SlideShare ist ein Scribd-Unternehmen logo
1 von 7
Downloaden Sie, um offline zu lesen
2.001 - MECHANICS AND MATERIALS I
                                  Lecture #8
                                  10/4/2006
                            Prof. Carol Livermore

Recall from last lecture:




Find: u(x), FA , FB , FC

1. Equilibrium

                                      Fu = 0
                            P − FA − F B − F C = 0


                                     MA = 0
                                   Fc L
                            Pa −        − FB L = 0
                                    2
2. Force-Deformation

                                   FA = kδA


                                       1
FB = kδB
                                    FC = kδC
3. Compatibility

                                    δA = uA
                                          y

                             δB = uA + L tan ϕA
                                   y          z

                                           L
                             δC = uA +
                                   y         tan ϕA
                                                  z
                                           2
New this lecture:
  Small Angle Assumption:
                                         A
                                    sin ϕz  ϕA
                              A
                         tan ϕz =        A
                                           ≈ z = ϕA
                                                  z
                                    cos ϕz   1




For small ϕA : Arc length ≈ a straight line displacemtn in y.
           z


Rewrite compatibility.


                                    δA = uA
                                          y

                               δB = uA + LϕA
                                     y     z

                                     A     L A
                               δA = uy +     ϕ
                                           2 z
Substitute compatibility into force-deformation
                                           A
                                    FA = kuy
                              FB = k(uA + LϕA )
                                      y     z



                                       2
L A
                               FC = k(uA +
                                       y       ϕ )
                                             2 z
Substitute this result into equilibrium equations:


                                                     L A
                  P − kuA − k(uA + LϕA ) − k(uA +
                        y      y     z        y       ϕ )=0
                                                     2 z
                       L       L
                Pa −     k(uA + ϕA ) −L k(uA + LϕA ) = 0
                            y
                       2       2 z         y     z

Solve:


                                          3
                               P = 3kuA + Lkϕz
                                      y
                                              A
                                          2
                                  3         5
                             P a = LkuA + L2 kϕA
                                        y       z
                                  2         4
Divide by k.


                               P        3
                                 = 3uA + LϕA
                                     y
                               k        2 z
Divide by Lk/2.


                              2P a        5
                                   = 3uA + LϕA
                                       y
                               Lk         2 z
So:

                                     −P    2a
                              ϕA =
                               z        1−
                                     Lk    L
Substitute:


                                    P   P    2a
                             uA =
                              y       +   1−
                                    3k 2k    L
                             P   P     2a   P      2a
                    u(x) =     +   (1 − ) −    (1 − )x
                             3k 2k     L    Lk     L
UNIAXIAL LOADING
  Behavior of a uniaxially loaded bar
L = LD + δ




                           P = kδ is a property of the bar.

                                 FORCE
                STRESS =                 = σ( Like Pressure)
                               UNIT AREA
          N
Units: 1 m2 = 1 Pa (SI Units)
         lbs
Units: 1 in2 = PSI (English Units)


                                             P
                                       σ=
                                             A
Engineering Stress
   For small deformation


                                             P
                                       σ=
                                             A0
            CHANGE IN LENGTH
STRAIN =        LENGTH             =
                                             δ
                                         =
                                             L
Strain is dimensionless.

Engineering Strain (For small deformations)


                                             δ
                                         =
                                             L0




                                         4
Stress-Strain plot




For Uniaxial Loading:
                                       σ=E

Material property is E, Young’s Modulus.
Note: Units of E = Pa, E 109 Pa (or GPa).

So, what is k for uniaxiail loading?
                                       σ=E
                                          P
                                       σ=
                                          A0
                                            δ
                                        =
                                            L0

                     So:             P    Eδ
                                        =
                                     A0   L0
                                          EA0
                                    P =       δ
                                           L0
                     So:
                                EA0
                           k=       for uniaxial loading
                                 L0
Deformation and Displacement
δ   (du(x) + dx) − dx)
                         =     =
                             L           dx
                                     du(x)
                                  =
                                      dx

                       u(x) = axial displacement of x
                                            du(x)
                                      (x) =
                                             dx
                                            σ(x)
                                      (x) =
                                              E
So:

                             du(x)   σ(x)    P
                                   =      =
                              dx      E     AE
                                  δ               L
                                                       P
                                      du =               dx
                              0               0       AE
                                       δ                L
                                                 Px
                                      u =
                                       0         AE     0
                                          PL
                                       δ=
                                          AE
So:


                                              AEδ
                                       P =
                                               L
What are some typical values for E?

                                      E
     Steel                        200 GPa
     Aluminum                      70 GPa
     Polycarbonate                2.3 GPa
     Titanium                     150 GPa
     Fiber-reinforced Composites 120 GPa
Selection of material?   Optimize k for a particular A
   Steel: ks = k = As Es
                      L
   Al: kA = k = AA EA
                    L

Same k ⇒ As Es = AA EA
               Es
   So: AA = As EA
   So: AA ≈ 3As ⇒ the aluminum is three times bigger




                                             6
May need to optimize weight (think about airplanes) ⇒ need to include den-
sity.

What happens if you keep pulling on a material?




                                σy = Yield Stress
p
    = Plastic Strain - Not Recoverable.
e
    = Elastic Strain - Fully Recoverable.
t
    = e + p = Total Strain

What about pulling on a bar in uniaxial tension?




                                        7

Weitere ähnliche Inhalte

Was ist angesagt?

Module 7 The Straight Lines
Module 7 The Straight LinesModule 7 The Straight Lines
Module 7 The Straight Linesguestcc333c
 
A New Polynomial-Time Algorithm for Linear Programming
A New Polynomial-Time Algorithm for Linear ProgrammingA New Polynomial-Time Algorithm for Linear Programming
A New Polynomial-Time Algorithm for Linear ProgrammingSSA KPI
 
Recent developments in control, power electronics and renewable energy by Dr ...
Recent developments in control, power electronics and renewable energy by Dr ...Recent developments in control, power electronics and renewable energy by Dr ...
Recent developments in control, power electronics and renewable energy by Dr ...Qing-Chang Zhong
 
AP Physics B Test Exam Solutions
AP Physics B Test Exam SolutionsAP Physics B Test Exam Solutions
AP Physics B Test Exam SolutionsMrreynon
 
Module 12 Matrices
Module 12   MatricesModule 12   Matrices
Module 12 Matricesguestcc333c
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Septiko Aji
 
透明な真理観を巡って
透明な真理観を巡って透明な真理観を巡って
透明な真理観を巡ってShunsuke Yatabe
 
Chapter 3( 3 d space vectors)
Chapter 3( 3 d space vectors)Chapter 3( 3 d space vectors)
Chapter 3( 3 d space vectors)Eko Wijayanto
 
Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...mathsjournal
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
10 modtab
10 modtab10 modtab
10 modtabHanibei
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graphguestcc333c
 
Generic parallelization strategies for data assimilation
Generic parallelization strategies for data assimilationGeneric parallelization strategies for data assimilation
Generic parallelization strategies for data assimilationnilsvanvelzen
 
VahidAkbariTalk.pdf
VahidAkbariTalk.pdfVahidAkbariTalk.pdf
VahidAkbariTalk.pdfgrssieee
 
VahidAkbariTalk_v3.pdf
VahidAkbariTalk_v3.pdfVahidAkbariTalk_v3.pdf
VahidAkbariTalk_v3.pdfgrssieee
 
Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2eSpringer
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanicsSpringer
 
Talk Delivered In Woat Conference Lisbon 2006
Talk Delivered In Woat Conference Lisbon 2006Talk Delivered In Woat Conference Lisbon 2006
Talk Delivered In Woat Conference Lisbon 2006Giorgi Bogveradze, PhD
 

Was ist angesagt? (20)

Module 7 The Straight Lines
Module 7 The Straight LinesModule 7 The Straight Lines
Module 7 The Straight Lines
 
The LabPQR Color Space
The LabPQR Color SpaceThe LabPQR Color Space
The LabPQR Color Space
 
A New Polynomial-Time Algorithm for Linear Programming
A New Polynomial-Time Algorithm for Linear ProgrammingA New Polynomial-Time Algorithm for Linear Programming
A New Polynomial-Time Algorithm for Linear Programming
 
Recent developments in control, power electronics and renewable energy by Dr ...
Recent developments in control, power electronics and renewable energy by Dr ...Recent developments in control, power electronics and renewable energy by Dr ...
Recent developments in control, power electronics and renewable energy by Dr ...
 
AP Physics B Test Exam Solutions
AP Physics B Test Exam SolutionsAP Physics B Test Exam Solutions
AP Physics B Test Exam Solutions
 
Module 12 Matrices
Module 12   MatricesModule 12   Matrices
Module 12 Matrices
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
透明な真理観を巡って
透明な真理観を巡って透明な真理観を巡って
透明な真理観を巡って
 
Chapter 3( 3 d space vectors)
Chapter 3( 3 d space vectors)Chapter 3( 3 d space vectors)
Chapter 3( 3 d space vectors)
 
Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
10 modtab
10 modtab10 modtab
10 modtab
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graph
 
Generic parallelization strategies for data assimilation
Generic parallelization strategies for data assimilationGeneric parallelization strategies for data assimilation
Generic parallelization strategies for data assimilation
 
VahidAkbariTalk.pdf
VahidAkbariTalk.pdfVahidAkbariTalk.pdf
VahidAkbariTalk.pdf
 
VahidAkbariTalk_v3.pdf
VahidAkbariTalk_v3.pdfVahidAkbariTalk_v3.pdf
VahidAkbariTalk_v3.pdf
 
Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2e
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanics
 
Stack of Tasks Course
Stack of Tasks CourseStack of Tasks Course
Stack of Tasks Course
 
Talk Delivered In Woat Conference Lisbon 2006
Talk Delivered In Woat Conference Lisbon 2006Talk Delivered In Woat Conference Lisbon 2006
Talk Delivered In Woat Conference Lisbon 2006
 

Andere mochten auch

Taco Bell ADV492
Taco Bell ADV492Taco Bell ADV492
Taco Bell ADV492Zach Chmill
 
Rainbow Grocery: Interactive Elements
Rainbow Grocery: Interactive ElementsRainbow Grocery: Interactive Elements
Rainbow Grocery: Interactive ElementsNisha Menezes
 
Itecn453 it infrastructure
Itecn453 it infrastructureItecn453 it infrastructure
Itecn453 it infrastructureAhmad Ammari
 
A comparison of historical vs current instructional design
A comparison of historical vs current instructional designA comparison of historical vs current instructional design
A comparison of historical vs current instructional designClemson University
 
Townet e il Tdma
Townet e il TdmaTownet e il Tdma
Townet e il TdmaTownet
 
Kunst met sneeuw
Kunst met sneeuwKunst met sneeuw
Kunst met sneeuwKitchat50
 
Lec4 MECH ENG STRucture
Lec4    MECH ENG  STRuctureLec4    MECH ENG  STRucture
Lec4 MECH ENG STRuctureMohamed Yaser
 
Calendario 2012 Land of Immortals
Calendario 2012 Land of ImmortalsCalendario 2012 Land of Immortals
Calendario 2012 Land of ImmortalsNingyou Tsukai
 
Townet. Piattaforme Waver per il network management
Townet. Piattaforme Waver per il network managementTownet. Piattaforme Waver per il network management
Townet. Piattaforme Waver per il network managementTownet
 
أدارة الوقت
أدارة الوقتأدارة الوقت
أدارة الوقتMohamed Yaser
 
Autoretrats dels felins i les felines
Autoretrats dels felins i les felinesAutoretrats dels felins i les felines
Autoretrats dels felins i les felinesesther669
 
Декада инвалидов
Декада инвалидовДекада инвалидов
Декада инвалидовNikita Kudelin
 

Andere mochten auch (20)

Taco Bell ADV492
Taco Bell ADV492Taco Bell ADV492
Taco Bell ADV492
 
Software Series 4
Software Series  4Software Series  4
Software Series 4
 
A A E441 Final Presentation
A A E441  Final  PresentationA A E441  Final  Presentation
A A E441 Final Presentation
 
Ao thuat
Ao thuatAo thuat
Ao thuat
 
Problems 2
Problems 2Problems 2
Problems 2
 
Lec01
Lec01Lec01
Lec01
 
Lec06
Lec06Lec06
Lec06
 
Rainbow Grocery: Interactive Elements
Rainbow Grocery: Interactive ElementsRainbow Grocery: Interactive Elements
Rainbow Grocery: Interactive Elements
 
Itecn453 it infrastructure
Itecn453 it infrastructureItecn453 it infrastructure
Itecn453 it infrastructure
 
A comparison of historical vs current instructional design
A comparison of historical vs current instructional designA comparison of historical vs current instructional design
A comparison of historical vs current instructional design
 
Townet e il Tdma
Townet e il TdmaTownet e il Tdma
Townet e il Tdma
 
Online collaboration in Neurosurgery 2.0
Online collaboration in Neurosurgery 2.0Online collaboration in Neurosurgery 2.0
Online collaboration in Neurosurgery 2.0
 
Kunst met sneeuw
Kunst met sneeuwKunst met sneeuw
Kunst met sneeuw
 
Lec4 MECH ENG STRucture
Lec4    MECH ENG  STRuctureLec4    MECH ENG  STRucture
Lec4 MECH ENG STRucture
 
Harbor UCLA Neuro-Radiology Case 8
Harbor UCLA Neuro-Radiology Case 8Harbor UCLA Neuro-Radiology Case 8
Harbor UCLA Neuro-Radiology Case 8
 
Calendario 2012 Land of Immortals
Calendario 2012 Land of ImmortalsCalendario 2012 Land of Immortals
Calendario 2012 Land of Immortals
 
Townet. Piattaforme Waver per il network management
Townet. Piattaforme Waver per il network managementTownet. Piattaforme Waver per il network management
Townet. Piattaforme Waver per il network management
 
أدارة الوقت
أدارة الوقتأدارة الوقت
أدارة الوقت
 
Autoretrats dels felins i les felines
Autoretrats dels felins i les felinesAutoretrats dels felins i les felines
Autoretrats dels felins i les felines
 
Декада инвалидов
Декада инвалидовДекада инвалидов
Декада инвалидов
 

Ähnlich wie Lec8 MECH ENG STRucture

Ähnlich wie Lec8 MECH ENG STRucture (16)

Lec7 MECH ENG STRucture
Lec7   MECH ENG  STRuctureLec7   MECH ENG  STRucture
Lec7 MECH ENG STRucture
 
Lec3
Lec3Lec3
Lec3
 
Lec3 MECH ENG STRucture
Lec3   MECH ENG  STRuctureLec3   MECH ENG  STRucture
Lec3 MECH ENG STRucture
 
Peskin chap02
Peskin chap02Peskin chap02
Peskin chap02
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
gft_handout2_06.pptx
gft_handout2_06.pptxgft_handout2_06.pptx
gft_handout2_06.pptx
 
Eigenvalues
EigenvaluesEigenvalues
Eigenvalues
 
Inmo 2013 test_paper_solution_new
Inmo 2013 test_paper_solution_newInmo 2013 test_paper_solution_new
Inmo 2013 test_paper_solution_new
 
M1l4
M1l4M1l4
M1l4
 
Physics Workout #1
Physics Workout #1Physics Workout #1
Physics Workout #1
 
Lec10 MECH ENG STRucture
Lec10   MECH ENG  STRuctureLec10   MECH ENG  STRucture
Lec10 MECH ENG STRucture
 
PAFT10
PAFT10PAFT10
PAFT10
 
Deformation 1
Deformation 1Deformation 1
Deformation 1
 
Physics
PhysicsPhysics
Physics
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
Ch.12
Ch.12Ch.12
Ch.12
 

Mehr von Mohamed Yaser

7 habits of highly effective people
7 habits of highly effective people7 habits of highly effective people
7 habits of highly effective peopleMohamed Yaser
 
Us navy introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
Us navy   introduction to helicopter aerodynamics workbook cnatra p-401 [us n...Us navy   introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
Us navy introduction to helicopter aerodynamics workbook cnatra p-401 [us n...Mohamed Yaser
 
Aerodynamics of the helicopter 2
Aerodynamics of the helicopter 2Aerodynamics of the helicopter 2
Aerodynamics of the helicopter 2Mohamed Yaser
 
Seddon j. basic helicopter aerodynamics [bsp prof. books 1990]
Seddon j.   basic helicopter aerodynamics [bsp prof. books 1990]Seddon j.   basic helicopter aerodynamics [bsp prof. books 1990]
Seddon j. basic helicopter aerodynamics [bsp prof. books 1990]Mohamed Yaser
 
The 10 natural_laws_of_successful_time_and_life_management
The 10 natural_laws_of_successful_time_and_life_managementThe 10 natural_laws_of_successful_time_and_life_management
The 10 natural_laws_of_successful_time_and_life_managementMohamed Yaser
 
حياة بلا توتر
حياة بلا توترحياة بلا توتر
حياة بلا توترMohamed Yaser
 
¨قوة التفكير
¨قوة التفكير¨قوة التفكير
¨قوة التفكيرMohamed Yaser
 
المفاتيح العشرة للنجاح
المفاتيح العشرة للنجاحالمفاتيح العشرة للنجاح
المفاتيح العشرة للنجاحMohamed Yaser
 
¨قوة التفكير
¨قوة التفكير¨قوة التفكير
¨قوة التفكيرMohamed Yaser
 
The 10 Natural Laws Of Successful Time And Life Management
The 10  Natural  Laws Of  Successful  Time And  Life  ManagementThe 10  Natural  Laws Of  Successful  Time And  Life  Management
The 10 Natural Laws Of Successful Time And Life ManagementMohamed Yaser
 
Theory Of Wing Sections
Theory  Of  Wing  SectionsTheory  Of  Wing  Sections
Theory Of Wing SectionsMohamed Yaser
 
Copy of book1 in c++
Copy of book1  in  c++Copy of book1  in  c++
Copy of book1 in c++Mohamed Yaser
 
structure for aerospace eng
structure for aerospace engstructure for aerospace eng
structure for aerospace engMohamed Yaser
 
realitivistic relativity 2.0
  realitivistic relativity 2.0  realitivistic relativity 2.0
realitivistic relativity 2.0Mohamed Yaser
 

Mehr von Mohamed Yaser (20)

7 habits of highly effective people
7 habits of highly effective people7 habits of highly effective people
7 habits of highly effective people
 
Us navy introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
Us navy   introduction to helicopter aerodynamics workbook cnatra p-401 [us n...Us navy   introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
Us navy introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
 
Aerodynamics of the helicopter 2
Aerodynamics of the helicopter 2Aerodynamics of the helicopter 2
Aerodynamics of the helicopter 2
 
Seddon j. basic helicopter aerodynamics [bsp prof. books 1990]
Seddon j.   basic helicopter aerodynamics [bsp prof. books 1990]Seddon j.   basic helicopter aerodynamics [bsp prof. books 1990]
Seddon j. basic helicopter aerodynamics [bsp prof. books 1990]
 
The 10 natural_laws_of_successful_time_and_life_management
The 10 natural_laws_of_successful_time_and_life_managementThe 10 natural_laws_of_successful_time_and_life_management
The 10 natural_laws_of_successful_time_and_life_management
 
حياة بلا توتر
حياة بلا توترحياة بلا توتر
حياة بلا توتر
 
فن التفاوض
فن التفاوضفن التفاوض
فن التفاوض
 
¨قوة التفكير
¨قوة التفكير¨قوة التفكير
¨قوة التفكير
 
المفاتيح العشرة للنجاح
المفاتيح العشرة للنجاحالمفاتيح العشرة للنجاح
المفاتيح العشرة للنجاح
 
¨قوة التفكير
¨قوة التفكير¨قوة التفكير
¨قوة التفكير
 
The 10 Natural Laws Of Successful Time And Life Management
The 10  Natural  Laws Of  Successful  Time And  Life  ManagementThe 10  Natural  Laws Of  Successful  Time And  Life  Management
The 10 Natural Laws Of Successful Time And Life Management
 
Theory Of Wing Sections
Theory  Of  Wing  SectionsTheory  Of  Wing  Sections
Theory Of Wing Sections
 
F- 20
F- 20F- 20
F- 20
 
Copy of book1 in c++
Copy of book1  in  c++Copy of book1  in  c++
Copy of book1 in c++
 
structure for aerospace eng
structure for aerospace engstructure for aerospace eng
structure for aerospace eng
 
Tutorial 2
Tutorial     2Tutorial     2
Tutorial 2
 
Tutorial
TutorialTutorial
Tutorial
 
1
11
1
 
realitivistic relativity 2.0
  realitivistic relativity 2.0  realitivistic relativity 2.0
realitivistic relativity 2.0
 
Lec5
Lec5Lec5
Lec5
 

Lec8 MECH ENG STRucture

  • 1. 2.001 - MECHANICS AND MATERIALS I Lecture #8 10/4/2006 Prof. Carol Livermore Recall from last lecture: Find: u(x), FA , FB , FC 1. Equilibrium Fu = 0 P − FA − F B − F C = 0 MA = 0 Fc L Pa − − FB L = 0 2 2. Force-Deformation FA = kδA 1
  • 2. FB = kδB FC = kδC 3. Compatibility δA = uA y δB = uA + L tan ϕA y z L δC = uA + y tan ϕA z 2 New this lecture: Small Angle Assumption: A sin ϕz ϕA A tan ϕz = A ≈ z = ϕA z cos ϕz 1 For small ϕA : Arc length ≈ a straight line displacemtn in y. z Rewrite compatibility. δA = uA y δB = uA + LϕA y z A L A δA = uy + ϕ 2 z Substitute compatibility into force-deformation A FA = kuy FB = k(uA + LϕA ) y z 2
  • 3. L A FC = k(uA + y ϕ ) 2 z Substitute this result into equilibrium equations: L A P − kuA − k(uA + LϕA ) − k(uA + y y z y ϕ )=0 2 z L L Pa − k(uA + ϕA ) −L k(uA + LϕA ) = 0 y 2 2 z y z Solve: 3 P = 3kuA + Lkϕz y A 2 3 5 P a = LkuA + L2 kϕA y z 2 4 Divide by k. P 3 = 3uA + LϕA y k 2 z Divide by Lk/2. 2P a 5 = 3uA + LϕA y Lk 2 z So: −P 2a ϕA = z 1− Lk L Substitute: P P 2a uA = y + 1− 3k 2k L P P 2a P 2a u(x) = + (1 − ) − (1 − )x 3k 2k L Lk L UNIAXIAL LOADING Behavior of a uniaxially loaded bar
  • 4. L = LD + δ P = kδ is a property of the bar. FORCE STRESS = = σ( Like Pressure) UNIT AREA N Units: 1 m2 = 1 Pa (SI Units) lbs Units: 1 in2 = PSI (English Units) P σ= A Engineering Stress For small deformation P σ= A0 CHANGE IN LENGTH STRAIN = LENGTH = δ = L Strain is dimensionless. Engineering Strain (For small deformations) δ = L0 4
  • 5. Stress-Strain plot For Uniaxial Loading: σ=E Material property is E, Young’s Modulus. Note: Units of E = Pa, E 109 Pa (or GPa). So, what is k for uniaxiail loading? σ=E P σ= A0 δ = L0 So: P Eδ = A0 L0 EA0 P = δ L0 So: EA0 k= for uniaxial loading L0 Deformation and Displacement
  • 6. δ (du(x) + dx) − dx) = = L dx du(x) = dx u(x) = axial displacement of x du(x) (x) = dx σ(x) (x) = E So: du(x) σ(x) P = = dx E AE δ L P du = dx 0 0 AE δ L Px u = 0 AE 0 PL δ= AE So: AEδ P = L What are some typical values for E? E Steel 200 GPa Aluminum 70 GPa Polycarbonate 2.3 GPa Titanium 150 GPa Fiber-reinforced Composites 120 GPa Selection of material? Optimize k for a particular A Steel: ks = k = As Es L Al: kA = k = AA EA L Same k ⇒ As Es = AA EA Es So: AA = As EA So: AA ≈ 3As ⇒ the aluminum is three times bigger 6
  • 7. May need to optimize weight (think about airplanes) ⇒ need to include den- sity. What happens if you keep pulling on a material? σy = Yield Stress p = Plastic Strain - Not Recoverable. e = Elastic Strain - Fully Recoverable. t = e + p = Total Strain What about pulling on a bar in uniaxial tension? 7