SlideShare a Scribd company logo
1 of 24
Download to read offline
Observational Tests of the
             Timescape Cosmology
                   David L. Wiltshire (University of Canterbury, NZ)



DLW: New J. Phys. 9 (2007) 377
     Phys. Rev. Lett. 99 (2007) 251101
     Phys. Rev. D78 (2008) 084032
     Phys. Rev. D80 (2009) 123512
Class. Quantum Grav. 28 (2011) 164006
B.M. Leith, S.C.C. Ng & DLW:
     ApJ 672 (2008) L91
P.R. Smale & DLW, MNRAS 413 (2011) 367
P.R. Smale, MNRAS (2011) in press

                                                                NZIP Conference, Wellington, 18 October 2011 – p.1/??
Overview of timescape cosmology
Standard cosmology, with 22% non-baryonic dark
matter, 74% dark energy assumes universe expands as
smooth fluid, ignoring structures on scales
< 100h−1 Mpc
∼
Actual observed universe contains vast structures of
voids (most of volume), plus walls and filaments
containing galaxies
Timescape scenario - first principles model reanalysing
coarse-graining of “dust” in general relativity
Hypothesis: must understand nonlinear evolution with
backreaction, AND gravitational energy gradients within
the inhomogeneous geometry


                                       NZIP Conference, Wellington, 18 October 2011 – p.2/??
6df: voids & bubble walls (A. Fairall, UCT)




                              NZIP Conference, Wellington, 18 October 2011 – p.3/??
Within a statistically average cell




Need to consider relative position of observers over
scales of tens of Mpc over which δρ/ρ ∼ −1.
GR is a local theory: gradients in spatial curvature and
gravitational energy can lead to calibration differences
between our rulers and clocks and volume average
ones
                                         NZIP Conference, Wellington, 18 October 2011 – p.4/??
−10
                   Relative deceleration scale
      10 m/s 2
                                                                        0.12
       α
      1.2                                                               0.10
                                                                                   α /(Hc)
      1.0                                                               0.08


      0.8                                                               0.06

                                                                        0.04
      0.6

                                                                        0.02   α /(Hc)
      0.4

(i)         0     0.05     0.1   z 0.15    0.2    0.25
                                                                 (ii)          0      2        4    z      6           8         10
                Instantaneous relative volume deceleration of walls relative to volume average background
                                   q
                        ˙
            α = H0 c¯ w γ w /(
                    γ ¯              γ 2 − 1) computed for timescape model which best fits supernovae
                                      ¯w
            luminosity distances: (i) as absolute scale nearby; (ii) divided by Hubble parameter to large z .



        With α0 ∼ 7 × 10−11 m s−2 and typically α ∼ 10−10 m s−2 for
        most of life of Universe, get 37% difference in
        calibration of volume average clocks relative to our own
                                                                                          NZIP Conference, Wellington, 18 October 2011 – p.5/??
Apparent cosmic acceleration
Volume average observer sees no apparent cosmic
acceleration
                      2 (1 − fv )2
                  q=
                  ¯              2
                                   .
                       (2 + fv )
As t → ∞, fv → 1 and q → 0+ .
                     ¯
A wall observer registers apparent cosmic acceleration

              − (1 − fv ) (8fv 3 + 39fv 2 − 12fv − 8)
         q=                                                     ,
                                        2 2
                         4 + fv + 4fv

Effective deceleration parameter starts at q ∼ 1 , for
                                               2
small fv ; changes sign when fv = 0.58670773 . . ., and
approaches q → 0− at late times.
                                              NZIP Conference, Wellington, 18 October 2011 – p.6/??
Cosmic coincidence problem solved
 Spatial curvature gradients largely responsible for
 gravitational energy gradient giving clock rate variance.
 Apparent acceleration starts when voids start to open.




                                          NZIP Conference, Wellington, 18 October 2011 – p.7/??
Best fit parameters
Hubble constant H0 + ∆H0 = 61.7+1.2 km/s/Mpc
                               −1.1
                                       +0.12
present void volume fraction fv0 = 0.76−0.09
                       ¯
bare density parameter ΩM 0 = 0.125+0.060
                                   −0.069

dressed density parameter ΩM 0 = 0.33+0.11
                                     −0.16
non–baryonic dark matter / baryonic matter mass ratio
 ¯      ¯     ¯
(ΩM 0 − ΩB0 )/ΩB0 = 3.1+2.5
                       −2.4
                     ¯
bare Hubble constant H 0 = 48.2+2.0 km/s/Mpc
                               −2.4

mean phenomenological lapse function γ 0 = 1.381+0.061
                                     ¯          −0.046
                                   +0.0120
deceleration parameter q0 = −0.0428−0.0002
wall age universe τ0 = 14.7+0.7 Gyr
                           −0.5
                                         NZIP Conference, Wellington, 18 October 2011 – p.8/??
Key observational tests




Best–fit parameters: H0 = 61.7+1.2 km/s/Mpc, Ωm = 0.33+0.11
                                −1.1                     −0.16
(1σ errors for SneIa only) [Leith, Ng & Wiltshire, ApJ 672
(2008) L91]
                                             NZIP Conference, Wellington, 18 October 2011 – p.9/??
Test 1: SneIa luminosity distances
        48
        46
        44
        42
        40
    µ

        38
        36
        34
        32
        30
          0      0.5      1        1.5                2
                          z
 Type Ia supernovae of Riess 2007 Gold data set fit with
 χ2 per degree of freedom = 0.9
 Type Ia supernovae of Hicken 2009 MLCS17 set fit with
 χ2 per degree of freedom = 1.08

                                         NZIP Conference, Wellington, 18 October 2011 – p.10/??
Dressed “comoving distance” D(z)
      H 0D                          (i)       3.5   H 0D                                                 (i)
 2                                   (ii)                                                                (ii)
                                   (iii)        3                                                        (iii)
1.5                                           2.5
                           1

                                                2
  1
                                              1.5

                                                1
0.5
                                              0.5
                          0             1
                                    z
 0       1       2   3    4    5   6            0      200   400      600          800       1000
                     z                                                z
               Best-fit timescape model (red line) compared to 3 spatially
             flat ΛCDM models: (i) best–fit to WMAP5 only (Ω = 0.75);
                                                              Λ
             (ii) joint WMAP5 + BAO + SneIa fit (Ω = 0.72);
                                                     Λ
             (iii) best flat fit to (Riess07) SneIa only (Ω = 0.66).
                                                         Λ

        Three different tests with hints of tension with ΛCDM
        agree well with TS model.
                                                             NZIP Conference, Wellington, 18 October 2011 – p.11/??
Supernovae systematics
                      Gold (167 SneIa)                             SDSS−II 1st year (272 SneIa)
      0.7                                               0.7

      0.6                                               0.6

      0.5                                               0.5

      0.4                                               0.4
Ωm0




                                                   m0
                                                   Ω
      0.3                                               0.3

      0.2                                               0.2

      0.1                                               0.1

       0                                                 0
            56   58     60    62    64   66   68              56    58     60    62        64       66       68
                             H0                                                 H0

                  MLCS17 (219 SneIa)                                   MLCS31 (219 SneIa)


      0.6                                               0.6

      0.5                                               0.5

      0.4                                               0.4
Ωm0




                                                   m0
                                                   Ω
      0.3                                               0.3

      0.2                                               0.2

      0.1                                               0.1

       0                                                 0
            56   58     60    62    64   66   68              56    58     60    62        64       66       68
                             H0                                                 H0
                                                                                NZIP Conference, Wellington, 18 October 2011 – p.12/??
Recent Sne Ia results; PR Smale + DLW
    SALT/SALTII fits (Constitution,SALT2,Union2) favour
    ΛCDM over TS: ln BTS:ΛCDM = −1.06, −1.55, −3.46
    MLCS2k2 (fits MLCS17,MLCS31,SDSS-II) favour TS
    over ΛCDM: ln BTS:ΛCDM = 1.37, 1.55, 0.53
    Different MLCS fitters give different best-fit parameters;
    e.g. with cut at statistical homogeneity scale, for
    MLCS31 (Hicken et al 2009) ΩM 0 = 0.12+0.12 ;
                                              −0.11
    MLCS17 (Hicken et al 2009) ΩM 0 = 0.19+0.14 ;
                                              −0.18
    SDSS-II (Kessler et al 2009) ΩM 0 = 0.42+0.10
                                              −0.10
    Supernovae systematics (reddening/extinction, intrinsic
    colour variations) must be understood
    TS model most obviously consistent if dust in other
    galaxies not significantly different from Milky Way
                                            NZIP Conference, Wellington, 18 October 2011 – p.13/??
Baryon acoustic oscillation measures
       f AP
                                                                   0.7   H0 D V                               (i)   (ii)
                                                                                                                    (iii)
       1.4                                      (iii)
                                                                   0.6
                                                (ii)
       1.3                                                         0.5
                                              (i)
                                                                   0.4
       1.2
                                                                   0.3

                                                                   0.2
       1.1
                                                                   0.1
         1
                                                                     0
 (i)          0   0.2   0.4   0.6   z   0.8    1            (ii)             0.2     0.4      0.6   z   0.8         1


         Best-fit timescape model (red line) compared to 3 spatially flat ΛCDM models as earlier: (i)

                   nski test; (ii) DV measure.
       Alcock–Paczy´



   BAO signal detected in galaxy clustering statistics
   Current DV measure averages over radial and
                                                <
   transverse directions; little leverage for z ∼ 1
   Alcock–Paczy´nski measure - needs separate radial and
                                                       <
   transverse measures - a greater discriminator for z ∼ 1
                                                                                   NZIP Conference, Wellington, 18 October 2011 – p.14/??
Gaztañaga, Cabre and Hui MNRAS 2009




  z = 0.15-0.47   z = 0.15-0.30   z = 0.40-0.47

                                    NZIP Conference, Wellington, 18 October 2011 – p.15/??
Gaztañaga, Cabre and Hui MNRAS 2009
           redshift    Ω M 0 h2   ΩB0 h2   ΩC0 /ΩB0
            range
          0.15-0.30    0.132      0.028      3.7
          0.15-0.47    0.12       0.026      3.6
          0.40-0.47    0.124       0.04      2.1


    Tension with WMAP5 fit ΩB0        0.045, ΩC0 /ΩB0                   6.1 for
    LCDM model.
    GCH bestfit: ΩB0 = 0.079 ± 0.025, ΩC0 /ΩB0               3.6.
    TS prediction ΩB0 = 0.080+0.021 , ΩC0 /ΩB0 = 3.1+1.8 with
                             −0.013                 −1.3
    match to WMAP5 sound horizon within 4% and no 7 Li
    anomaly.
                                             NZIP Conference, Wellington, 18 October 2011 – p.16/??
Redshift time drift (Sandage–Loeb test)
                                    1    2     3     4     5      6
                            0
                                                                  z
                         –0.5

                           –1

                         –1.5

                           –2
                                                                       (i)
                         –2.5
                                                                       (ii)
                           –3                                  (iii)
           −1 dz
       H0 dτ for the timescape model with fv0 = 0.762 (solid line) is compared to three
    spatially flat ΛCDM models with the same values of (Ω M 0 , ΩΛ0 ) as in previous figures.



   Measurement is extremely challenging. May be feasible
   over a 10–20 year period by precision measurements of
   the Lyman-α forest over redshift 2 < z < 5 with next
   generation of Extremely Large Telescopes
                                                                              NZIP Conference, Wellington, 18 October 2011 – p.17/??
Apparent Hubble flow variance




                     NZIP Conference, Wellington, 18 October 2011 – p.18/??
Apparent Hubble flow variance
As voids occupy largest volume of space expect to
measure higher average Hubble constant locally until
the global average relative volumes of walls and voids
are sampled at scale of homogeneity; thus expect
maximum H0 value for isotropic average on scale of
dominant void diameter, 30h−1 Mpc, then decreasing til
levelling out by 100h−1 Mpc.
Consistent with a Hubble bubble feature (Jha, Riess,
Kirshner ApJ 659, 122 (2007)); or “large scale flows”
with certain characteristics (cf Watkins et al).
Expected maximum “bulk dipole velocity”

                    ¯         30
       vpec =   ( 3H0
                  2     − H0 ) Mpc = 510+210 km/s
                              h         −260

                                         NZIP Conference, Wellington, 18 October 2011 – p.19/??
N. Li & D. Schwarz, arxiv:0710.5073v1–2

                 0.2


             0.15
    (HD-H0)/H0




                 0.1


             0.05


                  0


          -0.05
                       40   60   80   100       120   140         160              180
                                      r (Mpc)
                                                        NZIP Conference, Wellington, 18 October 2011 – p.20/??
PR Smale + DLW, in preparation




                      NZIP Conference, Wellington, 18 October 2011 – p.21/??
The value of H0
Value of H0 = 74.2 ± 3.6 km/s/Mpc of SH0 ES survey (Riess
et al., 2009) calibrated by NGC4258 maser distance at 7.5
Mpc is a challenge for the timescape model. BUT
   Expect variance in Hubble flow below scale of
   homogeneity with typical higher value
   Hvw0 = 72.3 km/s/Mpc at 30h−1 Mpc scale
H0 determinations independent of local distance ladder:
   WiggleZ FLRW BAO value (Beutler et al,
   arXiv:1106.3366): H0 = 67 ± 3.2 km/s/Mpc
   Quasar strong lensing time delays; e.g., (Courbin et al,
   1009.1473): H0 = 62+6 km/s/Mpc
                       −4
   Megamaser distance of UGC3789 H0 = 66.6 ± 11.4
   km/s/Mpc, (69 ± 11 km/s/Mpc with“flow modeling”).
                                           NZIP Conference, Wellington, 18 October 2011 – p.22/??
Summary
Apparent cosmic acceleration can be understood purely
within general relativity; by (i) treating geometry of
universe more realistically; (ii) understanding
fundamental aspects of general relativity of statistical
description of general relativity which have not been
fully explored – quasi–local gravitational energy,
of gradients in spatial curvature etc.
Extra ingredients – regional averages etc – go beyond
conventional applications of general relativity
Description of spacetime as a causal relational
structure – retains principles consistent with GR
Many details – averaging scheme etc – may change,
but fundamental questions remain in any approach


                                        NZIP Conference, Wellington, 18 October 2011 – p.23/??
Outlook
Other work
   Several observational tests (Alcock-Paczynski test,
   Clarkson, Bassett and Lu test, redshift time drift etc)
   discussed in PRD 80 (2009) 123512
Work in progress
                 ´
   Adapting Korzynski’s “covariant coarse-graining”
   approach to more rigorously define regional averages
   (with James Duley)
   Analysis of variance of Hubble flow in style of Li and
   Schwarz on large datasets (with Peter Smale)
   Full analysis of CMB anisotropy spectrum in timescape
   model (with Ahsan Nazer)


                                            NZIP Conference, Wellington, 18 October 2011 – p.24/??

More Related Content

What's hot

Dynamic Absorbing Boundary Conditions
Dynamic Absorbing Boundary ConditionsDynamic Absorbing Boundary Conditions
Dynamic Absorbing Boundary ConditionsStorti Mario
 
Separation of Macromolecules by Their Size: The Mean Span Dimension
Separation of Macromolecules by Their Size: The Mean Span DimensionSeparation of Macromolecules by Their Size: The Mean Span Dimension
Separation of Macromolecules by Their Size: The Mean Span Dimensioncypztm
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jay Wacker
 
Seminar atlas 1104.5225
Seminar atlas 1104.5225Seminar atlas 1104.5225
Seminar atlas 1104.5225RiggoryLirikin
 
QTPIE and water (Part 2)
QTPIE and water (Part 2)QTPIE and water (Part 2)
QTPIE and water (Part 2)Jiahao Chen
 
Automatic high order absorption layers for advective-diffusive systems of equ...
Automatic high order absorption layers for advective-diffusive systems of equ...Automatic high order absorption layers for advective-diffusive systems of equ...
Automatic high order absorption layers for advective-diffusive systems of equ...Storti Mario
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiYuri Anischenko
 
Calculate outside heat transfr coeff. for jacket
Calculate outside heat transfr coeff. for jacketCalculate outside heat transfr coeff. for jacket
Calculate outside heat transfr coeff. for jacketSuryakant Randeri
 
Pore Geometry from the Internal Magnetic Fields
Pore Geometry from the Internal Magnetic FieldsPore Geometry from the Internal Magnetic Fields
Pore Geometry from the Internal Magnetic FieldsAlexander Sagidullin
 
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...grssieee
 
Resilience at exascale
Resilience at exascaleResilience at exascale
Resilience at exascaleMarc Snir
 

What's hot (12)

Dynamic Absorbing Boundary Conditions
Dynamic Absorbing Boundary ConditionsDynamic Absorbing Boundary Conditions
Dynamic Absorbing Boundary Conditions
 
Separation of Macromolecules by Their Size: The Mean Span Dimension
Separation of Macromolecules by Their Size: The Mean Span DimensionSeparation of Macromolecules by Their Size: The Mean Span Dimension
Separation of Macromolecules by Their Size: The Mean Span Dimension
 
Fluids en
Fluids enFluids en
Fluids en
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011
 
Seminar atlas 1104.5225
Seminar atlas 1104.5225Seminar atlas 1104.5225
Seminar atlas 1104.5225
 
QTPIE and water (Part 2)
QTPIE and water (Part 2)QTPIE and water (Part 2)
QTPIE and water (Part 2)
 
Automatic high order absorption layers for advective-diffusive systems of equ...
Automatic high order absorption layers for advective-diffusive systems of equ...Automatic high order absorption layers for advective-diffusive systems of equ...
Automatic high order absorption layers for advective-diffusive systems of equ...
 
Fission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nucleiFission rate and_time_of_higly_excited_nuclei
Fission rate and_time_of_higly_excited_nuclei
 
Calculate outside heat transfr coeff. for jacket
Calculate outside heat transfr coeff. for jacketCalculate outside heat transfr coeff. for jacket
Calculate outside heat transfr coeff. for jacket
 
Pore Geometry from the Internal Magnetic Fields
Pore Geometry from the Internal Magnetic FieldsPore Geometry from the Internal Magnetic Fields
Pore Geometry from the Internal Magnetic Fields
 
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
Mapping Ash Tree Colonization in an Agricultural Moutain Landscape_ Investiga...
 
Resilience at exascale
Resilience at exascaleResilience at exascale
Resilience at exascale
 

Similar to 16.40 o10 d wiltshire

Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleFundación Ramón Areces
 
Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsIan Huston
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2KSon Cao
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : WaveletsGabriel Peyré
 
Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7Weixiang Sun
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidescdtpv
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFundación Ramón Areces
 
CAE REPORT
CAE REPORTCAE REPORT
CAE REPORTdayahisa
 
NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)dalgetty
 
How to "see" a neutrino?
How to "see" a neutrino?How to "see" a neutrino?
How to "see" a neutrino?Alan Poon
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015Swayandipta Dey
 

Similar to 16.40 o10 d wiltshire (20)

Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical Simulations
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2K
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
 
Mark 20121024
Mark 20121024Mark 20121024
Mark 20121024
 
EXO_DBD07
EXO_DBD07EXO_DBD07
EXO_DBD07
 
Poster
PosterPoster
Poster
 
Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7Oral presentation at Tsingtao 2015.7
Oral presentation at Tsingtao 2015.7
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxides
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene research
 
CUPC Oct 14, 2015
CUPC Oct 14, 2015CUPC Oct 14, 2015
CUPC Oct 14, 2015
 
CAE REPORT
CAE REPORTCAE REPORT
CAE REPORT
 
Mazurov ferrara2014
Mazurov ferrara2014Mazurov ferrara2014
Mazurov ferrara2014
 
NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)
 
ETABS Modelling
ETABS ModellingETABS Modelling
ETABS Modelling
 
Anschp38
Anschp38Anschp38
Anschp38
 
How to "see" a neutrino?
How to "see" a neutrino?How to "see" a neutrino?
How to "see" a neutrino?
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
 
YSchutz_PPTWin
YSchutz_PPTWinYSchutz_PPTWin
YSchutz_PPTWin
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 

More from NZIP

14.25 o14 i islah u-din
14.25 o14 i islah u-din14.25 o14 i islah u-din
14.25 o14 i islah u-dinNZIP
 
14.04 o14 r millane
14.04 o14 r millane14.04 o14 r millane
14.04 o14 r millaneNZIP
 
13.15 o14.2 m elbohouty
13.15 o14.2 m elbohouty13.15 o14.2 m elbohouty
13.15 o14.2 m elbohoutyNZIP
 
12.45 o14 s hendy
12.45 o14 s hendy12.45 o14 s hendy
12.45 o14 s hendyNZIP
 
14.25 o15 b ingham
14.25 o15 b ingham14.25 o15 b ingham
14.25 o15 b inghamNZIP
 
14.05 o15 g willmott
14.05 o15 g willmott14.05 o15 g willmott
14.05 o15 g willmottNZIP
 
13.45 o15 n winch
13.45 o15 n winch13.45 o15 n winch
13.45 o15 n winchNZIP
 
12.45 o15 m bartle
12.45 o15 m bartle12.45 o15 m bartle
12.45 o15 m bartleNZIP
 
16.20 o11 b mallett
16.20 o11 b mallett16.20 o11 b mallett
16.20 o11 b mallettNZIP
 
15.30 o11 m reid
15.30 o11 m reid15.30 o11 m reid
15.30 o11 m reidNZIP
 
16.00 o10 h silverwood
16.00 o10 h silverwood16.00 o10 h silverwood
16.00 o10 h silverwoodNZIP
 
14.40 o8 s wimbush
14.40 o8 s wimbush14.40 o8 s wimbush
14.40 o8 s wimbushNZIP
 
16.20 o10 p chote
16.20 o10 p chote16.20 o10 p chote
16.20 o10 p choteNZIP
 
15.30 o10 p cottrell
15.30 o10 p cottrell15.30 o10 p cottrell
15.30 o10 p cottrellNZIP
 
14.20 o8 c gaedtke
14.20 o8 c gaedtke14.20 o8 c gaedtke
14.20 o8 c gaedtkeNZIP
 
14.00 o8 j stephen
14.00 o8 j stephen14.00 o8 j stephen
14.00 o8 j stephenNZIP
 
13.00 o8 g williams
13.00 o8 g williams13.00 o8 g williams
13.00 o8 g williamsNZIP
 
14.40 o7 d sullivan
14.40 o7 d sullivan14.40 o7 d sullivan
14.40 o7 d sullivanNZIP
 
14.20 o7 r davies
14.20 o7 r davies14.20 o7 r davies
14.20 o7 r daviesNZIP
 
13.30 o7 b trompetter
13.30 o7 b trompetter13.30 o7 b trompetter
13.30 o7 b trompetterNZIP
 

More from NZIP (20)

14.25 o14 i islah u-din
14.25 o14 i islah u-din14.25 o14 i islah u-din
14.25 o14 i islah u-din
 
14.04 o14 r millane
14.04 o14 r millane14.04 o14 r millane
14.04 o14 r millane
 
13.15 o14.2 m elbohouty
13.15 o14.2 m elbohouty13.15 o14.2 m elbohouty
13.15 o14.2 m elbohouty
 
12.45 o14 s hendy
12.45 o14 s hendy12.45 o14 s hendy
12.45 o14 s hendy
 
14.25 o15 b ingham
14.25 o15 b ingham14.25 o15 b ingham
14.25 o15 b ingham
 
14.05 o15 g willmott
14.05 o15 g willmott14.05 o15 g willmott
14.05 o15 g willmott
 
13.45 o15 n winch
13.45 o15 n winch13.45 o15 n winch
13.45 o15 n winch
 
12.45 o15 m bartle
12.45 o15 m bartle12.45 o15 m bartle
12.45 o15 m bartle
 
16.20 o11 b mallett
16.20 o11 b mallett16.20 o11 b mallett
16.20 o11 b mallett
 
15.30 o11 m reid
15.30 o11 m reid15.30 o11 m reid
15.30 o11 m reid
 
16.00 o10 h silverwood
16.00 o10 h silverwood16.00 o10 h silverwood
16.00 o10 h silverwood
 
14.40 o8 s wimbush
14.40 o8 s wimbush14.40 o8 s wimbush
14.40 o8 s wimbush
 
16.20 o10 p chote
16.20 o10 p chote16.20 o10 p chote
16.20 o10 p chote
 
15.30 o10 p cottrell
15.30 o10 p cottrell15.30 o10 p cottrell
15.30 o10 p cottrell
 
14.20 o8 c gaedtke
14.20 o8 c gaedtke14.20 o8 c gaedtke
14.20 o8 c gaedtke
 
14.00 o8 j stephen
14.00 o8 j stephen14.00 o8 j stephen
14.00 o8 j stephen
 
13.00 o8 g williams
13.00 o8 g williams13.00 o8 g williams
13.00 o8 g williams
 
14.40 o7 d sullivan
14.40 o7 d sullivan14.40 o7 d sullivan
14.40 o7 d sullivan
 
14.20 o7 r davies
14.20 o7 r davies14.20 o7 r davies
14.20 o7 r davies
 
13.30 o7 b trompetter
13.30 o7 b trompetter13.30 o7 b trompetter
13.30 o7 b trompetter
 

Recently uploaded

Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 

Recently uploaded (20)

Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 

16.40 o10 d wiltshire

  • 1. Observational Tests of the Timescape Cosmology David L. Wiltshire (University of Canterbury, NZ) DLW: New J. Phys. 9 (2007) 377 Phys. Rev. Lett. 99 (2007) 251101 Phys. Rev. D78 (2008) 084032 Phys. Rev. D80 (2009) 123512 Class. Quantum Grav. 28 (2011) 164006 B.M. Leith, S.C.C. Ng & DLW: ApJ 672 (2008) L91 P.R. Smale & DLW, MNRAS 413 (2011) 367 P.R. Smale, MNRAS (2011) in press NZIP Conference, Wellington, 18 October 2011 – p.1/??
  • 2. Overview of timescape cosmology Standard cosmology, with 22% non-baryonic dark matter, 74% dark energy assumes universe expands as smooth fluid, ignoring structures on scales < 100h−1 Mpc ∼ Actual observed universe contains vast structures of voids (most of volume), plus walls and filaments containing galaxies Timescape scenario - first principles model reanalysing coarse-graining of “dust” in general relativity Hypothesis: must understand nonlinear evolution with backreaction, AND gravitational energy gradients within the inhomogeneous geometry NZIP Conference, Wellington, 18 October 2011 – p.2/??
  • 3. 6df: voids & bubble walls (A. Fairall, UCT) NZIP Conference, Wellington, 18 October 2011 – p.3/??
  • 4. Within a statistically average cell Need to consider relative position of observers over scales of tens of Mpc over which δρ/ρ ∼ −1. GR is a local theory: gradients in spatial curvature and gravitational energy can lead to calibration differences between our rulers and clocks and volume average ones NZIP Conference, Wellington, 18 October 2011 – p.4/??
  • 5. −10 Relative deceleration scale 10 m/s 2 0.12 α 1.2 0.10 α /(Hc) 1.0 0.08 0.8 0.06 0.04 0.6 0.02 α /(Hc) 0.4 (i) 0 0.05 0.1 z 0.15 0.2 0.25 (ii) 0 2 4 z 6 8 10 Instantaneous relative volume deceleration of walls relative to volume average background q ˙ α = H0 c¯ w γ w /( γ ¯ γ 2 − 1) computed for timescape model which best fits supernovae ¯w luminosity distances: (i) as absolute scale nearby; (ii) divided by Hubble parameter to large z . With α0 ∼ 7 × 10−11 m s−2 and typically α ∼ 10−10 m s−2 for most of life of Universe, get 37% difference in calibration of volume average clocks relative to our own NZIP Conference, Wellington, 18 October 2011 – p.5/??
  • 6. Apparent cosmic acceleration Volume average observer sees no apparent cosmic acceleration 2 (1 − fv )2 q= ¯ 2 . (2 + fv ) As t → ∞, fv → 1 and q → 0+ . ¯ A wall observer registers apparent cosmic acceleration − (1 − fv ) (8fv 3 + 39fv 2 − 12fv − 8) q= , 2 2 4 + fv + 4fv Effective deceleration parameter starts at q ∼ 1 , for 2 small fv ; changes sign when fv = 0.58670773 . . ., and approaches q → 0− at late times. NZIP Conference, Wellington, 18 October 2011 – p.6/??
  • 7. Cosmic coincidence problem solved Spatial curvature gradients largely responsible for gravitational energy gradient giving clock rate variance. Apparent acceleration starts when voids start to open. NZIP Conference, Wellington, 18 October 2011 – p.7/??
  • 8. Best fit parameters Hubble constant H0 + ∆H0 = 61.7+1.2 km/s/Mpc −1.1 +0.12 present void volume fraction fv0 = 0.76−0.09 ¯ bare density parameter ΩM 0 = 0.125+0.060 −0.069 dressed density parameter ΩM 0 = 0.33+0.11 −0.16 non–baryonic dark matter / baryonic matter mass ratio ¯ ¯ ¯ (ΩM 0 − ΩB0 )/ΩB0 = 3.1+2.5 −2.4 ¯ bare Hubble constant H 0 = 48.2+2.0 km/s/Mpc −2.4 mean phenomenological lapse function γ 0 = 1.381+0.061 ¯ −0.046 +0.0120 deceleration parameter q0 = −0.0428−0.0002 wall age universe τ0 = 14.7+0.7 Gyr −0.5 NZIP Conference, Wellington, 18 October 2011 – p.8/??
  • 9. Key observational tests Best–fit parameters: H0 = 61.7+1.2 km/s/Mpc, Ωm = 0.33+0.11 −1.1 −0.16 (1σ errors for SneIa only) [Leith, Ng & Wiltshire, ApJ 672 (2008) L91] NZIP Conference, Wellington, 18 October 2011 – p.9/??
  • 10. Test 1: SneIa luminosity distances 48 46 44 42 40 µ 38 36 34 32 30 0 0.5 1 1.5 2 z Type Ia supernovae of Riess 2007 Gold data set fit with χ2 per degree of freedom = 0.9 Type Ia supernovae of Hicken 2009 MLCS17 set fit with χ2 per degree of freedom = 1.08 NZIP Conference, Wellington, 18 October 2011 – p.10/??
  • 11. Dressed “comoving distance” D(z) H 0D (i) 3.5 H 0D (i) 2 (ii) (ii) (iii) 3 (iii) 1.5 2.5 1 2 1 1.5 1 0.5 0.5 0 1 z 0 1 2 3 4 5 6 0 200 400 600 800 1000 z z Best-fit timescape model (red line) compared to 3 spatially flat ΛCDM models: (i) best–fit to WMAP5 only (Ω = 0.75); Λ (ii) joint WMAP5 + BAO + SneIa fit (Ω = 0.72); Λ (iii) best flat fit to (Riess07) SneIa only (Ω = 0.66). Λ Three different tests with hints of tension with ΛCDM agree well with TS model. NZIP Conference, Wellington, 18 October 2011 – p.11/??
  • 12. Supernovae systematics Gold (167 SneIa) SDSS−II 1st year (272 SneIa) 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 Ωm0 m0 Ω 0.3 0.3 0.2 0.2 0.1 0.1 0 0 56 58 60 62 64 66 68 56 58 60 62 64 66 68 H0 H0 MLCS17 (219 SneIa) MLCS31 (219 SneIa) 0.6 0.6 0.5 0.5 0.4 0.4 Ωm0 m0 Ω 0.3 0.3 0.2 0.2 0.1 0.1 0 0 56 58 60 62 64 66 68 56 58 60 62 64 66 68 H0 H0 NZIP Conference, Wellington, 18 October 2011 – p.12/??
  • 13. Recent Sne Ia results; PR Smale + DLW SALT/SALTII fits (Constitution,SALT2,Union2) favour ΛCDM over TS: ln BTS:ΛCDM = −1.06, −1.55, −3.46 MLCS2k2 (fits MLCS17,MLCS31,SDSS-II) favour TS over ΛCDM: ln BTS:ΛCDM = 1.37, 1.55, 0.53 Different MLCS fitters give different best-fit parameters; e.g. with cut at statistical homogeneity scale, for MLCS31 (Hicken et al 2009) ΩM 0 = 0.12+0.12 ; −0.11 MLCS17 (Hicken et al 2009) ΩM 0 = 0.19+0.14 ; −0.18 SDSS-II (Kessler et al 2009) ΩM 0 = 0.42+0.10 −0.10 Supernovae systematics (reddening/extinction, intrinsic colour variations) must be understood TS model most obviously consistent if dust in other galaxies not significantly different from Milky Way NZIP Conference, Wellington, 18 October 2011 – p.13/??
  • 14. Baryon acoustic oscillation measures f AP 0.7 H0 D V (i) (ii) (iii) 1.4 (iii) 0.6 (ii) 1.3 0.5 (i) 0.4 1.2 0.3 0.2 1.1 0.1 1 0 (i) 0 0.2 0.4 0.6 z 0.8 1 (ii) 0.2 0.4 0.6 z 0.8 1 Best-fit timescape model (red line) compared to 3 spatially flat ΛCDM models as earlier: (i) nski test; (ii) DV measure. Alcock–Paczy´ BAO signal detected in galaxy clustering statistics Current DV measure averages over radial and < transverse directions; little leverage for z ∼ 1 Alcock–Paczy´nski measure - needs separate radial and < transverse measures - a greater discriminator for z ∼ 1 NZIP Conference, Wellington, 18 October 2011 – p.14/??
  • 15. Gaztañaga, Cabre and Hui MNRAS 2009 z = 0.15-0.47 z = 0.15-0.30 z = 0.40-0.47 NZIP Conference, Wellington, 18 October 2011 – p.15/??
  • 16. Gaztañaga, Cabre and Hui MNRAS 2009 redshift Ω M 0 h2 ΩB0 h2 ΩC0 /ΩB0 range 0.15-0.30 0.132 0.028 3.7 0.15-0.47 0.12 0.026 3.6 0.40-0.47 0.124 0.04 2.1 Tension with WMAP5 fit ΩB0 0.045, ΩC0 /ΩB0 6.1 for LCDM model. GCH bestfit: ΩB0 = 0.079 ± 0.025, ΩC0 /ΩB0 3.6. TS prediction ΩB0 = 0.080+0.021 , ΩC0 /ΩB0 = 3.1+1.8 with −0.013 −1.3 match to WMAP5 sound horizon within 4% and no 7 Li anomaly. NZIP Conference, Wellington, 18 October 2011 – p.16/??
  • 17. Redshift time drift (Sandage–Loeb test) 1 2 3 4 5 6 0 z –0.5 –1 –1.5 –2 (i) –2.5 (ii) –3 (iii) −1 dz H0 dτ for the timescape model with fv0 = 0.762 (solid line) is compared to three spatially flat ΛCDM models with the same values of (Ω M 0 , ΩΛ0 ) as in previous figures. Measurement is extremely challenging. May be feasible over a 10–20 year period by precision measurements of the Lyman-α forest over redshift 2 < z < 5 with next generation of Extremely Large Telescopes NZIP Conference, Wellington, 18 October 2011 – p.17/??
  • 18. Apparent Hubble flow variance NZIP Conference, Wellington, 18 October 2011 – p.18/??
  • 19. Apparent Hubble flow variance As voids occupy largest volume of space expect to measure higher average Hubble constant locally until the global average relative volumes of walls and voids are sampled at scale of homogeneity; thus expect maximum H0 value for isotropic average on scale of dominant void diameter, 30h−1 Mpc, then decreasing til levelling out by 100h−1 Mpc. Consistent with a Hubble bubble feature (Jha, Riess, Kirshner ApJ 659, 122 (2007)); or “large scale flows” with certain characteristics (cf Watkins et al). Expected maximum “bulk dipole velocity” ¯ 30 vpec = ( 3H0 2 − H0 ) Mpc = 510+210 km/s h −260 NZIP Conference, Wellington, 18 October 2011 – p.19/??
  • 20. N. Li & D. Schwarz, arxiv:0710.5073v1–2 0.2 0.15 (HD-H0)/H0 0.1 0.05 0 -0.05 40 60 80 100 120 140 160 180 r (Mpc) NZIP Conference, Wellington, 18 October 2011 – p.20/??
  • 21. PR Smale + DLW, in preparation NZIP Conference, Wellington, 18 October 2011 – p.21/??
  • 22. The value of H0 Value of H0 = 74.2 ± 3.6 km/s/Mpc of SH0 ES survey (Riess et al., 2009) calibrated by NGC4258 maser distance at 7.5 Mpc is a challenge for the timescape model. BUT Expect variance in Hubble flow below scale of homogeneity with typical higher value Hvw0 = 72.3 km/s/Mpc at 30h−1 Mpc scale H0 determinations independent of local distance ladder: WiggleZ FLRW BAO value (Beutler et al, arXiv:1106.3366): H0 = 67 ± 3.2 km/s/Mpc Quasar strong lensing time delays; e.g., (Courbin et al, 1009.1473): H0 = 62+6 km/s/Mpc −4 Megamaser distance of UGC3789 H0 = 66.6 ± 11.4 km/s/Mpc, (69 ± 11 km/s/Mpc with“flow modeling”). NZIP Conference, Wellington, 18 October 2011 – p.22/??
  • 23. Summary Apparent cosmic acceleration can be understood purely within general relativity; by (i) treating geometry of universe more realistically; (ii) understanding fundamental aspects of general relativity of statistical description of general relativity which have not been fully explored – quasi–local gravitational energy, of gradients in spatial curvature etc. Extra ingredients – regional averages etc – go beyond conventional applications of general relativity Description of spacetime as a causal relational structure – retains principles consistent with GR Many details – averaging scheme etc – may change, but fundamental questions remain in any approach NZIP Conference, Wellington, 18 October 2011 – p.23/??
  • 24. Outlook Other work Several observational tests (Alcock-Paczynski test, Clarkson, Bassett and Lu test, redshift time drift etc) discussed in PRD 80 (2009) 123512 Work in progress ´ Adapting Korzynski’s “covariant coarse-graining” approach to more rigorously define regional averages (with James Duley) Analysis of variance of Hubble flow in style of Li and Schwarz on large datasets (with Peter Smale) Full analysis of CMB anisotropy spectrum in timescape model (with Ahsan Nazer) NZIP Conference, Wellington, 18 October 2011 – p.24/??