lotes a temperatura elevada y/o presión
• Hidrogenación Flow
Hidrogenación por lotes en condiciones atmosféricas
El original y sigue siendo una forma comúnmente practicado de hidrogenación en laboratorios
de enseñanza, este proceso se lleva a cabo normalmente mediante la adición de catalizador
sólido a un matraz de fondo redondo de reactivo disuelto que ha sido evacuado usando
nitrógeno o gas argón y la mezcla de sellado con un sello de caucho penetrable. El gas
hidrógeno se suministra a continuación a partir de un globo lleno de H2. La mezcla de tres
fases resultante se agita para promover la mezcla. La absorción de hidrógeno se puede
controlar, lo cual puede ser útil para monitorizar el progreso de una hidrogenación. Esto se
consigue, ya sea usando un tubo graduado que contiene un líquido de color, generalmente
acuosa de sulfato de cobre o con los calibres para cada recipiente de reacción.
Hidrogenación por lotes a temperatura elevada y/o presión
Dado que muchas reacciones de hidrogenación tales como hidrogenolisis de los grupos
protectores y la reducción de los sistemas aromáticos proceder muy lentamente a
temperatura y presión atmosférica, sistemas presurizados son populares. En estos casos, se
añade catalizador a una solución de reactivo en una atmósfera inerte en un recipiente a
presión. El hidrógeno se añade directamente a partir de un cilindro o construido en el
laboratorio de fuente de hidrógeno, y la suspensión se sacudió presurizado mecánicamente
para proporcionar agitación, o una cesta de hilado se utiliza. El calor también se puede usar,
como la presión compensa la reducción asociada en la solubilidad del gas.
Hidrogenación Flow
Hidrogenación de flujo se ha convertido en una técnica muy popular en el banco y cada vez
más la escala de proceso. Esta técnica consiste en que fluye continuamente una corriente
diluida de reactivo disuelto sobre un catalizador de lecho fijo en presencia de hidrógeno.
Usando la tecnología de HPLC establecido, esta técnica permite la aplicación de presiones
desde la atmosférica hasta 1.450 psi. Las temperaturas elevadas también pueden ser
utilizados. En la escala de banco, sistemas utilizan una gama de catalizadores preenvasados
que elimina la necesidad para el pesaje y el filtrado de catalizadores pirofóricos.
Reactores industriales
La hidrogenación catalítica se lleva a cabo en un reactor de flujo de pistón tubular relleno con
un catalizador soportado. Las presiones y temperaturas son generalmente altos, aunque esto
depende del catalizador. Catalizador de carga es típicamente mucho menor que en el
laboratorio de hidrogenación por lotes, y diversos promotores se añaden al metal, o metales
mixtos se utilizan, para mejorar la actividad, selectividad y estabilidad del catalizador. El uso
del níquel es común a pesar de su baja actividad, debido a su bajo costo en comparación con
los metales preciosos.
Reactores de inducción de gas líquido también se utilizan para llevar a cabo la hidrogenación
catalítica.
La hidrogenación es la adición de hidrógeno al doble enlace para formar alcanos.
Platino y paladio son los catalizadores más comunmente usados en la hidrogenación de
alquenos. El paladio se emplea en forma de polvo absorbido en carbón (Pd/C). El platino se
mplea como PtO2 (Catalizador de Adams).
La hidrogenación es sensible al impedimento estérico que explica la selectividad para la
reacción con el doble enlace exocíclico pero no el doble enlace interno
El etano es formado con una energía de activación de 0,3kcal / mol sólo cuando Pd (111) está
pre-cubierto por hidrógeno y no cuando etileno e hidrógeno son co-dosifican, lo que indica
que los bloques de etileno de adsorción de hidrógeno
MECANISMO DE REACCION
. El mecanismo normalmente aceptado es el propuesto originalmente por Horiuti y Polanyi
(alrededor de 1934)
1. Disociación de la molécula de hidrógeno en la superficie del metal.
2. Formación de un enlace coordinado π con el metal
3. Adición reversible de un átomo de hidrógeno
4. Adición irreversible del segundo átomo de hidrógeno
H2 (gas) ----> 2H(ads)
H2C=CH2 (gas) ----> H2C=CH2 (ads)
H2C=CH2 (ads) + H(ads) ----> H3C-CH2 (ads)
H3C-CH2 (ads) + H(ads) ----> H3C-CH3 (ads)
. El catalizador se enlaza tanto al H2 y el sustrato insaturado, facilitando así su unión.
aunque es discutible el que el enlace H-H se rompa al adsorberse dado que, en condiciones de
laboratorio, se ha encontrado que la adición produce estereoespecificidad sin. Se han
utilizado numerosos metales de transición como catalizadores, entre ellos: Ni, Cu, Pt, Rh, Fe,
Cr, Ir.
Si consideramos otras especies insaturadas, encontramos que la facilidad de hidrogenación es
(en orden de menor a mayor dificultad):
1. Triples enlaces y dobles enlaces aislados
2. Dobles y triples enlaces conjugados o que forman parte de un sistema aromático
3. Grupos carbonilos de aldehídos y cetonas
4. Derivados de ácidos carboxílicos (sólo a altas temperaturas)
Los triples enlaces se hidrogenan más rápidamente que los dobles y, en muchas ocasiones, es
posible desactivar parcialmente un catalizador para que reduzca triples enlaces sin afectar los
dobles enlaces producidos
REACCION
ENERGIA DE LOS ENLACES
Cuanto más alta sea la energía de enlace, querrá decir que más costará romperlo, por lo que el
enlace será más fuerte y más estable.
Como en la mayoría de las ocasiones se suele trabajar a presión constante, la variación de las
energías de enlace coincidirá con la variación de entalpía de la reacción.
Entalpía de la reacción de hidrogenación del eteno para formar etano A 298 K
En nuestro caso:
• Se rompe un enlace C = C y otro H – H
• Se forma un enlace C – C y dos C – H
ENERGIA DE LOS ENLACES
• Energía de enlace C = C = 610 KJ/mol
• Energía de enlace H – H = 436 KJ/mol
• Energía de enlace C – C = 347 KJ/mol
• Energía de enlace C – H = 415 KJ/mol
• = – (347 + (2*415)) + (610-436)=-1003 KJ/mol
Hallando el calor desprendido del proceso a temperatura estándar:
EL CAMBIO DE ENERGIA GIBBS DE REACCIÓN A 298 °C
CAMBIO DE ENTROPIA A 298 K
INTERVALO DE TEMPERATURAS PARA LAS CUALES LA REACCION NO ES
ESPONTANEA
2.- ETILENO
El etileno alimentado a la planta proviene de un proceso criogénico y por ello se encuentra en
estado líquido, a una presión moderada y a baja temperatura. 16 atm y -35,7 ºC fueron las
condiciones usadas, ya que se encuentran dentro de los valores típicos de salida del etileno en
plantas de producción del mismo, que son [AME08]: [AME08]: American Chemistry.
3.- El hidrógeno
Se escinde en la superficie del metal, formándose dos átomos de hidrógeno electrófilos y muy
reactivos. La nube  del doble enlace es así atacada fácilmente por éstos, obteniendose el
alcano correspondiente.
La hidrogenación con catalizadores heterogéneos es estereoespecífica, entrando los dos
hidrógenos por el mismo lado del doble enlace:
HIDROGENACION DEL ETILENO
A pesar de tener un valor de º favorable, el eteno y el hidrógeno calentados a 200ºC no
reaccionan. Es necesaria la presencia de un catalizador que facilite la ruptura homolítica del
enlace H-H.
Dado que la reacción suele ser cuantitativa y es fácil determinar el volumen de hidrógeno
consumido, frecuentemente se usa la hidrogenación como herramienta analítica; por ejemplo,
puede indicar el número de dobles enlaces de un compuesto.
La hidrogenación es exotérmica: los dos enlaces o (C-H) que se forman son, en conjunto, más
firmes que los enlaces o (H-H) y n que se rompen. La cantidad de calor desprendida al
hidrogenar un mol de un compuesto se llama calor de hidrogenación; es simplemente el H
de la reacción, pero no se incluye el signo menos. El calor de hidrogenación de casi todo
alqueno se aproxima bastante a un valor de 30 kcal por cada doble enlace del compuesto
(véase Tabla 8.1)
Tabla 1 CALORES DE HIDROGENACION DE LOS ALQUENOS
Alqueno Calor de hidrogenación kcal/mol
Etileno 32.8
Propileno 30.1
1-Buteno 30.3
1-Penteno 30.1
1-Hepteno 30.1
3-Metil-1-buteno 30.3
3,3-Dimetil-1-buteno 30.3
4,4-Dimetil-1-penteno 29.5
Cis-2-Buteno 28.6
Trans-2-Buteno 27.6
Isobutileno 28.4
Cis-2-Penteno 28.6
C C + H H C C
H H
H = calor de hidrogenación
Trans-2-Penteno 27.6
2-Metil-1-buteno 28.5
2,3-Dimetil-1-buteno 28.0
2-Metil-2-buteno 26.9
2,3-Dimetil-2-buteno 26.6
La hidrogenación procede a una velocidad despreciable en ausencia de un catalizador, aun a
temperaturas elevadas, a pesar de ser una reacción exotérmica, por lo que el proceso no
catalizado debe tener una energía de activación muy alta. La función del catalizador es reducir
la energía de activación (Eact), de modo que la reacción pueda proceder rápidamente a
temperatura ambiente. Por supuesto, el catalizador no afecta al cambio neto de energía del
proceso total: sólo rebaja la colina energética entre los reactivos y los productos
Un catalizador rebaja la Eact permitiendo que la reacción proceda de un modo distinto, es decir,
por medio de un mecanismo diferente. En ese caso, los reactivos se adsorben en la enorme
superficie del metal sólido dividido finamente, o se unen temporalmente a un ión metálico
soluble.En estas condiciones, la reacción es muy distinta a la que tendría lugar en otro caso. Se
cree, por ejemplo, que la superficie catalítica rompe el enlace en del alqueno antes de la
reacción con el hidrógeno. En la hidrogenación homogénea, el complejo del ión metálico rompe
el enlace hidrógeno-hidrógeno y transfiere estos átomos, de uno en uno, al doble enlace.
Producto
1.-Etano.
Compuesto Orgánico producto del enlace entre el Carbono e Hidrógeno, cuyá fórmula Química
es C2H6, es el alcano más sencillo que puede existir en diferentes conformaciones donde cada
uno de los átomos de hidrógeno está unido al de carbono por medio de un enlace covalente.
Pertenece a los hidrocarburos aromáticos, es el segundo miembro de la serie de los alcanos o
serie parafínica (que tiene poca afinidad).
• Químicos
El etano se emplea en la fabricación de compuestos intermedios de la síntesis orgánica; por
ejmplo el etano produce el cloruro de etileno por cloración.
Propiedades del gas
Peso Molecular
• Peso Molecular : 30.069 g/mol
Fase Sólida
• Punto de fusión : -183.3 °C
• Calor latente de fusión (1,013 bar, en el punto triple) : 95.081 kJ/kg
Fase líquida
• Densidad del líquido (1.013 bar en el punto de ebullición) : 543.83 kg/m3
• Equivalente Líquido/Gas (1.013 bar y 15 °C (59 °F)) : 424.1 vol/vol
• Punto de ebullición (1.013 bar) : -88.58 °C
• Calor latente de vaporización (1.013 bar en el punto de ebullición) : 489.4 kJ/kg
• Presión de vapor (a 21 °C o 70 °F) : 38.475 bar
Punto Crítico
• Temperatura Crítica : 32.17 °C
• Presión Crítica : 48.72 bar
• Densidad Crítica : 206.18 kg/m3
Punto triple
• Temperatura del punto triple : -182.78 °C
• Presión del punto triple : 0.0000113 bar
Fase gaseosa
• Densidad del gas (1.013 bar en el punto de ebullición) : 2.054 kg/m3
• Densidad del Gas (1.013 bar y 15 °C (59 °F)) : 1.2822 kg/m3
• Factor de Compresibilidad (Z) (1.013 bar y 15 °C (59 °F)) : 0.99156
• Gravedad específica (aire = 1) : 1.05
• Volumen Específico (1.013 bar y 21 °C (70 °F)) : 0.8077 m3
/kg
• Capacidad calorífica a presión constante (Cp) (1 bar y 25 °C (77 °F)) : 0.0528 kJ/
(mol.K)
• Capacidad calorífica a volumen constante (Cv) (1 bar y 25 °C (77 °F)) : 0.0443 kJ/
(mol.K)
• Razón de calores específicos (Gama:Cp/Cv) (1 bar y 25 °C (77 °F)) : 1.1939
• Viscosidad (1.013 bar y 0 °C (32 °F)) : 8.6129E-05 Poise
• Conductividad Térmica (1.013 bar y 0 °C (32 °F)) : 17.9608 mW/(m.K)
Misceláneos
• Solubilidad en agua (1.013 bar y 20 °C (68 °F)) : 0.052 vol/vol
• Temperatura de Autoignición : 515 °C
3. FORMULACION
Proponer el diseño de un reactor para obtener el etano por hidrogenación catalítica del etileno
4. PERFIL O BOCETO
TEMA;Hidrogenación de etileno para obtener etano
TITULO:Hidrogenación catalitica de etileno para obtener etano
MATERIA PRIMA:ETILENO
CATLIZADOR:Ni,Pd ,Pt
REACTOR:PBR
POR OPERACIÓN :CONTINUO
POR SU FORMA:TUBULAR
LECHO MOVIL:(no se mueve)
TEMPERATURA :ADIABATICO
FASES:
- HETEROGENEO:ya que a pesar de que los sustratos son gases , pero el catalizador
es solido, en este caso es un metal soportado en
PROCESO: ESTACIONARIO
5. DISEÑO DE UNA PLANTA DE PRODUCCION DE ETANO
5.1 EQUIPOS:
 Reactor tubular de lecho fijo(adiabático)
 Barómetro
 Valvula aliviadora
 Valvula de paso
 Valvula de llenado
 Conexión al contenedor de hidrogeno
 Recipiente de reacción (etano)
6. PREFACTIBILIDAD:
REACCION DE HIDROGENACION DE ETENO A ETANO
A: ( )2 4 2C g3OH + ( )22CO g→ ( )2+ 2H O l
–B: ( )22CO g ( )2+ 3H O l ( )7
22 26C H O g→ +
C: 1
222 O )H (g) (g+ 2H O(l)→
TOTAL: C2H4 (g) + H2 (g) →C2H6 (g)
Así pues, se puede afirmar que R = A – B + C.
Entonces, según la ley de Hess, también se puede afirmar que:
( ) ( ) ( )
R A B R
R
Hº Hº Hº Hº
Sustituyendo valores:
Hº 1386,1 1539,9 285,6 131,8 kJ<0
La reacción es exotérmica.
∆ = ∆ −∆ +∆
∆ = − − − + − = −
Calculamos los moles de hidrógeno que se consumen, utilizando la ecuación de estado de los
gases ideales:
2
2
H
H
P(atm) V(L) n R T(K) 1 11,3 n 0,082 273
11,3
n 0,5048 moles
0,082 273
× = × × ⇒ × = × ×
= =
×
Calculamos la cantidad de calor liberada por la reacción de hidrogenación cuando se
consumen estos moles de hidrógeno:
2 21 mol H consumido 0,5048 moles H consumidos
libera 131,8 kJ x
x 66,53 kJ
=
=
Así pues, la cantidad de calor que acompaña a la reacción de hidrogenación cuando se
consumen 1,3 L de H2 a 1 atm de presión y 0 ºC es de 66,53 kJ liberados.
Conversión global de etileno: número de moles, o moléculas, de etano en el equilibrio
dividido por el número inicial de moles, o moléculas, de etileno
∆HºCombustión (C2H4) = –1386,1 kJ/mol.
∆HºCombustión (C2H6) = –1539,9 kJ/mol.
∆Hºf (H2O) = –285, 6 kJ/mol.
La espontaneidad de una reacción química viene determinada por la variación de la energía
libre de Gibbs (∆G), que viene dada por la expresión: ∆G = ∆H – T · ∆S. Si la reacción es
endotérmica, ∆H > 0, el término entálpico T · ∆S debe ser mayor que ∆H, para que la reacción
sea espontánea ∆G < 0, lo que ocurre a temperaturas altas (siempre que ∆S sea < 0).
Si el proceso es exotérmico, entonces ∆H < 0 y si experimenta un aumento del orden, ∆S < 0.
Si tenemos en cuenta la expresión de la variación de energía libre, ∆G = ∆H – T · ∆S, el término
entálpico es negativo y el término entrópico es negativo. Por tanto, un valor de ∆G < 0 solo se
puede conseguir cuando H T S∆ > ×∆ , es decir, a temperaturas bajas, se podrá conseguir
que sea una reacción espontánea, pero no lo será siempre.
LEY DE VELOCIDAD
presenta un comportamiento de primer orden respecto a la concentración de hidrogeno, esto
es:
(−rH ) = kCH
Diseño y control de hidrogenador
El uso de hidrógeno exige tomar precauciones frente a la creación de una explosiva mezcla de
hidrógeno y aire. Normalmente, el tanque de hidrogenación se somete a una prueba de presión
seguida de varias purgas de nitrógeno antes de introducir hidrógeno. Asimismo, al final del
proceso de reacción, el tanque se purga con nitrógeno para dejarlo en condiciones seguras.
Habitualmente, un sistema de seguridad por hardware confirma las fases de la prueba de
presión y la purga de nitrógeno antes de permitir que se abra la línea de hidrógeno.
La hidrogenación exige mantener altas presiones en el tanque de reacción, lo que produce
problemas en el mantenimiento de las juntas en torno a los agitadores, que en algunos casos
exigen comprobaciones adicionales de la integridad o actualizaciones para incorporar sistemas
de acoplamiento magnético.
Además, la hidrogenación suele crear una reacción altamente exotérmica, que ocasiona
exigentes requisitos de control de temperatura.
Los entornos de I+D y pruebas clínicas en los que actúan muchos tanques de hidrogenación de
bajo volumen exigen que estas instalaciones permitan el uso de una variedad de productos,
cada uno con perfiles estrictamente definidos tanto para la propia adición de hidrógeno como
para el perfil térmico relacionado.
Por lo tanto, el sistema de control debe aportar flexibilidad en la forma de conseguir el control
preciso y repetido del entorno de hidrogenación e incluir las funciones siguientes:
 Control secuencial para pruebas de presión, purga y adición de hidrógeno a vasijas.
 Preciso control de lazo para presión y temperatura (en caso necesario, el T800 también
ofrece programación de perfiles de puntos de consigna de temperatura).
 Recogida segura de datos on-line del proceso de hidrogenación para analizarlos.
Pantalla local de operario con gráficos nítidos y acceso controlado a parámetros
La hidrogenación exige mantener altas presiones en el tanque de reacción, lo que produce
problemas en el mantenimiento de las juntas en torno a los agitadores, que en algunos casos
exigen comprobaciones adicionales de la integridad o actualizaciones para incorporar sistemas
de acoplamiento magnético.
Además, la hidrogenación suele crear una reacción altamente exotérmica, que ocasiona
exigentes requisitos de control de temperatura.
Los entornos de I+D y pruebas clínicas en los que actúan muchos tanques de hidrogenación de
bajo volumen exigen que estas instalaciones permitan el uso de una variedad de productos,
cada uno con perfiles estrictamente definidos tanto para la propia adición de hidrógeno como
para el perfil térmico relacionado.
Por lo tanto, el sistema de control debe aportar flexibilidad en la forma de conseguir el control
preciso y repetido del entorno de hidrogenación e incluir las funciones siguientes:
 Control secuencial para pruebas de presión, purga y adición de hidrógeno a vasijas.
 Preciso control de lazo para presión y temperatura (en caso necesario, el T800 también
ofrece programación de perfiles de puntos de consigna de temperatura).
 Recogida segura de datos on-line del proceso de hidrogenación para analizarlos.
Pantalla local de operario con gráficos nítidos y acceso controlado a parámetros
REACTOR COMERCIAL
Reactor de hidrogenación
Capacidad: 100 litros
Presión: 40 bar
Temperatura: -10 to +250°C
Material: Acero inoxidable
Sistema reactor de tipo batch para hidrogenaciones. El reactor está equipado con camisa de
atemperación externa y con un circuito interno de enfriamiento rápido de emergencia para un
control seguro de las reacciones exotérmicas. El tubo de aspersión de gas permite una
eficiente dispersión del gas en la fase líquida. Mediante las mirillas de vidrio se puede observar
e inspeccionar visualmente el proceso. Los vapores destilados se arrastran y condensan y se
recogen en el vaso colector.
Reactor a presión de 100 lt., circuito de refrigeración, agitador multi-stage
Tapa con acoplamiento magnético de alto-torque
Tubo de vapores y condensador
Colector con mirillas oara medición del nivel
.
CONSTRUCCION DEL REACTOR
Los primeros reactores o convertidores, como también se les llama, del tipo
batch, se llamaban también de sistema de recirculación de hidrógeno y se usaron
los primeros 50 años en la industria de la hidrogenación, probablemente porque
el hidrógeno empleado no era de la pureza que hoy se consigue con las plantas
electrolíticas.
El uso de hidrógeno exige tomar precauciones frente a la creación de una
explosiva mezcla de hidrógeno y aire. Normalmente, el tanque de hidrogenación
se somete a una prueba de presión seguida de varias purgas de nitrógeno antes de introducir
hidrógeno. Asimismo, al final del proceso de reacción, el tanque se purga con nitrógeno para
dejarlo en condiciones seguras.
Se necesita un recator para hidrogenacon catalítica con un niple y 2 tapones capa de acero al
carbón,a la tapa superior se adptar un termopozo de cobre y dos tubos de acero inoxidable que
funcionaran como entrada(B) y salida de hidrogeno(A) que se le adptar un manometro seco de
0 a 200 psi y una valvula de paso para liberar la preison del reactor,al tubo B se le adaptar una
valvula de paso para regular la netrada de hidrogeno , y asi lograr la presión deseada.
En el termopozo se colocara un termómetro de aguja de 0 a 200 °c con el cual se monitoreara
la temperatura en el tubo C , se adptara un avalvula para toma de muetsra , el recator se
colocara sobre un plato caliente y se envolver con material aislante pata mantener la
T°constante
El material necesario a utilizar será el siguiente: piezas de acero al carbón que soportaran lata
presión y temperatura ,dos tapones capa con rosca de 2 pulgadas y un niple con rosca de 2x4
pulgadas ,alos tapones se les osldara dos tubos de caero inoxidable que atravesaran los
tapones
Funcionamiento
El catlizador mas efectivo a utilizar será el paladio,por datos bibliográficos la presión y
tempertaura a utilizar serán: no mayor a 75°C , y la rsion no mayor a 55 psi

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Aldehidos
AldehidosAldehidos
Aldehidos
 
Aldehídos y cetonas
Aldehídos y cetonasAldehídos y cetonas
Aldehídos y cetonas
 
Informe practica #5 (articulo cientifico) Alcoholes
Informe practica #5  (articulo cientifico) AlcoholesInforme practica #5  (articulo cientifico) Alcoholes
Informe practica #5 (articulo cientifico) Alcoholes
 
Aldehídos y cetonas iqa
Aldehídos y cetonas iqaAldehídos y cetonas iqa
Aldehídos y cetonas iqa
 
Cinética quimica
Cinética quimicaCinética quimica
Cinética quimica
 
Informe alcoholes (sin portada)
Informe alcoholes (sin portada)Informe alcoholes (sin portada)
Informe alcoholes (sin portada)
 
Síntesis de aldehídos y cetonas
Síntesis de aldehídos y cetonasSíntesis de aldehídos y cetonas
Síntesis de aldehídos y cetonas
 
Obtención de Cloruro de t-butilo
Obtención de Cloruro de t-butiloObtención de Cloruro de t-butilo
Obtención de Cloruro de t-butilo
 
Aldehídos y cetonas
Aldehídos y cetonasAldehídos y cetonas
Aldehídos y cetonas
 
Alcoholes
AlcoholesAlcoholes
Alcoholes
 
Practica 1 reacciones de adicion
Practica 1 reacciones de adicionPractica 1 reacciones de adicion
Practica 1 reacciones de adicion
 
Organica iii lab 2
Organica iii lab 2Organica iii lab 2
Organica iii lab 2
 
Alcanos.pdf
Alcanos.pdfAlcanos.pdf
Alcanos.pdf
 
Alcoholes
AlcoholesAlcoholes
Alcoholes
 
Reacciones Generales de Alcoholes, Fenoles y Éteres.
Reacciones Generales de Alcoholes, Fenoles y Éteres.Reacciones Generales de Alcoholes, Fenoles y Éteres.
Reacciones Generales de Alcoholes, Fenoles y Éteres.
 
Informe de lab organica #10
Informe de lab organica #10Informe de lab organica #10
Informe de lab organica #10
 
Catalizadores
CatalizadoresCatalizadores
Catalizadores
 
232327053 informe-10
232327053 informe-10232327053 informe-10
232327053 informe-10
 
Módulo de química yeral y valentina
Módulo de química yeral y valentinaMódulo de química yeral y valentina
Módulo de química yeral y valentina
 
Informe practica #6 (articulo cientifico)
Informe practica #6 (articulo cientifico)Informe practica #6 (articulo cientifico)
Informe practica #6 (articulo cientifico)
 

Andere mochten auch

20100507 Criogénica Poza Rica
20100507 Criogénica Poza Rica20100507 Criogénica Poza Rica
20100507 Criogénica Poza Ricaginfra0712
 
C03 transparencias
C03 transparenciasC03 transparencias
C03 transparenciasromypech
 
Proceso Claus
Proceso Claus Proceso Claus
Proceso Claus Rmo_MiGuel
 
Proceso de obtención del gas eteno por deshidratación
Proceso de obtención del gas eteno por deshidrataciónProceso de obtención del gas eteno por deshidratación
Proceso de obtención del gas eteno por deshidrataciónkattytaborda11
 
Reacciones De Alquenos
Reacciones De AlquenosReacciones De Alquenos
Reacciones De AlquenosSolana Heredia
 
Mecanismos de reacción de los alquenos
Mecanismos de reacción de los alquenosMecanismos de reacción de los alquenos
Mecanismos de reacción de los alquenosHober NM
 
Ciclo biogeoquímico del Azufre
Ciclo biogeoquímico del AzufreCiclo biogeoquímico del Azufre
Ciclo biogeoquímico del Azufreahmedhidd
 

Andere mochten auch (12)

20100507 Criogénica Poza Rica
20100507 Criogénica Poza Rica20100507 Criogénica Poza Rica
20100507 Criogénica Poza Rica
 
C03 transparencias
C03 transparenciasC03 transparencias
C03 transparencias
 
Gn criogenico 2007
Gn criogenico 2007Gn criogenico 2007
Gn criogenico 2007
 
QUIMICA ORGANICA AVANZADA 7
QUIMICA ORGANICA AVANZADA 7QUIMICA ORGANICA AVANZADA 7
QUIMICA ORGANICA AVANZADA 7
 
Ingenieria Química
Ingenieria QuímicaIngenieria Química
Ingenieria Química
 
Proceso Claus
Proceso Claus Proceso Claus
Proceso Claus
 
Proceso de obtención del gas eteno por deshidratación
Proceso de obtención del gas eteno por deshidrataciónProceso de obtención del gas eteno por deshidratación
Proceso de obtención del gas eteno por deshidratación
 
Reacciones De Alquenos
Reacciones De AlquenosReacciones De Alquenos
Reacciones De Alquenos
 
Tratamientos del gas
Tratamientos del gasTratamientos del gas
Tratamientos del gas
 
Mecanismos de reacción de los alquenos
Mecanismos de reacción de los alquenosMecanismos de reacción de los alquenos
Mecanismos de reacción de los alquenos
 
Reacciones de alquenos
Reacciones de alquenosReacciones de alquenos
Reacciones de alquenos
 
Ciclo biogeoquímico del Azufre
Ciclo biogeoquímico del AzufreCiclo biogeoquímico del Azufre
Ciclo biogeoquímico del Azufre
 

Ähnlich wie Avance de fromulacion new

TIPOS DE REACCIONES DE ÓXIDO-REDUCCIÓN
TIPOS DE REACCIONES DE ÓXIDO-REDUCCIÓNTIPOS DE REACCIONES DE ÓXIDO-REDUCCIÓN
TIPOS DE REACCIONES DE ÓXIDO-REDUCCIÓNGeOrge Angelz MnDz
 
Aldehdosycetonas 130821212625-phpapp01
Aldehdosycetonas 130821212625-phpapp01Aldehdosycetonas 130821212625-phpapp01
Aldehdosycetonas 130821212625-phpapp01josue coronado
 
Catalisis heterogenea
Catalisis heterogeneaCatalisis heterogenea
Catalisis heterogeneaLuisMago4
 
Practica #6 Obtención de la Dibenzalacetona
Practica #6 Obtención de la DibenzalacetonaPractica #6 Obtención de la Dibenzalacetona
Practica #6 Obtención de la DibenzalacetonaAngy Leira
 
Aldehídos y cetonas
Aldehídos y cetonasAldehídos y cetonas
Aldehídos y cetonasLuis Newball
 
Microsoft power point reacciones de oxidación y reducción
Microsoft power point   reacciones de oxidación y reducciónMicrosoft power point   reacciones de oxidación y reducción
Microsoft power point reacciones de oxidación y reducciónXTROYER52
 
Hidrocarburos – alcanos, alquenos y alquinos
Hidrocarburos – alcanos, alquenos y alquinosHidrocarburos – alcanos, alquenos y alquinos
Hidrocarburos – alcanos, alquenos y alquinosmariale9517
 
4. marco teórico
4. marco teórico4. marco teórico
4. marco teóricopludech
 
A.A.Integradora 2 Presentacion electronica Quimica General..pptx
A.A.Integradora 2 Presentacion electronica Quimica General..pptxA.A.Integradora 2 Presentacion electronica Quimica General..pptx
A.A.Integradora 2 Presentacion electronica Quimica General..pptxJoseAbrahamMartinez1
 
Tipos de reacciones de óxido reducción
Tipos de reacciones de óxido reducciónTipos de reacciones de óxido reducción
Tipos de reacciones de óxido reducciónGio Alvarez Osorio
 

Ähnlich wie Avance de fromulacion new (20)

X terminar erick
X terminar erickX terminar erick
X terminar erick
 
TIPOS DE REACCIONES DE ÓXIDO-REDUCCIÓN
TIPOS DE REACCIONES DE ÓXIDO-REDUCCIÓNTIPOS DE REACCIONES DE ÓXIDO-REDUCCIÓN
TIPOS DE REACCIONES DE ÓXIDO-REDUCCIÓN
 
Tema_10-Teoria.pdf
Tema_10-Teoria.pdfTema_10-Teoria.pdf
Tema_10-Teoria.pdf
 
Aldehdosycetonas 130821212625-phpapp01
Aldehdosycetonas 130821212625-phpapp01Aldehdosycetonas 130821212625-phpapp01
Aldehdosycetonas 130821212625-phpapp01
 
Catalizadores (1)
Catalizadores (1)Catalizadores (1)
Catalizadores (1)
 
Compuestos Organicos 2
Compuestos Organicos 2Compuestos Organicos 2
Compuestos Organicos 2
 
Catalisis heterogenea
Catalisis heterogeneaCatalisis heterogenea
Catalisis heterogenea
 
Proceso H-oil
Proceso H-oilProceso H-oil
Proceso H-oil
 
Aldehidos y cetonas
Aldehidos y cetonasAldehidos y cetonas
Aldehidos y cetonas
 
Aldehidos y cetonas
Aldehidos y cetonasAldehidos y cetonas
Aldehidos y cetonas
 
Practica #6 Obtención de la Dibenzalacetona
Practica #6 Obtención de la DibenzalacetonaPractica #6 Obtención de la Dibenzalacetona
Practica #6 Obtención de la Dibenzalacetona
 
Aldehídos y cetonas
Aldehídos y cetonasAldehídos y cetonas
Aldehídos y cetonas
 
Microsoft power point reacciones de oxidación y reducción
Microsoft power point   reacciones de oxidación y reducciónMicrosoft power point   reacciones de oxidación y reducción
Microsoft power point reacciones de oxidación y reducción
 
Clase 9 y 10 CCSS 2022.pdf
Clase 9 y 10 CCSS 2022.pdfClase 9 y 10 CCSS 2022.pdf
Clase 9 y 10 CCSS 2022.pdf
 
Hidrocarburos – alcanos, alquenos y alquinos
Hidrocarburos – alcanos, alquenos y alquinosHidrocarburos – alcanos, alquenos y alquinos
Hidrocarburos – alcanos, alquenos y alquinos
 
Sustitución radicalaria
Sustitución radicalariaSustitución radicalaria
Sustitución radicalaria
 
4. marco teórico
4. marco teórico4. marco teórico
4. marco teórico
 
A.A.Integradora 2 Presentacion electronica Quimica General..pptx
A.A.Integradora 2 Presentacion electronica Quimica General..pptxA.A.Integradora 2 Presentacion electronica Quimica General..pptx
A.A.Integradora 2 Presentacion electronica Quimica General..pptx
 
QOA4
QOA4QOA4
QOA4
 
Tipos de reacciones de óxido reducción
Tipos de reacciones de óxido reducciónTipos de reacciones de óxido reducción
Tipos de reacciones de óxido reducción
 

Kürzlich hochgeladen

Emprendedores peruanos, empresas innovadoras.pptx
Emprendedores peruanos, empresas innovadoras.pptxEmprendedores peruanos, empresas innovadoras.pptx
Emprendedores peruanos, empresas innovadoras.pptxFERNANDOMIGUELRIVERA1
 
Aprendizaje basado en proyectos. La vida no son asignaturas_CPAL_PERU.pdf
Aprendizaje basado en proyectos. La vida no son asignaturas_CPAL_PERU.pdfAprendizaje basado en proyectos. La vida no son asignaturas_CPAL_PERU.pdf
Aprendizaje basado en proyectos. La vida no son asignaturas_CPAL_PERU.pdfLizbethMuoz40
 
INTELIGENCIA EMOCIONAL -ADMINISTRACION.pdf
INTELIGENCIA EMOCIONAL -ADMINISTRACION.pdfINTELIGENCIA EMOCIONAL -ADMINISTRACION.pdf
INTELIGENCIA EMOCIONAL -ADMINISTRACION.pdfELISATORRES56
 
LOS BANCOS EN PERÚ establece las normas para la contabilización de los invent...
LOS BANCOS EN PERÚ establece las normas para la contabilización de los invent...LOS BANCOS EN PERÚ establece las normas para la contabilización de los invent...
LOS BANCOS EN PERÚ establece las normas para la contabilización de los invent...EmelynYesmynVegaArre
 
Libros - Las 48 leyes del Poder vida.pdf
Libros - Las 48 leyes del Poder vida.pdfLibros - Las 48 leyes del Poder vida.pdf
Libros - Las 48 leyes del Poder vida.pdfomd190207
 
METODO MIXTOpresentaciondeadministracion.pptx
METODO MIXTOpresentaciondeadministracion.pptxMETODO MIXTOpresentaciondeadministracion.pptx
METODO MIXTOpresentaciondeadministracion.pptxBrayanParra38
 
GERENCIA DE OPERACIONES MBA ADMINISTRACION DE EMPRESAS
GERENCIA DE OPERACIONES MBA ADMINISTRACION DE EMPRESASGERENCIA DE OPERACIONES MBA ADMINISTRACION DE EMPRESAS
GERENCIA DE OPERACIONES MBA ADMINISTRACION DE EMPRESASSilvanabelenCumpasip
 
Evaluación y Mejora Continua Guía de Seguimiento y Monitoreo para Cursos de C...
Evaluación y Mejora Continua Guía de Seguimiento y Monitoreo para Cursos de C...Evaluación y Mejora Continua Guía de Seguimiento y Monitoreo para Cursos de C...
Evaluación y Mejora Continua Guía de Seguimiento y Monitoreo para Cursos de C...Oxford Group
 
EXPLICACIONES DE ASIENTOS CONTABLES DE SUELDOS Y JORNALES .pptx
EXPLICACIONES DE ASIENTOS CONTABLES DE SUELDOS Y JORNALES .pptxEXPLICACIONES DE ASIENTOS CONTABLES DE SUELDOS Y JORNALES .pptx
EXPLICACIONES DE ASIENTOS CONTABLES DE SUELDOS Y JORNALES .pptxFelicia Escobar
 
Presentación Martin Purisaca - BCP...ppt
Presentación Martin Purisaca - BCP...pptPresentación Martin Purisaca - BCP...ppt
Presentación Martin Purisaca - BCP...pptjoseccampos94
 
INVESTIGACIÓN EN INGENIERIA - El Problema de investigación
INVESTIGACIÓN EN INGENIERIA - El Problema de investigaciónINVESTIGACIÓN EN INGENIERIA - El Problema de investigación
INVESTIGACIÓN EN INGENIERIA - El Problema de investigaciónGabrielaRisco3
 
GESTIÓN POR PROCESOS - 09.12 y 16.12.23 - parte 2 - MILAGROS FERNANDEZ - PRES...
GESTIÓN POR PROCESOS - 09.12 y 16.12.23 - parte 2 - MILAGROS FERNANDEZ - PRES...GESTIÓN POR PROCESOS - 09.12 y 16.12.23 - parte 2 - MILAGROS FERNANDEZ - PRES...
GESTIÓN POR PROCESOS - 09.12 y 16.12.23 - parte 2 - MILAGROS FERNANDEZ - PRES...ssuser66a3da
 
El Ejército y las Operaciones en el Ciberespacio
El Ejército y las Operaciones en el CiberespacioEl Ejército y las Operaciones en el Ciberespacio
El Ejército y las Operaciones en el CiberespacioEjército de Tierra
 
modalidades de importaciones de productos
modalidades de importaciones de productosmodalidades de importaciones de productos
modalidades de importaciones de productosRaynelLpezVelsquez
 
INSPECCION-PREOPERACIONAL DE PULIDORA.pdf
INSPECCION-PREOPERACIONAL DE PULIDORA.pdfINSPECCION-PREOPERACIONAL DE PULIDORA.pdf
INSPECCION-PREOPERACIONAL DE PULIDORA.pdffaguilarpgrarlboliva
 
CADENA DE SUMINISTROS DIAPOSITIVASS.pptx
CADENA DE SUMINISTROS DIAPOSITIVASS.pptxCADENA DE SUMINISTROS DIAPOSITIVASS.pptx
CADENA DE SUMINISTROS DIAPOSITIVASS.pptxYesseniaGuzman7
 
1 GENERALIDADES Bioestadística y demografia.pdf
1 GENERALIDADES Bioestadística y demografia.pdf1 GENERALIDADES Bioestadística y demografia.pdf
1 GENERALIDADES Bioestadística y demografia.pdfjoanjustiniano98
 
ANÁLISIS DEL ENTORNO en la empresa Entel .pptx
ANÁLISIS DEL ENTORNO en la empresa Entel .pptxANÁLISIS DEL ENTORNO en la empresa Entel .pptx
ANÁLISIS DEL ENTORNO en la empresa Entel .pptxJoseLuisUluriMamani
 
Regímenes laborales en el Perú actualizados al 2024
Regímenes laborales en el Perú actualizados al 2024Regímenes laborales en el Perú actualizados al 2024
Regímenes laborales en el Perú actualizados al 2024fanny vera
 
Unidad 1 Modelo de Internacionalizacion de la empresas.pdf
Unidad 1 Modelo de Internacionalizacion de la empresas.pdfUnidad 1 Modelo de Internacionalizacion de la empresas.pdf
Unidad 1 Modelo de Internacionalizacion de la empresas.pdfLuisFernandoRozasVil
 

Kürzlich hochgeladen (20)

Emprendedores peruanos, empresas innovadoras.pptx
Emprendedores peruanos, empresas innovadoras.pptxEmprendedores peruanos, empresas innovadoras.pptx
Emprendedores peruanos, empresas innovadoras.pptx
 
Aprendizaje basado en proyectos. La vida no son asignaturas_CPAL_PERU.pdf
Aprendizaje basado en proyectos. La vida no son asignaturas_CPAL_PERU.pdfAprendizaje basado en proyectos. La vida no son asignaturas_CPAL_PERU.pdf
Aprendizaje basado en proyectos. La vida no son asignaturas_CPAL_PERU.pdf
 
INTELIGENCIA EMOCIONAL -ADMINISTRACION.pdf
INTELIGENCIA EMOCIONAL -ADMINISTRACION.pdfINTELIGENCIA EMOCIONAL -ADMINISTRACION.pdf
INTELIGENCIA EMOCIONAL -ADMINISTRACION.pdf
 
LOS BANCOS EN PERÚ establece las normas para la contabilización de los invent...
LOS BANCOS EN PERÚ establece las normas para la contabilización de los invent...LOS BANCOS EN PERÚ establece las normas para la contabilización de los invent...
LOS BANCOS EN PERÚ establece las normas para la contabilización de los invent...
 
Libros - Las 48 leyes del Poder vida.pdf
Libros - Las 48 leyes del Poder vida.pdfLibros - Las 48 leyes del Poder vida.pdf
Libros - Las 48 leyes del Poder vida.pdf
 
METODO MIXTOpresentaciondeadministracion.pptx
METODO MIXTOpresentaciondeadministracion.pptxMETODO MIXTOpresentaciondeadministracion.pptx
METODO MIXTOpresentaciondeadministracion.pptx
 
GERENCIA DE OPERACIONES MBA ADMINISTRACION DE EMPRESAS
GERENCIA DE OPERACIONES MBA ADMINISTRACION DE EMPRESASGERENCIA DE OPERACIONES MBA ADMINISTRACION DE EMPRESAS
GERENCIA DE OPERACIONES MBA ADMINISTRACION DE EMPRESAS
 
Evaluación y Mejora Continua Guía de Seguimiento y Monitoreo para Cursos de C...
Evaluación y Mejora Continua Guía de Seguimiento y Monitoreo para Cursos de C...Evaluación y Mejora Continua Guía de Seguimiento y Monitoreo para Cursos de C...
Evaluación y Mejora Continua Guía de Seguimiento y Monitoreo para Cursos de C...
 
EXPLICACIONES DE ASIENTOS CONTABLES DE SUELDOS Y JORNALES .pptx
EXPLICACIONES DE ASIENTOS CONTABLES DE SUELDOS Y JORNALES .pptxEXPLICACIONES DE ASIENTOS CONTABLES DE SUELDOS Y JORNALES .pptx
EXPLICACIONES DE ASIENTOS CONTABLES DE SUELDOS Y JORNALES .pptx
 
Presentación Martin Purisaca - BCP...ppt
Presentación Martin Purisaca - BCP...pptPresentación Martin Purisaca - BCP...ppt
Presentación Martin Purisaca - BCP...ppt
 
INVESTIGACIÓN EN INGENIERIA - El Problema de investigación
INVESTIGACIÓN EN INGENIERIA - El Problema de investigaciónINVESTIGACIÓN EN INGENIERIA - El Problema de investigación
INVESTIGACIÓN EN INGENIERIA - El Problema de investigación
 
GESTIÓN POR PROCESOS - 09.12 y 16.12.23 - parte 2 - MILAGROS FERNANDEZ - PRES...
GESTIÓN POR PROCESOS - 09.12 y 16.12.23 - parte 2 - MILAGROS FERNANDEZ - PRES...GESTIÓN POR PROCESOS - 09.12 y 16.12.23 - parte 2 - MILAGROS FERNANDEZ - PRES...
GESTIÓN POR PROCESOS - 09.12 y 16.12.23 - parte 2 - MILAGROS FERNANDEZ - PRES...
 
El Ejército y las Operaciones en el Ciberespacio
El Ejército y las Operaciones en el CiberespacioEl Ejército y las Operaciones en el Ciberespacio
El Ejército y las Operaciones en el Ciberespacio
 
modalidades de importaciones de productos
modalidades de importaciones de productosmodalidades de importaciones de productos
modalidades de importaciones de productos
 
INSPECCION-PREOPERACIONAL DE PULIDORA.pdf
INSPECCION-PREOPERACIONAL DE PULIDORA.pdfINSPECCION-PREOPERACIONAL DE PULIDORA.pdf
INSPECCION-PREOPERACIONAL DE PULIDORA.pdf
 
CADENA DE SUMINISTROS DIAPOSITIVASS.pptx
CADENA DE SUMINISTROS DIAPOSITIVASS.pptxCADENA DE SUMINISTROS DIAPOSITIVASS.pptx
CADENA DE SUMINISTROS DIAPOSITIVASS.pptx
 
1 GENERALIDADES Bioestadística y demografia.pdf
1 GENERALIDADES Bioestadística y demografia.pdf1 GENERALIDADES Bioestadística y demografia.pdf
1 GENERALIDADES Bioestadística y demografia.pdf
 
ANÁLISIS DEL ENTORNO en la empresa Entel .pptx
ANÁLISIS DEL ENTORNO en la empresa Entel .pptxANÁLISIS DEL ENTORNO en la empresa Entel .pptx
ANÁLISIS DEL ENTORNO en la empresa Entel .pptx
 
Regímenes laborales en el Perú actualizados al 2024
Regímenes laborales en el Perú actualizados al 2024Regímenes laborales en el Perú actualizados al 2024
Regímenes laborales en el Perú actualizados al 2024
 
Unidad 1 Modelo de Internacionalizacion de la empresas.pdf
Unidad 1 Modelo de Internacionalizacion de la empresas.pdfUnidad 1 Modelo de Internacionalizacion de la empresas.pdf
Unidad 1 Modelo de Internacionalizacion de la empresas.pdf
 

Avance de fromulacion new

  • 1. AVANCE DE FROMULACION, BOCETO,PREFACTIBILIDAD PARA LA HIDROGENACIION DE ETILENO 1. OBJETIVOS • Buscar información sobre la hidrogenación catalítica del etileno para la obtención de etano • Plantear la formulación, boceto y pre factibilidad para la obtención de etano a partir de la hidrogenación de etileno 2. FUNDAMENTO TEORICO HIDROGENACIÓN DE ALQUENOS Los alquenos reaccionan con hidrógeno en presencia de un catalizador adecuado para formar productos de adición. Los alcanos saturados correspondientes. Platino y paladio son los dos catalizadores utilizados para la mayoría de las hidrogenaciones de alquenos. El paladio suele emplearse finamente dividido y con un mineral inerte, como carbón, a manera de soporte para maximizar el área superficial (Pd/C). El platino se emplea generalmente como PtO2, reactivo llamado catalizador de Adams. La reacción de hidrogenación ha resultado difícil de estudiar mecanísticamente. Sin embargo, la experiencia ha demostrado que la hidrogenación suele ocurrir con estereoquímica sin; ambos hidrógenos se unen al doble enlace desde la misma cara. El primer paso de la reacción es la adsorción del hidrógeno en la superficie del catalizador. Después se forma un complejo entre el catalizador y el alqueno mediante la superposición de orbitales vacantes del metal con el orbital pi lleno del alqueno, a continuación el producto saturado se separa del catalizador. LaHidrogenaciónCatalítica En la hidrogenación, la energía de activación es muy alta y, por lo tanto, esta reacción no se llevará a cabo muy fácilmente sin el uso de condiciones especiales, tales como una temperatura y una presión muy altas. Sin embargo, si se añade una pequeña cantidad de un compuesto metálico a base de paladio, platino o níquel a la mezcla de alqueno/hidrógeno, la reacción de hidrogenación se produce mucho más fácilmente. El metal actúa como un catalizador para esta reacción. Por lo tanto, la hidrogenación catalítica es la adición de hidrógeno a un compuesto químico insaturado usando un catalizador metálico para acelerar la reacción. La hidrogenación catalítica (Ni, Pt, Pd) conduce primero a la formación de un alqueno y luego a la del alcano correspondiente. . Al agitar bajo una ligera presión de hidrógeno en presencia de una pequeña cantidad de un catalizador, los alquenos se convierten suave y cuantitativamente en alcanos con el mismo esqueleto carbonado. La hidrogenación es de dos tipos generales: (a) heterogénea (dos fases) y (b) homogénea (una fase). En ambos casos, el catalizador provoca la adición de hidrógeno molecular, H2, al doble enlace.
  • 2. •  La hidrogenación heterogénea : es el método clásico, todavía muy utilizado. El catalizador es algún metal dividido finamente, por lo común platino, paladio o níquel. Se agita una solución del alqueno bajo una ligera presión de hidrógeno gas en presencia de una pequeña cantidad del catalizador. La reacción es rápida y suave y, una vez completa, simplemente se filtra la solución del producto saturado del catalizador insoluble.  La hidrogenación homogénea: mucho más moderna, ofrece una flexibilidad imposible de alcanzar con los catalizadores antiguos. Mediante modificaciones en los catalizadores, puede llevarse a cabo la hidrogenación con una selectividad sin precedente. Los catalizadores son complejos orgánicos de metales de transición, como rodio o iridio: por ejemplo, el catalizador de Wilkinson. Son solubles en disolventes orgánicos y la hidrogenación se efectúa así en una sola fase, la solución. Lo inconveniente del método está en la dificultad de separación del catalizador y el producto una vez terminada la reacción. Sin embargo, se están desarrollando métodos para evitar esta dificultad: el catalizador se une incorporado químicamente a un polímero sólido insoluble (una molécula gigante), lo que permite una filtración fácil al final de la reacción. De esta manera, la hidrogenación homogénea se convierte en heterogénea, pero el modo de acción parece permanecer igual. En el capítulo 20 estudiaremos con algún detalle estos catalizadores: su estructura, cómo trabajan y, en particular, cómo permiten el control estereoquímico de la hidrogenación y de muchas otras reacciones Proceso La hidrogenación tiene tres componentes, el sustrato saturado, el hidrógeno y, invariablemente, un catalizador. La reacción de reducción se lleva a cabo a diferentes temperaturas y presiones dependiendo del sustrato y la actividad del catalizador Sustrato: La adición de H2 a un alqueno proporciona un alcano en la reacción protypical: 1.- CATALIZADOR La longevidad del catalizador requiere también un material soporte que no se derrumbe o desintegre durante su preparación y uso. Bentonitas y montmorillonitas extraídas con HCl para reducir su contenido en aluminio tienen mejores propiedades mecánicas y mayor absortividad del ácido que la celita Los catalizadores heterogéneos - Los catalizadores heterogéneos para la hidrogenación son más comunes industrialmente. Al igual que en los catalizadores homogéneos, la actividad se ajusta a través de cambios en el medio ambiente en todo el metal, es decir, la esfera de coordinación. Diferentes caras de un catalizador heterogéneo cristalina muestran actividades distintas, por ejemplo. Del mismo modo, los catalizadores heterogéneos se ven afectados por sus soportes, es decir, el material sobre el con el catalizador heterogéneo está obligado. En muchos casos, las modificaciones altamente empíricos implican "venenos" selectivos. Por lo tanto, un catalizador cuidadosamente elegido puede ser utilizado para hidrogenar algunos grupos funcionales sin que afecten a otros, tales como la hidrogenación de alquenos sin tocar los anillos aromáticos, o la hidrogenación selectiva de alquinos a alquenos utilizando catalizador de Lindlar. Por ejemplo, cuando se coloca el catalizador de paladio sobre sulfato de bario y después se trató con quinolina, el catalizador resultante reduce alquinos sólo la medida
  • 3. de lo alquenos. El catalizador de Lindlar se ha aplicado a la conversión de fenilacetileno a estireno. Hidrogenación asimétrica también es posible a través de la catálisis heterogénea en un metal que es modificado por un ligando quiral. Fuentes de hidrógeno Para la hidrogenación, la fuente obvia de hidrógeno es en sí mismo gas H2, que es típicamente disponible en el comercio dentro del medio de almacenamiento de un cilindro presurizado. El proceso de hidrogenación utiliza a menudo mayor que 1 atmósfera de H2, por lo general transporta desde los cilindros y, a veces aumentada por "bombas de refuerzo". El hidrógeno gaseoso se produce industrialmente a partir de hidrocarburos por el proceso conocido como reformado con vapor. • Transferencia de hidrogenación El hidrógeno también puede ser extraído de "hidrógeno"-donantes en lugar de gas de H2. Donantes de hidrógeno, que a menudo sirven como disolventes incluyen hidrazina, dihidronaftaleno, dihidroantraceno, isopropanol, y el ácido fórmico. En la síntesis orgánica, hidrogenación de transferencia es útil para la reducción asimétrica de sustratos insaturados polares, tales como cetonas, aldehídos, e iminas. • Hidrogenación electrolítica Sustratos polares tales como las cetonas pueden ser hidrogenados electroquímicamente, el uso de disolventes próticos y equivalentes reductores como la fuente de hidrógeno. Termodinámica y el mecanismo La hidrogenación es una reacción fuertemente exotérmica. En la hidrogenación de aceites vegetales y ácidos grasos, por ejemplo, el calor liberado es de aproximadamente 25 kcal por mol, suficiente para elevar la temperatura del aceite por 1.6 a 1.7 C por número de yodo gota. El mecanismo de hidrogenación catalizada por metal de alquenos y alquinos se ha estudiado ampliamente. En primer lugar el etiquetado de isótopos de deuterio utilizando confirma la regioquímica de la adición: RCH = CH2 D2? RCHDCH2D Aplicaciones industriales La hidrogenación catalítica tiene diversos usos industriales. Con mayor frecuencia, la hidrogenación industrial depende de catalizadores heterogéneos. En los procesos petroquímicos, la hidrogenación se utiliza para convertir alquenos y compuestos aromáticos en alcanos y cicloalcanos saturados, que son menos tóxicos y menos reactiva. Por ejemplo, aguarrás mineral es generalmente hidrogenado. Hidrocraqueo de residuos pesados en diesel es otra aplicación. En isomerización y los procesos de reformado catalítico, un poco de presión de hidrógeno se mantiene a hydrogenolyze coque formado sobre el catalizador y prevenir su acumulación. El equipo utilizado para la hidrogenación Químico banco de hoy tiene tres opciones principales de los equipos de hidrogenación:
  • 4. • Hidrogenación por lotes en condiciones atmosféricas • Hidrogenación por lotes a temperatura elevada y/o presión • Hidrogenación Flow Hidrogenación por lotes en condiciones atmosféricas El original y sigue siendo una forma comúnmente practicado de hidrogenación en laboratorios de enseñanza, este proceso se lleva a cabo normalmente mediante la adición de catalizador sólido a un matraz de fondo redondo de reactivo disuelto que ha sido evacuado usando nitrógeno o gas argón y la mezcla de sellado con un sello de caucho penetrable. El gas hidrógeno se suministra a continuación a partir de un globo lleno de H2. La mezcla de tres fases resultante se agita para promover la mezcla. La absorción de hidrógeno se puede controlar, lo cual puede ser útil para monitorizar el progreso de una hidrogenación. Esto se consigue, ya sea usando un tubo graduado que contiene un líquido de color, generalmente acuosa de sulfato de cobre o con los calibres para cada recipiente de reacción. Hidrogenación por lotes a temperatura elevada y/o presión Dado que muchas reacciones de hidrogenación tales como hidrogenolisis de los grupos protectores y la reducción de los sistemas aromáticos proceder muy lentamente a temperatura y presión atmosférica, sistemas presurizados son populares. En estos casos, se añade catalizador a una solución de reactivo en una atmósfera inerte en un recipiente a presión. El hidrógeno se añade directamente a partir de un cilindro o construido en el laboratorio de fuente de hidrógeno, y la suspensión se sacudió presurizado mecánicamente para proporcionar agitación, o una cesta de hilado se utiliza. El calor también se puede usar, como la presión compensa la reducción asociada en la solubilidad del gas. Hidrogenación Flow Hidrogenación de flujo se ha convertido en una técnica muy popular en el banco y cada vez más la escala de proceso. Esta técnica consiste en que fluye continuamente una corriente diluida de reactivo disuelto sobre un catalizador de lecho fijo en presencia de hidrógeno. Usando la tecnología de HPLC establecido, esta técnica permite la aplicación de presiones desde la atmosférica hasta 1.450 psi. Las temperaturas elevadas también pueden ser utilizados. En la escala de banco, sistemas utilizan una gama de catalizadores preenvasados que elimina la necesidad para el pesaje y el filtrado de catalizadores pirofóricos. Reactores industriales La hidrogenación catalítica se lleva a cabo en un reactor de flujo de pistón tubular relleno con un catalizador soportado. Las presiones y temperaturas son generalmente altos, aunque esto depende del catalizador. Catalizador de carga es típicamente mucho menor que en el laboratorio de hidrogenación por lotes, y diversos promotores se añaden al metal, o metales mixtos se utilizan, para mejorar la actividad, selectividad y estabilidad del catalizador. El uso del níquel es común a pesar de su baja actividad, debido a su bajo costo en comparación con los metales preciosos. Reactores de inducción de gas líquido también se utilizan para llevar a cabo la hidrogenación catalítica. La hidrogenación es la adición de hidrógeno al doble enlace para formar alcanos. Platino y paladio son los catalizadores más comunmente usados en la hidrogenación de
  • 5. alquenos. El paladio se emplea en forma de polvo absorbido en carbón (Pd/C). El platino se mplea como PtO2 (Catalizador de Adams). La hidrogenación es sensible al impedimento estérico que explica la selectividad para la reacción con el doble enlace exocíclico pero no el doble enlace interno El etano es formado con una energía de activación de 0,3kcal / mol sólo cuando Pd (111) está pre-cubierto por hidrógeno y no cuando etileno e hidrógeno son co-dosifican, lo que indica que los bloques de etileno de adsorción de hidrógeno MECANISMO DE REACCION . El mecanismo normalmente aceptado es el propuesto originalmente por Horiuti y Polanyi (alrededor de 1934) 1. Disociación de la molécula de hidrógeno en la superficie del metal. 2. Formación de un enlace coordinado π con el metal 3. Adición reversible de un átomo de hidrógeno 4. Adición irreversible del segundo átomo de hidrógeno H2 (gas) ----> 2H(ads) H2C=CH2 (gas) ----> H2C=CH2 (ads) H2C=CH2 (ads) + H(ads) ----> H3C-CH2 (ads) H3C-CH2 (ads) + H(ads) ----> H3C-CH3 (ads) . El catalizador se enlaza tanto al H2 y el sustrato insaturado, facilitando así su unión. aunque es discutible el que el enlace H-H se rompa al adsorberse dado que, en condiciones de laboratorio, se ha encontrado que la adición produce estereoespecificidad sin. Se han utilizado numerosos metales de transición como catalizadores, entre ellos: Ni, Cu, Pt, Rh, Fe, Cr, Ir. Si consideramos otras especies insaturadas, encontramos que la facilidad de hidrogenación es (en orden de menor a mayor dificultad):
  • 6. 1. Triples enlaces y dobles enlaces aislados 2. Dobles y triples enlaces conjugados o que forman parte de un sistema aromático 3. Grupos carbonilos de aldehídos y cetonas 4. Derivados de ácidos carboxílicos (sólo a altas temperaturas) Los triples enlaces se hidrogenan más rápidamente que los dobles y, en muchas ocasiones, es posible desactivar parcialmente un catalizador para que reduzca triples enlaces sin afectar los dobles enlaces producidos REACCION ENERGIA DE LOS ENLACES Cuanto más alta sea la energía de enlace, querrá decir que más costará romperlo, por lo que el enlace será más fuerte y más estable. Como en la mayoría de las ocasiones se suele trabajar a presión constante, la variación de las energías de enlace coincidirá con la variación de entalpía de la reacción. Entalpía de la reacción de hidrogenación del eteno para formar etano A 298 K En nuestro caso: • Se rompe un enlace C = C y otro H – H • Se forma un enlace C – C y dos C – H ENERGIA DE LOS ENLACES • Energía de enlace C = C = 610 KJ/mol • Energía de enlace H – H = 436 KJ/mol • Energía de enlace C – C = 347 KJ/mol • Energía de enlace C – H = 415 KJ/mol • = – (347 + (2*415)) + (610-436)=-1003 KJ/mol Hallando el calor desprendido del proceso a temperatura estándar:
  • 7. EL CAMBIO DE ENERGIA GIBBS DE REACCIÓN A 298 °C CAMBIO DE ENTROPIA A 298 K INTERVALO DE TEMPERATURAS PARA LAS CUALES LA REACCION NO ES ESPONTANEA 2.- ETILENO El etileno alimentado a la planta proviene de un proceso criogénico y por ello se encuentra en estado líquido, a una presión moderada y a baja temperatura. 16 atm y -35,7 ºC fueron las condiciones usadas, ya que se encuentran dentro de los valores típicos de salida del etileno en plantas de producción del mismo, que son [AME08]: [AME08]: American Chemistry.
  • 8. 3.- El hidrógeno Se escinde en la superficie del metal, formándose dos átomos de hidrógeno electrófilos y muy reactivos. La nube  del doble enlace es así atacada fácilmente por éstos, obteniendose el alcano correspondiente. La hidrogenación con catalizadores heterogéneos es estereoespecífica, entrando los dos hidrógenos por el mismo lado del doble enlace: HIDROGENACION DEL ETILENO A pesar de tener un valor de º favorable, el eteno y el hidrógeno calentados a 200ºC no reaccionan. Es necesaria la presencia de un catalizador que facilite la ruptura homolítica del enlace H-H.
  • 9. Dado que la reacción suele ser cuantitativa y es fácil determinar el volumen de hidrógeno consumido, frecuentemente se usa la hidrogenación como herramienta analítica; por ejemplo, puede indicar el número de dobles enlaces de un compuesto. La hidrogenación es exotérmica: los dos enlaces o (C-H) que se forman son, en conjunto, más firmes que los enlaces o (H-H) y n que se rompen. La cantidad de calor desprendida al hidrogenar un mol de un compuesto se llama calor de hidrogenación; es simplemente el H de la reacción, pero no se incluye el signo menos. El calor de hidrogenación de casi todo alqueno se aproxima bastante a un valor de 30 kcal por cada doble enlace del compuesto (véase Tabla 8.1) Tabla 1 CALORES DE HIDROGENACION DE LOS ALQUENOS Alqueno Calor de hidrogenación kcal/mol Etileno 32.8 Propileno 30.1 1-Buteno 30.3 1-Penteno 30.1 1-Hepteno 30.1 3-Metil-1-buteno 30.3 3,3-Dimetil-1-buteno 30.3 4,4-Dimetil-1-penteno 29.5 Cis-2-Buteno 28.6 Trans-2-Buteno 27.6 Isobutileno 28.4 Cis-2-Penteno 28.6 C C + H H C C H H H = calor de hidrogenación
  • 10. Trans-2-Penteno 27.6 2-Metil-1-buteno 28.5 2,3-Dimetil-1-buteno 28.0 2-Metil-2-buteno 26.9 2,3-Dimetil-2-buteno 26.6 La hidrogenación procede a una velocidad despreciable en ausencia de un catalizador, aun a temperaturas elevadas, a pesar de ser una reacción exotérmica, por lo que el proceso no catalizado debe tener una energía de activación muy alta. La función del catalizador es reducir la energía de activación (Eact), de modo que la reacción pueda proceder rápidamente a temperatura ambiente. Por supuesto, el catalizador no afecta al cambio neto de energía del proceso total: sólo rebaja la colina energética entre los reactivos y los productos Un catalizador rebaja la Eact permitiendo que la reacción proceda de un modo distinto, es decir, por medio de un mecanismo diferente. En ese caso, los reactivos se adsorben en la enorme superficie del metal sólido dividido finamente, o se unen temporalmente a un ión metálico soluble.En estas condiciones, la reacción es muy distinta a la que tendría lugar en otro caso. Se cree, por ejemplo, que la superficie catalítica rompe el enlace en del alqueno antes de la reacción con el hidrógeno. En la hidrogenación homogénea, el complejo del ión metálico rompe el enlace hidrógeno-hidrógeno y transfiere estos átomos, de uno en uno, al doble enlace. Producto
  • 11. 1.-Etano. Compuesto Orgánico producto del enlace entre el Carbono e Hidrógeno, cuyá fórmula Química es C2H6, es el alcano más sencillo que puede existir en diferentes conformaciones donde cada uno de los átomos de hidrógeno está unido al de carbono por medio de un enlace covalente. Pertenece a los hidrocarburos aromáticos, es el segundo miembro de la serie de los alcanos o serie parafínica (que tiene poca afinidad). • Químicos El etano se emplea en la fabricación de compuestos intermedios de la síntesis orgánica; por ejmplo el etano produce el cloruro de etileno por cloración. Propiedades del gas Peso Molecular • Peso Molecular : 30.069 g/mol Fase Sólida • Punto de fusión : -183.3 °C • Calor latente de fusión (1,013 bar, en el punto triple) : 95.081 kJ/kg Fase líquida • Densidad del líquido (1.013 bar en el punto de ebullición) : 543.83 kg/m3 • Equivalente Líquido/Gas (1.013 bar y 15 °C (59 °F)) : 424.1 vol/vol • Punto de ebullición (1.013 bar) : -88.58 °C • Calor latente de vaporización (1.013 bar en el punto de ebullición) : 489.4 kJ/kg • Presión de vapor (a 21 °C o 70 °F) : 38.475 bar Punto Crítico • Temperatura Crítica : 32.17 °C • Presión Crítica : 48.72 bar • Densidad Crítica : 206.18 kg/m3 Punto triple • Temperatura del punto triple : -182.78 °C • Presión del punto triple : 0.0000113 bar Fase gaseosa • Densidad del gas (1.013 bar en el punto de ebullición) : 2.054 kg/m3 • Densidad del Gas (1.013 bar y 15 °C (59 °F)) : 1.2822 kg/m3 • Factor de Compresibilidad (Z) (1.013 bar y 15 °C (59 °F)) : 0.99156 • Gravedad específica (aire = 1) : 1.05 • Volumen Específico (1.013 bar y 21 °C (70 °F)) : 0.8077 m3 /kg • Capacidad calorífica a presión constante (Cp) (1 bar y 25 °C (77 °F)) : 0.0528 kJ/ (mol.K) • Capacidad calorífica a volumen constante (Cv) (1 bar y 25 °C (77 °F)) : 0.0443 kJ/ (mol.K) • Razón de calores específicos (Gama:Cp/Cv) (1 bar y 25 °C (77 °F)) : 1.1939 • Viscosidad (1.013 bar y 0 °C (32 °F)) : 8.6129E-05 Poise • Conductividad Térmica (1.013 bar y 0 °C (32 °F)) : 17.9608 mW/(m.K) Misceláneos • Solubilidad en agua (1.013 bar y 20 °C (68 °F)) : 0.052 vol/vol • Temperatura de Autoignición : 515 °C 3. FORMULACION Proponer el diseño de un reactor para obtener el etano por hidrogenación catalítica del etileno
  • 12. 4. PERFIL O BOCETO TEMA;Hidrogenación de etileno para obtener etano TITULO:Hidrogenación catalitica de etileno para obtener etano MATERIA PRIMA:ETILENO CATLIZADOR:Ni,Pd ,Pt REACTOR:PBR POR OPERACIÓN :CONTINUO POR SU FORMA:TUBULAR LECHO MOVIL:(no se mueve) TEMPERATURA :ADIABATICO FASES: - HETEROGENEO:ya que a pesar de que los sustratos son gases , pero el catalizador es solido, en este caso es un metal soportado en PROCESO: ESTACIONARIO 5. DISEÑO DE UNA PLANTA DE PRODUCCION DE ETANO 5.1 EQUIPOS:  Reactor tubular de lecho fijo(adiabático)  Barómetro  Valvula aliviadora  Valvula de paso  Valvula de llenado  Conexión al contenedor de hidrogeno  Recipiente de reacción (etano) 6. PREFACTIBILIDAD: REACCION DE HIDROGENACION DE ETENO A ETANO
  • 13. A: ( )2 4 2C g3OH + ( )22CO g→ ( )2+ 2H O l –B: ( )22CO g ( )2+ 3H O l ( )7 22 26C H O g→ + C: 1 222 O )H (g) (g+ 2H O(l)→ TOTAL: C2H4 (g) + H2 (g) →C2H6 (g) Así pues, se puede afirmar que R = A – B + C. Entonces, según la ley de Hess, también se puede afirmar que: ( ) ( ) ( ) R A B R R Hº Hº Hº Hº Sustituyendo valores: Hº 1386,1 1539,9 285,6 131,8 kJ<0 La reacción es exotérmica. ∆ = ∆ −∆ +∆ ∆ = − − − + − = −
  • 14. Calculamos los moles de hidrógeno que se consumen, utilizando la ecuación de estado de los gases ideales: 2 2 H H P(atm) V(L) n R T(K) 1 11,3 n 0,082 273 11,3 n 0,5048 moles 0,082 273 × = × × ⇒ × = × × = = × Calculamos la cantidad de calor liberada por la reacción de hidrogenación cuando se consumen estos moles de hidrógeno: 2 21 mol H consumido 0,5048 moles H consumidos libera 131,8 kJ x x 66,53 kJ = = Así pues, la cantidad de calor que acompaña a la reacción de hidrogenación cuando se consumen 1,3 L de H2 a 1 atm de presión y 0 ºC es de 66,53 kJ liberados. Conversión global de etileno: número de moles, o moléculas, de etano en el equilibrio dividido por el número inicial de moles, o moléculas, de etileno ∆HºCombustión (C2H4) = –1386,1 kJ/mol. ∆HºCombustión (C2H6) = –1539,9 kJ/mol. ∆Hºf (H2O) = –285, 6 kJ/mol. La espontaneidad de una reacción química viene determinada por la variación de la energía libre de Gibbs (∆G), que viene dada por la expresión: ∆G = ∆H – T · ∆S. Si la reacción es endotérmica, ∆H > 0, el término entálpico T · ∆S debe ser mayor que ∆H, para que la reacción sea espontánea ∆G < 0, lo que ocurre a temperaturas altas (siempre que ∆S sea < 0). Si el proceso es exotérmico, entonces ∆H < 0 y si experimenta un aumento del orden, ∆S < 0. Si tenemos en cuenta la expresión de la variación de energía libre, ∆G = ∆H – T · ∆S, el término entálpico es negativo y el término entrópico es negativo. Por tanto, un valor de ∆G < 0 solo se puede conseguir cuando H T S∆ > ×∆ , es decir, a temperaturas bajas, se podrá conseguir que sea una reacción espontánea, pero no lo será siempre.
  • 15. LEY DE VELOCIDAD presenta un comportamiento de primer orden respecto a la concentración de hidrogeno, esto es: (−rH ) = kCH Diseño y control de hidrogenador El uso de hidrógeno exige tomar precauciones frente a la creación de una explosiva mezcla de hidrógeno y aire. Normalmente, el tanque de hidrogenación se somete a una prueba de presión seguida de varias purgas de nitrógeno antes de introducir hidrógeno. Asimismo, al final del proceso de reacción, el tanque se purga con nitrógeno para dejarlo en condiciones seguras. Habitualmente, un sistema de seguridad por hardware confirma las fases de la prueba de presión y la purga de nitrógeno antes de permitir que se abra la línea de hidrógeno. La hidrogenación exige mantener altas presiones en el tanque de reacción, lo que produce problemas en el mantenimiento de las juntas en torno a los agitadores, que en algunos casos exigen comprobaciones adicionales de la integridad o actualizaciones para incorporar sistemas de acoplamiento magnético. Además, la hidrogenación suele crear una reacción altamente exotérmica, que ocasiona exigentes requisitos de control de temperatura. Los entornos de I+D y pruebas clínicas en los que actúan muchos tanques de hidrogenación de bajo volumen exigen que estas instalaciones permitan el uso de una variedad de productos, cada uno con perfiles estrictamente definidos tanto para la propia adición de hidrógeno como para el perfil térmico relacionado. Por lo tanto, el sistema de control debe aportar flexibilidad en la forma de conseguir el control preciso y repetido del entorno de hidrogenación e incluir las funciones siguientes:  Control secuencial para pruebas de presión, purga y adición de hidrógeno a vasijas.  Preciso control de lazo para presión y temperatura (en caso necesario, el T800 también ofrece programación de perfiles de puntos de consigna de temperatura).  Recogida segura de datos on-line del proceso de hidrogenación para analizarlos. Pantalla local de operario con gráficos nítidos y acceso controlado a parámetros La hidrogenación exige mantener altas presiones en el tanque de reacción, lo que produce problemas en el mantenimiento de las juntas en torno a los agitadores, que en algunos casos exigen comprobaciones adicionales de la integridad o actualizaciones para incorporar sistemas de acoplamiento magnético. Además, la hidrogenación suele crear una reacción altamente exotérmica, que ocasiona exigentes requisitos de control de temperatura.
  • 16. Los entornos de I+D y pruebas clínicas en los que actúan muchos tanques de hidrogenación de bajo volumen exigen que estas instalaciones permitan el uso de una variedad de productos, cada uno con perfiles estrictamente definidos tanto para la propia adición de hidrógeno como para el perfil térmico relacionado. Por lo tanto, el sistema de control debe aportar flexibilidad en la forma de conseguir el control preciso y repetido del entorno de hidrogenación e incluir las funciones siguientes:  Control secuencial para pruebas de presión, purga y adición de hidrógeno a vasijas.  Preciso control de lazo para presión y temperatura (en caso necesario, el T800 también ofrece programación de perfiles de puntos de consigna de temperatura).  Recogida segura de datos on-line del proceso de hidrogenación para analizarlos. Pantalla local de operario con gráficos nítidos y acceso controlado a parámetros REACTOR COMERCIAL Reactor de hidrogenación Capacidad: 100 litros Presión: 40 bar Temperatura: -10 to +250°C Material: Acero inoxidable Sistema reactor de tipo batch para hidrogenaciones. El reactor está equipado con camisa de atemperación externa y con un circuito interno de enfriamiento rápido de emergencia para un control seguro de las reacciones exotérmicas. El tubo de aspersión de gas permite una eficiente dispersión del gas en la fase líquida. Mediante las mirillas de vidrio se puede observar e inspeccionar visualmente el proceso. Los vapores destilados se arrastran y condensan y se recogen en el vaso colector.
  • 17. Reactor a presión de 100 lt., circuito de refrigeración, agitador multi-stage Tapa con acoplamiento magnético de alto-torque Tubo de vapores y condensador Colector con mirillas oara medición del nivel . CONSTRUCCION DEL REACTOR
  • 18. Los primeros reactores o convertidores, como también se les llama, del tipo batch, se llamaban también de sistema de recirculación de hidrógeno y se usaron los primeros 50 años en la industria de la hidrogenación, probablemente porque el hidrógeno empleado no era de la pureza que hoy se consigue con las plantas electrolíticas. El uso de hidrógeno exige tomar precauciones frente a la creación de una explosiva mezcla de hidrógeno y aire. Normalmente, el tanque de hidrogenación se somete a una prueba de presión seguida de varias purgas de nitrógeno antes de introducir hidrógeno. Asimismo, al final del proceso de reacción, el tanque se purga con nitrógeno para dejarlo en condiciones seguras. Se necesita un recator para hidrogenacon catalítica con un niple y 2 tapones capa de acero al carbón,a la tapa superior se adptar un termopozo de cobre y dos tubos de acero inoxidable que funcionaran como entrada(B) y salida de hidrogeno(A) que se le adptar un manometro seco de 0 a 200 psi y una valvula de paso para liberar la preison del reactor,al tubo B se le adaptar una valvula de paso para regular la netrada de hidrogeno , y asi lograr la presión deseada. En el termopozo se colocara un termómetro de aguja de 0 a 200 °c con el cual se monitoreara la temperatura en el tubo C , se adptara un avalvula para toma de muetsra , el recator se colocara sobre un plato caliente y se envolver con material aislante pata mantener la T°constante El material necesario a utilizar será el siguiente: piezas de acero al carbón que soportaran lata presión y temperatura ,dos tapones capa con rosca de 2 pulgadas y un niple con rosca de 2x4 pulgadas ,alos tapones se les osldara dos tubos de caero inoxidable que atravesaran los tapones Funcionamiento El catlizador mas efectivo a utilizar será el paladio,por datos bibliográficos la presión y tempertaura a utilizar serán: no mayor a 75°C , y la rsion no mayor a 55 psi