SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Heavy Vehicle Dynamics Model &
Path Control Algorithms
Morteza Hassanzadeh, Mathias Lidberg

Vehicle Dynamics Group
Chalmers University of Technology
Outline

•    Introduction
•    Use cases suitable for path control
•    Heavy vehicle system dynamics in planar motion
•    Path control algorithms
•    Simulation results; rear-end collision avoidance
•    Model verification; comparison with test data
•    Summary




2013-01-29   Transportforum 2013                        2
Introduction
interactIVe project overview

• Website:                         www.interactIVe-ip.eu

• Budget:                          EUR 30 Million
• EC funding:                      EUR 17 Million

• Duration:                        42 months (January 2010 – June 2013)

• Coordinator:                     Aria Etemad,
                                   Ford Research & Advanced Engineering Europe
• 10 Countries:                    Czech Republic, Finland, France, Germany,
                                   Greece, Italy, Spain, Sweden, The Netherlands,
                                   The UK




2013-01-29   Transportforum 2013                                                    3
Introduction
Partners and project structure




2013-01-29   Transportforum 2013   4
Introduction
SP5: INCA

• Development of integrated collision avoidance and vehicle path control for
  passenger cars and commercial vehicles.
• “Vehicle path control” module dynamically evaluates a collision free
  trajectory in rapidly changing driving scenarios.
• 3 demonstrator vehicles:
     • Ford Focus
     • Volvo S60
     • Volvo FH13

• INCA coordinator:



• INCA cooperators:




2013-01-29   Transportforum 2013                                               5
Introduction
Current presentation

• Development of integrated collision avoidance and vehicle path control for
  commercial vehicles.
• 3 use cases are prioritized and the problem is narrowed down to path
  planning, actuators configuration, and control algorithm design.
• A robust path and speed controller should be developed to fulfil the
  requirements of all use cases.
• A simulation tool, that includes a heavy vehicle model, is needed to
  investigate performance and robustness of various actuator configurations,
  and the control algorithms.




2013-01-29   Transportforum 2013                                               6
Use cases suitable for path control
Definition and prioritization

• Use case: a description of specific sequence of interactions between the
  driver and truck to achieve a specific goal.
• Use cases are defined by name, accident type, and descriptive narrative.
• Use case prioritization is based on:
     • Accident statistics
     • Use case complexity
• Prioritized use cases are:
     • Rear-end collision avoidance (RECA)
           • Two lane road, single lane change
     • Run-off road prevention (RORP)
           • On a straight road
           • In a curve




2013-01-29   Transportforum 2013                                             7
Use cases suitable for path control
Rear-end collision avoidance (RECA)

• Use case name: Rear-end collision avoidance (RECA)
• Use case ID: UC_01_504_v2

• Use case description:
    Prevents rear-end collisions
    by informing or warning the driver or
    by intervening by automatic braking
    and/or steering.

• Reference
    • Level 1
      TS_SP5_1 [Accident in queue (rear end)]
    • Level 2
      TS_SP5_1.1 [Rear end collision due to slowing vehicle in front]


2013-01-29   Transportforum 2013                                        8
Use cases suitable for path control
Run-off-road prevention on a straight road (RORP)

• Use case name: Run-off-road prevention on a straight road (RORP)
• Use case ID: UC_06_510_v2

• Use case description:
    Informs/warns the driver of an
    impending lane departure and,
    if needed, steers automatically
    to avoid road departure.

• Reference:
    • Level 1
      TS_SP5_2 [Single truck accident (run-off road)]
    • Level 2
      TS_SP5_2.1 [Running-off on a straight road]


2013-01-29   Transportforum 2013                                     9
Use cases suitable for path control
Run-off-road prevention in a curve (RORP)

• Use case name: Run-off-road prevention in a curve (RORP)
• Use case ID: UC_06_509_v2

• Use case description:
    Informs/warns the driver of an
    impending lane departure and,
    if needed, steers automatically
    to avoid road departure.

• Reference:
    • Level 1
      TS_SP5_2 [Single truck accident (run-off road)]
    • Level 2
      TS_SP5_2.2 [Running-off in a curve]


2013-01-29   Transportforum 2013                             10
Heavy vehicle system dynamics in planar motion
The model

• A 4 DOF two-track model:
    • Longitudinal ( X )
    • Lateral ( Y )
    • Yaw ( )
    • Roll (  )

• A nonlinear tyre model
  (Magic Tyre Formula):
    • Transient force build-up
      (relaxation length is
      considered)
    • Drop in adhesion
      coefficient for increased
      vertical load



2013-01-29   Transportforum 2013                 11
Path control algorithms
Overview

• Path planning block initiates the reference path that satisfies some criteria.
• Feedforward input is calculated based on the reference path.
• Feedback controller provides corrections to compensate for errors due to
  simplifications and uncertainties.
• General overview of the whole process:

                                                                 Heavy vehicle
                                                                    model
                                               Feedforward
                 Use case      Path planning                 +
                                                controller
                                                                  Feedback
                                                                  controller




2013-01-29   Transportforum 2013                                                   12
Path control algorithms
 Critical path

                                                                                               Heavy vehicle
                                                                                                  model
                                                                 Feedforward
                     Use case       Path planning                                      +
                                                                  controller
                                                                                                 Feedback
                                                                                                 controller



• Critical path: the shortest
  feasible escape path, that can                                                      Required longitudinal distance, d (for RECA)
                                                            3
  be determined by iterative
                                                                                5
  procedure:
                                                            2     Y ( X )   ci X i
     • Start with initial guess.                                               i 0

     • Checking criteria.                           Y [m]   1                                                  Vehicle path with no intervention
                                                                                                               Intervention point
     • Increasing longitudinal                                                                                 Rejected path
                                                                                                               Critical path
       distance if needed.                                  0

• Increasing longitudinal
  distance of the critical path is                          -1
                                                                                        Required longitudinal
                                                                                        distance, d (for RORP)
  equivalent to adding safety                                0                   20                 40                   60

  margin to the manoeuvre.                                                                         X [m]




 2013-01-29   Transportforum 2013                                                                                                                  13
Path control algorithms
Feedforward control

                                                                          Heavy vehicle
                                                                             model
                                                        Feedforward
                    Use case       Path planning                      +
                                                         controller
                                                                           Feedback
                                                                           controller



  • Feedforward control: steady state bicycle model is used to calculate
    steering inputs:
                                                      le      ay
                                               FF     K us
                                                      r       g
         where:
                                                      2   C
                                              le  l  (1  r )
                                                       l   Cf




2013-01-29   Transportforum 2013                                                          14
Path control algorithms
Feedback control

                                                                              Heavy vehicle
                                                                                 model
                                                         Feedforward
                    Use case       Path planning                          +
                                                          controller
                                                                               Feedback
                                                                               controller




• Lateral position (Y) PID control:

              FB  K p (Yref  Y )  Ki  (Yref  Y )d  K d (Yref  Y )
                                                                      


• Yaw angle PD control:

                                FB  K p ( ref  )  K d ( ref  )
                                                                    
                                             dYref                     d      Y 
                           ref  tan 1 (           )    ref  V
                                                                         V
                                              dX                       dX    1  Y 2




2013-01-29   Transportforum 2013                                                              15
Simulation results
Rear-end collision avoidance (RECA)



Rear-end collision avoidance by steering: a single lane change manoeuvre.

Parameter settings:
Parameters                         Values
Friction, µ                        0.65
Lateral distance                   3m
HV Initial Velocity, v             80 km/h
LV Initial Velocity, vl            0 km/h
Longitudinal distance              56 m




2013-01-29   Transportforum 2013                                            16
Simulation results
Rear-end collision avoidance (RECA)


                                                                   Heavy vehicle position



                                     Intervention
                               4
                                                                                                        Reference
                                                                                                        Lateral position control
                               2
                      Y [m]

                                                                                                        Yaw control

                               0                                                            Obstacle

                               -2
                                 0                  10   20   30   40        50       60    70     80            90           100
                                                                           X [m]
                                                                        Heading angle
                              10
                                                                                                        Reference
                                     Intervention




                                                                                                        Lateral position control
                 [deg]




                               5                                                                        Yaw control

                               0

                               -5
                                 0                  10   20   30   40      50        60     70     80            90           100
                                                                          X [m]
                                                                    Heading angle rate
                              20
             d /dt [deg/s]




                                                                                                        Reference
                                     Intervention




                                                                                                        Lateral position control
                                                                                                        Yaw control
                               0


                              -20
                                 0                  10   20   30   40        50      60     70     80            90           100
                                                                            X [m]




2013-01-29                Transportforum 2013                                                                                       17
Simulation results
Rear-end collision avoidance (RECA)

                                      Lateral acceleration                                                  Steering wheel angle
                          3                                                                    200
                                                   Reference                                                     Reference
                                                   Lateral position control
                          2                                                                    150               Lateral position control
                                                   Yaw control
                                                                                                                 Yaw control
                          1                                                                    100
              ay [m/s2]




                                                                                  [deg]
                          0                                                                     50

                          -1                                                                     0

                          -2                                                                    -50

                          -3                                                                   -100
                            0    20       40      60          80         100                       0   20        40      60        80   100
                                            X [m]                                                                  X [m]
                                          Lateral jerk                                                 Steering wheel angle rate
                          20
                                           Reference                                           1500              Reference
                          15               Lateral position control                                              Lateral position control
                                           Yaw control                                         1000              Yaw control
                          10                                                   d/dt [deg/s]
             i [m/s3]




                          5                                                                    500

                          0                                                                      0
                          -5
                                                                                               -500
                        -10
                           0     20       40      60          80         100                      0    20        40      60        80   100
                                            X [m]                                                                  X [m]




2013-01-29              Transportforum 2013                                                                                                   18
Simulation results
Rear-end collision avoidance (RECA)

                             Torque on the steering actuator                                 Torque rate on the steering actuator

                       15                Lateral position control                                          Lateral position control
                                                                                       200
                                         Yaw control                                                       Yaw control
                       10                                                              150




                                                                        dT/dx [Nm/s]
             T [Nm]




                        5                                                              100
                                                                                       50
                        0
                                                                                        0
                       -5
                                                                                       -50
                      -10
                         0     20         40       60     80      100           0       20      40      60     80                     100
                                             X [m]                                                X [m]
                                         Percentage of utilized adhesion; solid line style corresponds to
                                    lateral position control, and dashed line style corresponds to yaw control.
                      100
                                                                                                                     First axle, Left
                                                                                                                     First axle, Right
                       80                                                                                            Second axle, Left
                                                                                                                     Second axle, Right
                                                                                                                     Third axle, Left
                       60                                                                                            Third axle, Right
             [%]




                       40

                       20

                        0
                         0      10          20      30        40       50                    60       70       80         90          100
                                                                      X [m]




2013-01-29            Transportforum 2013                                                                                                   19
Simulation results
Rear-end collision avoidance (RECA)


                                                                  Path error
                                0.5
                                                                                          Lateral position control
             eY [m]



                                                                                          Yaw control
                                  0

                                                                               X=d
                                -0.5
                                       10      20     30   40      50        60      70      80        90        100
                                                                    X [m]
                                                                Yaw angle error
                                  2
                                                                                          Lateral position control
                    e [deg]




                                                                                          Yaw control
                                  0

                                                                               X=d
                                 -2
                                       10      20     30   40     50         60      70      80        90        100
                                                                   X [m]
                                                                Yaw rate error
                                  5
              ed /dt [deg/s]




                                                                                          Lateral position control
                                  0                                                       Yaw control

                                 -5
                                                                               X=d
                                -10
                                       10      20     30   40      50          60    70      80        90        100
                                                                    X [m]




2013-01-29                      Transportforum 2013                                                                    20
Simulation results
Rear-end collision avoidance (RECA)

  It is also tested with discrete input with update rate of 10 Hz; the controller
  demands new steering wheel angle every 0.1 second.
                                                                    Path error
                                       0.2
                                                                                                 Continuous data
                    eY [m]
                                                                                                 Discrete data
                                         0

                                                                                 X=d
                                       -0.2
                                              10   20   30   40      50        60      70   80         90      100
                                                                      X [m]
                                                                  Yaw angle error
                                         2
                                                                                                 Continuous data
                           e [deg]




                                         0                                                       Discrete data

                                        -2
                                                                                 X=d
                                        -4
                                              10   20   30   40     50         60      70   80         90      100
                                                                     X [m]
                                                                  Yaw rate error
                                        10
                     ed /dt [deg/s]




                                                                                                 Continuous data
                                                                                                 Discrete data
                                         0

                                                                                 X=d
                                       -10
                                              10   20   30   40      50          60    70   80         90      100
                                                                      X [m]




2013-01-29   Transportforum 2013                                                                                     21
Model verification
Comparison with test data

• A series of tests were performed in the handling area of the Hällered Proving
  Ground.
• The steering input from test data is also used as input to the simulation in
  order to validate the simulation model.
• The results presented here also show a sample performance of the controller.




2013-01-29   Transportforum 2013                                            22
Model verification
Comparison with test data


  A single lane change
  manoeuvre was performed with
  50% safety margin for
  longitudinal distance.

                                                                  Actuator's steering angle demand
                                                       60
 Parameter settings:
                                                       40
  Parameters                       Values
                                                       20
  Lateral distance                 3m

                                              [deg]
                                                        0
  HV Initial Velocity, v           80 km/h
  LV Initial Velocity, vl          0 km/h              -20
                                                                                             Feedforward
  Longitudinal distance            73.5 m              -40                                   Feedback
                                                                                             Total controller demand
                                                                                             Actuator response
                                                       -60
                                                          0   1     2        3           4         5        6          7
                                                                                 t [s]



2013-01-29   Transportforum 2013                                                                                       23
Model verification
Comparison with test data

                                                                              Truck position
                                         5

                                         4

                                         3
                                 Y [m]



                                         2

                                         1                                                                           5th order polynomial; reference
                                                                                                                     5th order polynomial; target
                                         0                                                                           Simulation
                                                                                                                     Test data
                                         -1
                                           0           20           40       60                           80          100            120               140
                                                                                      X [m]
                                                   Yaw rate                                                                     Lateral acceleration
                         8                                                                                 3

                         6
                                                                                                           2
                         4
                                                                                                           1
        d /dt [deg/s]




                         2


                                                                                              ay [m/s ]
                         0                                                                2                0

                         -2
                                                                                                          -1
                         -4
                                Reference                                                                 -2    Reference
                         -6     Simulation                                                                      Simulation
                                Test data                                                                       Test data
                         -8                                                                               -3
                           0      1            2   3            4   5    6        7                         0    1          2       3           4      5     6   7
                                                        t [s]                                                                           t [s]




2013-01-29                     Transportforum 2013                                                                                                                   24
Thank you.




             25

Weitere ähnliche Inhalte

Andere mochten auch

SA365 - Como aplicamos insights e learnings no planejamento e posicionamento...
SA365 - Como aplicamos insights e  learnings no planejamento e posicionamento...SA365 - Como aplicamos insights e  learnings no planejamento e posicionamento...
SA365 - Como aplicamos insights e learnings no planejamento e posicionamento...Elife Brasil
 
блакитна синиця птах року 2011
блакитна синиця   птах року 2011блакитна синиця   птах року 2011
блакитна синиця птах року 2011Наталья Полищук
 
план конспект уроку - тренінгу "Захисти себе від ВІЛ"
план   конспект уроку - тренінгу "Захисти себе від ВІЛ"план   конспект уроку - тренінгу "Захисти себе від ВІЛ"
план конспект уроку - тренінгу "Захисти себе від ВІЛ"Наталья Полищук
 
E.life apresenta 10 inovações de Social CRM para 2016
E.life apresenta 10 inovações de Social CRM para 2016E.life apresenta 10 inovações de Social CRM para 2016
E.life apresenta 10 inovações de Social CRM para 2016Elife Brasil
 
Micro Turbine
Micro TurbineMicro Turbine
Micro TurbineHebin Raj
 

Andere mochten auch (8)

SA365 - Como aplicamos insights e learnings no planejamento e posicionamento...
SA365 - Como aplicamos insights e  learnings no planejamento e posicionamento...SA365 - Como aplicamos insights e  learnings no planejamento e posicionamento...
SA365 - Como aplicamos insights e learnings no planejamento e posicionamento...
 
блакитна синиця птах року 2011
блакитна синиця   птах року 2011блакитна синиця   птах року 2011
блакитна синиця птах року 2011
 
муравьи
муравьимуравьи
муравьи
 
план конспект уроку - тренінгу "Захисти себе від ВІЛ"
план   конспект уроку - тренінгу "Захисти себе від ВІЛ"план   конспект уроку - тренінгу "Захисти себе від ВІЛ"
план конспект уроку - тренінгу "Захисти себе від ВІЛ"
 
E.life apresenta 10 inovações de Social CRM para 2016
E.life apresenta 10 inovações de Social CRM para 2016E.life apresenta 10 inovações de Social CRM para 2016
E.life apresenta 10 inovações de Social CRM para 2016
 
Ninbennoaru Jidoka
Ninbennoaru JidokaNinbennoaru Jidoka
Ninbennoaru Jidoka
 
Muda in service industries
Muda in service industriesMuda in service industries
Muda in service industries
 
Micro Turbine
Micro TurbineMicro Turbine
Micro Turbine
 

Ähnlich wie Session 27 Mathias Lidberg

Praktijkrelevantie TRAIL PhD onderzoek
Praktijkrelevantie TRAIL PhD onderzoekPraktijkrelevantie TRAIL PhD onderzoek
Praktijkrelevantie TRAIL PhD onderzoekSerge Hoogendoorn
 
LJ_Going with the flow_MC
LJ_Going with the flow_MCLJ_Going with the flow_MC
LJ_Going with the flow_MCMark Cooper
 
Optimal location of relief facility.pptx
Optimal location of relief facility.pptxOptimal location of relief facility.pptx
Optimal location of relief facility.pptxgyaneshtripathiirsme
 
PPT8 - Planning and Managing Long Haul Freight Transportation
PPT8 - Planning and Managing Long Haul Freight TransportationPPT8 - Planning and Managing Long Haul Freight Transportation
PPT8 - Planning and Managing Long Haul Freight TransportationBinus Online Learning
 
PPT9 - Planning and Managing Long Haul Freight Transportation
PPT9 - Planning and Managing Long Haul Freight TransportationPPT9 - Planning and Managing Long Haul Freight Transportation
PPT9 - Planning and Managing Long Haul Freight TransportationBinus Online Learning
 
PPT10 - Planning and Managing Long Haul Freight Transportation
PPT10 - Planning and Managing Long Haul Freight TransportationPPT10 - Planning and Managing Long Haul Freight Transportation
PPT10 - Planning and Managing Long Haul Freight TransportationBinus Online Learning
 
Battery Powered and Hybrid Drive Opportunities in Heavy Duty, Large Capacity,...
Battery Powered and Hybrid Drive Opportunities in Heavy Duty, Large Capacity,...Battery Powered and Hybrid Drive Opportunities in Heavy Duty, Large Capacity,...
Battery Powered and Hybrid Drive Opportunities in Heavy Duty, Large Capacity,...Newton Montano
 
Future of Traffic Management and ITS
Future of Traffic Management and ITSFuture of Traffic Management and ITS
Future of Traffic Management and ITSSerge Hoogendoorn
 
AGV Presentation (2) (1).ppt
AGV Presentation (2) (1).pptAGV Presentation (2) (1).ppt
AGV Presentation (2) (1).pptBetshaTizazu
 
Logistics risk avoidance platform
Logistics risk avoidance platformLogistics risk avoidance platform
Logistics risk avoidance platformSurendra Kancherla
 
Egress of the crowd using Modeling & Simulation
Egress of the crowd using Modeling & SimulationEgress of the crowd using Modeling & Simulation
Egress of the crowd using Modeling & SimulationONKAR PANDE
 
Rosenbloom simulator
Rosenbloom simulatorRosenbloom simulator
Rosenbloom simulatorMSullman
 
Vehicular ad hoc network - VANET
Vehicular ad hoc network - VANETVehicular ad hoc network - VANET
Vehicular ad hoc network - VANETSarah Baras
 
Intersection CONCEPTUAL DESIGN Methodology, by Grant Johnson PE PTOE
Intersection CONCEPTUAL DESIGN Methodology, by Grant Johnson PE PTOEIntersection CONCEPTUAL DESIGN Methodology, by Grant Johnson PE PTOE
Intersection CONCEPTUAL DESIGN Methodology, by Grant Johnson PE PTOEGrant Johnson, PE
 
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...Hossam Shafiq I
 

Ähnlich wie Session 27 Mathias Lidberg (20)

Miranda Blogg
Miranda BloggMiranda Blogg
Miranda Blogg
 
Praktijkrelevantie TRAIL PhD onderzoek
Praktijkrelevantie TRAIL PhD onderzoekPraktijkrelevantie TRAIL PhD onderzoek
Praktijkrelevantie TRAIL PhD onderzoek
 
LJ_Going with the flow_MC
LJ_Going with the flow_MCLJ_Going with the flow_MC
LJ_Going with the flow_MC
 
Optimal location of relief facility.pptx
Optimal location of relief facility.pptxOptimal location of relief facility.pptx
Optimal location of relief facility.pptx
 
PPT8 - Planning and Managing Long Haul Freight Transportation
PPT8 - Planning and Managing Long Haul Freight TransportationPPT8 - Planning and Managing Long Haul Freight Transportation
PPT8 - Planning and Managing Long Haul Freight Transportation
 
PPT9 - Planning and Managing Long Haul Freight Transportation
PPT9 - Planning and Managing Long Haul Freight TransportationPPT9 - Planning and Managing Long Haul Freight Transportation
PPT9 - Planning and Managing Long Haul Freight Transportation
 
PPT10 - Planning and Managing Long Haul Freight Transportation
PPT10 - Planning and Managing Long Haul Freight TransportationPPT10 - Planning and Managing Long Haul Freight Transportation
PPT10 - Planning and Managing Long Haul Freight Transportation
 
Standard or Metre Gauge
Standard or Metre GaugeStandard or Metre Gauge
Standard or Metre Gauge
 
Battery Powered and Hybrid Drive Opportunities in Heavy Duty, Large Capacity,...
Battery Powered and Hybrid Drive Opportunities in Heavy Duty, Large Capacity,...Battery Powered and Hybrid Drive Opportunities in Heavy Duty, Large Capacity,...
Battery Powered and Hybrid Drive Opportunities in Heavy Duty, Large Capacity,...
 
Future Research Directions in Military Ground Vehicle Mobility
Future Research Directions in Military Ground Vehicle MobilityFuture Research Directions in Military Ground Vehicle Mobility
Future Research Directions in Military Ground Vehicle Mobility
 
Future of Traffic Management and ITS
Future of Traffic Management and ITSFuture of Traffic Management and ITS
Future of Traffic Management and ITS
 
AGV Presentation (2) (1).ppt
AGV Presentation (2) (1).pptAGV Presentation (2) (1).ppt
AGV Presentation (2) (1).ppt
 
Logistics risk avoidance platform
Logistics risk avoidance platformLogistics risk avoidance platform
Logistics risk avoidance platform
 
RIOH / RWS workshop
RIOH / RWS workshopRIOH / RWS workshop
RIOH / RWS workshop
 
Egress of the crowd using Modeling & Simulation
Egress of the crowd using Modeling & SimulationEgress of the crowd using Modeling & Simulation
Egress of the crowd using Modeling & Simulation
 
AUTONOMOUS VEHICLES 2.pdf
AUTONOMOUS VEHICLES 2.pdfAUTONOMOUS VEHICLES 2.pdf
AUTONOMOUS VEHICLES 2.pdf
 
Rosenbloom simulator
Rosenbloom simulatorRosenbloom simulator
Rosenbloom simulator
 
Vehicular ad hoc network - VANET
Vehicular ad hoc network - VANETVehicular ad hoc network - VANET
Vehicular ad hoc network - VANET
 
Intersection CONCEPTUAL DESIGN Methodology, by Grant Johnson PE PTOE
Intersection CONCEPTUAL DESIGN Methodology, by Grant Johnson PE PTOEIntersection CONCEPTUAL DESIGN Methodology, by Grant Johnson PE PTOE
Intersection CONCEPTUAL DESIGN Methodology, by Grant Johnson PE PTOE
 
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
 

Session 27 Mathias Lidberg

  • 1. Heavy Vehicle Dynamics Model & Path Control Algorithms Morteza Hassanzadeh, Mathias Lidberg Vehicle Dynamics Group Chalmers University of Technology
  • 2. Outline • Introduction • Use cases suitable for path control • Heavy vehicle system dynamics in planar motion • Path control algorithms • Simulation results; rear-end collision avoidance • Model verification; comparison with test data • Summary 2013-01-29 Transportforum 2013 2
  • 3. Introduction interactIVe project overview • Website: www.interactIVe-ip.eu • Budget: EUR 30 Million • EC funding: EUR 17 Million • Duration: 42 months (January 2010 – June 2013) • Coordinator: Aria Etemad, Ford Research & Advanced Engineering Europe • 10 Countries: Czech Republic, Finland, France, Germany, Greece, Italy, Spain, Sweden, The Netherlands, The UK 2013-01-29 Transportforum 2013 3
  • 4. Introduction Partners and project structure 2013-01-29 Transportforum 2013 4
  • 5. Introduction SP5: INCA • Development of integrated collision avoidance and vehicle path control for passenger cars and commercial vehicles. • “Vehicle path control” module dynamically evaluates a collision free trajectory in rapidly changing driving scenarios. • 3 demonstrator vehicles: • Ford Focus • Volvo S60 • Volvo FH13 • INCA coordinator: • INCA cooperators: 2013-01-29 Transportforum 2013 5
  • 6. Introduction Current presentation • Development of integrated collision avoidance and vehicle path control for commercial vehicles. • 3 use cases are prioritized and the problem is narrowed down to path planning, actuators configuration, and control algorithm design. • A robust path and speed controller should be developed to fulfil the requirements of all use cases. • A simulation tool, that includes a heavy vehicle model, is needed to investigate performance and robustness of various actuator configurations, and the control algorithms. 2013-01-29 Transportforum 2013 6
  • 7. Use cases suitable for path control Definition and prioritization • Use case: a description of specific sequence of interactions between the driver and truck to achieve a specific goal. • Use cases are defined by name, accident type, and descriptive narrative. • Use case prioritization is based on: • Accident statistics • Use case complexity • Prioritized use cases are: • Rear-end collision avoidance (RECA) • Two lane road, single lane change • Run-off road prevention (RORP) • On a straight road • In a curve 2013-01-29 Transportforum 2013 7
  • 8. Use cases suitable for path control Rear-end collision avoidance (RECA) • Use case name: Rear-end collision avoidance (RECA) • Use case ID: UC_01_504_v2 • Use case description: Prevents rear-end collisions by informing or warning the driver or by intervening by automatic braking and/or steering. • Reference • Level 1 TS_SP5_1 [Accident in queue (rear end)] • Level 2 TS_SP5_1.1 [Rear end collision due to slowing vehicle in front] 2013-01-29 Transportforum 2013 8
  • 9. Use cases suitable for path control Run-off-road prevention on a straight road (RORP) • Use case name: Run-off-road prevention on a straight road (RORP) • Use case ID: UC_06_510_v2 • Use case description: Informs/warns the driver of an impending lane departure and, if needed, steers automatically to avoid road departure. • Reference: • Level 1 TS_SP5_2 [Single truck accident (run-off road)] • Level 2 TS_SP5_2.1 [Running-off on a straight road] 2013-01-29 Transportforum 2013 9
  • 10. Use cases suitable for path control Run-off-road prevention in a curve (RORP) • Use case name: Run-off-road prevention in a curve (RORP) • Use case ID: UC_06_509_v2 • Use case description: Informs/warns the driver of an impending lane departure and, if needed, steers automatically to avoid road departure. • Reference: • Level 1 TS_SP5_2 [Single truck accident (run-off road)] • Level 2 TS_SP5_2.2 [Running-off in a curve] 2013-01-29 Transportforum 2013 10
  • 11. Heavy vehicle system dynamics in planar motion The model • A 4 DOF two-track model: • Longitudinal ( X ) • Lateral ( Y ) • Yaw ( ) • Roll (  ) • A nonlinear tyre model (Magic Tyre Formula): • Transient force build-up (relaxation length is considered) • Drop in adhesion coefficient for increased vertical load 2013-01-29 Transportforum 2013 11
  • 12. Path control algorithms Overview • Path planning block initiates the reference path that satisfies some criteria. • Feedforward input is calculated based on the reference path. • Feedback controller provides corrections to compensate for errors due to simplifications and uncertainties. • General overview of the whole process: Heavy vehicle model Feedforward Use case Path planning + controller Feedback controller 2013-01-29 Transportforum 2013 12
  • 13. Path control algorithms Critical path Heavy vehicle model Feedforward Use case Path planning + controller Feedback controller • Critical path: the shortest feasible escape path, that can Required longitudinal distance, d (for RECA) 3 be determined by iterative 5 procedure: 2 Y ( X )   ci X i • Start with initial guess. i 0 • Checking criteria. Y [m] 1 Vehicle path with no intervention Intervention point • Increasing longitudinal Rejected path Critical path distance if needed. 0 • Increasing longitudinal distance of the critical path is -1 Required longitudinal distance, d (for RORP) equivalent to adding safety 0 20 40 60 margin to the manoeuvre. X [m] 2013-01-29 Transportforum 2013 13
  • 14. Path control algorithms Feedforward control Heavy vehicle model Feedforward Use case Path planning + controller Feedback controller • Feedforward control: steady state bicycle model is used to calculate steering inputs: le ay  FF   K us r g where: 2 C le  l  (1  r ) l Cf 2013-01-29 Transportforum 2013 14
  • 15. Path control algorithms Feedback control Heavy vehicle model Feedforward Use case Path planning + controller Feedback controller • Lateral position (Y) PID control:  FB  K p (Yref  Y )  Ki  (Yref  Y )d  K d (Yref  Y )   • Yaw angle PD control:  FB  K p ( ref  )  K d ( ref  )   dYref d Y   ref  tan 1 ( )  ref  V  V dX dX 1  Y 2 2013-01-29 Transportforum 2013 15
  • 16. Simulation results Rear-end collision avoidance (RECA) Rear-end collision avoidance by steering: a single lane change manoeuvre. Parameter settings: Parameters Values Friction, µ 0.65 Lateral distance 3m HV Initial Velocity, v 80 km/h LV Initial Velocity, vl 0 km/h Longitudinal distance 56 m 2013-01-29 Transportforum 2013 16
  • 17. Simulation results Rear-end collision avoidance (RECA) Heavy vehicle position Intervention 4 Reference Lateral position control 2 Y [m] Yaw control 0 Obstacle -2 0 10 20 30 40 50 60 70 80 90 100 X [m] Heading angle 10 Reference Intervention Lateral position control  [deg] 5 Yaw control 0 -5 0 10 20 30 40 50 60 70 80 90 100 X [m] Heading angle rate 20 d /dt [deg/s] Reference Intervention Lateral position control Yaw control 0 -20 0 10 20 30 40 50 60 70 80 90 100 X [m] 2013-01-29 Transportforum 2013 17
  • 18. Simulation results Rear-end collision avoidance (RECA) Lateral acceleration Steering wheel angle 3 200 Reference Reference Lateral position control 2 150 Lateral position control Yaw control Yaw control 1 100 ay [m/s2]  [deg] 0 50 -1 0 -2 -50 -3 -100 0 20 40 60 80 100 0 20 40 60 80 100 X [m] X [m] Lateral jerk Steering wheel angle rate 20 Reference 1500 Reference 15 Lateral position control Lateral position control Yaw control 1000 Yaw control 10 d/dt [deg/s] i [m/s3] 5 500 0 0 -5 -500 -10 0 20 40 60 80 100 0 20 40 60 80 100 X [m] X [m] 2013-01-29 Transportforum 2013 18
  • 19. Simulation results Rear-end collision avoidance (RECA) Torque on the steering actuator Torque rate on the steering actuator 15 Lateral position control Lateral position control 200 Yaw control Yaw control 10 150 dT/dx [Nm/s] T [Nm] 5 100 50 0 0 -5 -50 -10 0 20 40 60 80 100 0 20 40 60 80 100 X [m] X [m] Percentage of utilized adhesion; solid line style corresponds to lateral position control, and dashed line style corresponds to yaw control. 100 First axle, Left First axle, Right 80 Second axle, Left Second axle, Right Third axle, Left 60 Third axle, Right [%] 40 20 0 0 10 20 30 40 50 60 70 80 90 100 X [m] 2013-01-29 Transportforum 2013 19
  • 20. Simulation results Rear-end collision avoidance (RECA) Path error 0.5 Lateral position control eY [m] Yaw control 0 X=d -0.5 10 20 30 40 50 60 70 80 90 100 X [m] Yaw angle error 2 Lateral position control e [deg] Yaw control 0 X=d -2 10 20 30 40 50 60 70 80 90 100 X [m] Yaw rate error 5 ed /dt [deg/s] Lateral position control 0 Yaw control -5 X=d -10 10 20 30 40 50 60 70 80 90 100 X [m] 2013-01-29 Transportforum 2013 20
  • 21. Simulation results Rear-end collision avoidance (RECA) It is also tested with discrete input with update rate of 10 Hz; the controller demands new steering wheel angle every 0.1 second. Path error 0.2 Continuous data eY [m] Discrete data 0 X=d -0.2 10 20 30 40 50 60 70 80 90 100 X [m] Yaw angle error 2 Continuous data e [deg] 0 Discrete data -2 X=d -4 10 20 30 40 50 60 70 80 90 100 X [m] Yaw rate error 10 ed /dt [deg/s] Continuous data Discrete data 0 X=d -10 10 20 30 40 50 60 70 80 90 100 X [m] 2013-01-29 Transportforum 2013 21
  • 22. Model verification Comparison with test data • A series of tests were performed in the handling area of the Hällered Proving Ground. • The steering input from test data is also used as input to the simulation in order to validate the simulation model. • The results presented here also show a sample performance of the controller. 2013-01-29 Transportforum 2013 22
  • 23. Model verification Comparison with test data A single lane change manoeuvre was performed with 50% safety margin for longitudinal distance. Actuator's steering angle demand 60 Parameter settings: 40 Parameters Values 20 Lateral distance 3m  [deg] 0 HV Initial Velocity, v 80 km/h LV Initial Velocity, vl 0 km/h -20 Feedforward Longitudinal distance 73.5 m -40 Feedback Total controller demand Actuator response -60 0 1 2 3 4 5 6 7 t [s] 2013-01-29 Transportforum 2013 23
  • 24. Model verification Comparison with test data Truck position 5 4 3 Y [m] 2 1 5th order polynomial; reference 5th order polynomial; target 0 Simulation Test data -1 0 20 40 60 80 100 120 140 X [m] Yaw rate Lateral acceleration 8 3 6 2 4 1 d /dt [deg/s] 2 ay [m/s ] 0 2 0 -2 -1 -4 Reference -2 Reference -6 Simulation Simulation Test data Test data -8 -3 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 t [s] t [s] 2013-01-29 Transportforum 2013 24