SlideShare ist ein Scribd-Unternehmen logo
1 von 10
Downloaden Sie, um offline zu lesen
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                                                                                                      The	
  algebra	
  of	
  little	
  kids	
  


                                                                          The	
  algebra	
  of	
  little	
  kids:	
  	
  	
  
             A	
  mathematical-­‐habits-­‐of-­‐mind	
  perspective	
  on	
  elementary	
  school1	
  
                                                                    E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
  
                                                                    Education	
  Development	
  Center,	
  Inc.	
  (EDC)2	
  
       Asking	
  “When	
  should	
  algebra	
  be	
  taught?”	
  is	
  like	
  asking	
  “Is	
  technology	
  harmful	
  or	
  
helpful?”	
  There	
  are	
  lots	
  of	
  technologies	
  and	
  lots	
  of	
  uses	
  of	
  them.	
  Some	
  are	
  harmful;	
  some	
  
are	
  helpful.	
  Refining	
  the	
  question—asking	
  about	
  a	
  particular	
  use	
  of	
  a	
  particular	
  technology	
  
for	
  a	
  particular	
  purpose	
  in	
  particular	
  contexts	
  and	
  at	
  particular	
  stages	
  in	
  one’s	
  learning—
makes	
  the	
  question	
  researchable	
  and	
  potentially	
  answerable.	
  Similarly,	
  there	
  are	
  many	
  
“algebras”—algebra	
  the	
  course,	
  algebra	
  the	
  discipline,	
  algebraic	
  ideas,	
  algebraic	
  language,	
  
early	
  algebra,	
  “patterns,	
  functions,	
  and	
  algebra”—and	
  many	
  different	
  takes	
  on	
  the	
  learning	
  
and	
  teaching	
  of	
  each	
  of	
  these.	
  Treating	
  algebra	
  as	
  an	
  indivisible	
  whole	
  obscures	
  the	
  options.	
  
It’s	
  more	
  useful	
  to	
  ask	
  what	
  ideas,	
  logic,	
  techniques,	
  and	
  habits	
  of	
  mind	
  algebra	
  entails,	
  and	
  
then,	
  about	
  each	
  of	
  these,	
  ask	
  when	
  and	
  to	
  what	
  extent	
  that	
  one	
  item	
  can	
  be	
  learned	
  with	
  
intellectual	
  integrity	
  and	
  how	
  a	
  coherent	
  whole	
  can	
  be	
  woven	
  out	
  of	
  these	
  learnings.	
  The	
  
answers	
  we	
  get	
  are	
  that	
  some	
  of	
  these	
  ideas	
  do	
  have	
  to	
  wait	
  for	
  eighth	
  or	
  ninth	
  grade,	
  but	
  
that	
  others—even	
  including	
  aspects	
  of	
  algebraic	
  language—are	
  already	
  there,	
  early	
  in	
  the	
  
primary	
  grades.	
  Moreover,	
  children	
  who	
  get	
  to	
  apply,	
  refine,	
  and	
  strengthen	
  those	
  ideas	
  
and	
  skills	
  as	
  they	
  emerge	
  gain	
  the	
  advantage.	
  
       Any	
  credible	
  claim	
  about	
  habits	
  of	
  mind	
  must	
  surely	
  accord	
  with	
  features	
  of	
  mind:	
  
children’s	
  cognitive	
  development.	
  For	
  a	
  charmingly	
  written	
  scientific	
  account	
  of	
  the	
  ways	
  
that	
  babies	
  and	
  young	
  children	
  think,	
  read	
  The	
  Scientist	
  in	
  the	
  Crib,	
  by	
  Gopnik,	
  Meltzoff,	
  and	
  
Kuhl	
  (2000).	
  The	
  habits	
  of	
  mind	
  approach	
  to	
  curriculum	
  that	
  we	
  first	
  described	
  well	
  over	
  a	
  
decade	
  ago	
  (Cuoco,	
  Goldenberg	
  &	
  Mark,	
  1996;	
  Goldenberg,	
  1996)	
  and	
  have	
  continued	
  to	
  
refine	
  (Goldenberg	
  &	
  Shteingold,	
  2003	
  and	
  2007;	
  Cuoco,	
  Goldenberg	
  &	
  Mark,	
  2009;	
  Mark,	
  
et	
  al.,	
  2009)	
  does	
  accord	
  well	
  with	
  children’s	
  thinking	
  and	
  became	
  a	
  central	
  design	
  
principle	
  behind	
  Think	
  Math!	
  (2008),	
  the	
  newest	
  NSF-­‐supported	
  elementary	
  curriculum,	
  
developed	
  at	
  EDC.	
  
       Recognizing,	
  enhancing,	
  and	
  building	
  on	
  developmentally	
  natural	
  habits	
  of	
  mind	
  lets	
  us	
  
dissect	
  algebra	
  and	
  sort	
  the	
  resulting	
  bits	
  and	
  pieces	
  in	
  a	
  developmentally	
  natural	
  way,	
  
while	
  preserving	
  the	
  content,	
  concepts,	
  and	
  skills	
  that	
  schools	
  (and	
  states,	
  parents,	
  
workplaces,	
  and	
  colleges)	
  expect.	
  The	
  fact	
  that	
  it	
  is	
  possible	
  to	
  organize	
  algebraic	
  ideas,	
  
logic,	
  and	
  techniques	
  around	
  the	
  development	
  of	
  mind	
  makes	
  clear	
  that	
  we	
  are	
  truly	
  talking	
  
about	
  thinking—habits	
  of	
  mind—rather	
  than	
  “features	
  of	
  mathematics”	
  or	
  “idiosyncrasies	
  
of	
  mathematicians.”	
  This	
  article	
  describes	
  two	
  of	
  these	
  natural	
  habits	
  of	
  mind.	
  
Two	
  algebraic	
  ideas	
  that	
  precede	
  arithmetic	
  
The	
  common	
  wisdom	
  is	
  arithmetic	
  first,	
  algebra	
  later.	
  The	
  truth	
  is	
  not	
  so	
  simple.	
  Some	
  
algebraic	
  ideas—ideas	
  about	
  the	
  properties	
  of	
  binary	
  operations	
  apart	
  from	
  the	
  numbers	
  
these	
  operations	
  may	
  “combine”—develop	
  naturally	
  before	
  children	
  learn	
  arithmetic.	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  An	
  adaptation	
  of	
  this	
  paper	
  has	
  been	
  submitted	
  for	
  publication	
  in	
  Teaching	
  Children	
  Mathematics,	
  NCTM.	
  
2	
  This	
  work	
  was	
  supported	
  in	
  part	
  by	
  the	
  National	
  Science	
  Foundation,	
  grant	
  numbers	
  ESI-­‐0099093,	
  DRL-­‐

0733015,	
  and	
  DRL-­‐0917958.	
  The	
  opinions	
  expressed	
  are	
  those	
  of	
  the	
  authors	
  and	
  not	
  necessarily	
  those	
  of	
  the	
  
Foundation.	
  


©	
  Education	
  Development	
  Center,	
  Inc.	
                                                       	
                                                                                                         page	
  1	
  
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                                            The	
  algebra	
  of	
  little	
  kids	
  


       In	
  fact,	
  they	
  must	
  develop	
  before	
  arithmetic	
  can	
  make	
  sense!	
  For	
  example,	
  for	
  many	
  4-­‐
year-­‐olds,	
  even	
  those	
  who	
  appear	
  to	
  count	
  well,	
  seven	
  objects	
  spread	
  out	
  like	
  this	
  
                                      	
  feel	
  like	
  “more”	
  than	
  the	
  same	
  objects	
  bunched	
  together	
  
                            .	
  (Though	
  “conservation”	
  remains	
  the	
  familiar	
  name	
  for	
  this	
  stage	
  in	
  
children’s	
  logic—so	
  we’ll	
  still	
  use	
  it—child	
  logic	
  is	
  more	
  nuanced	
  than	
  was	
  previously	
  
thought.	
  It’s	
  known,	
  for	
  example,	
  that	
  for	
  small	
  enough	
  numbers	
  of	
  objects,	
  babies	
  at	
  eleven	
  
months	
  have	
  not	
  only	
  stability	
  of	
  number	
  but	
  essentially	
  addition	
  as	
  well.	
  See,	
  e.g.,	
  
Feigenson,	
  Carey,	
  and	
  Spelke,	
  2002.	
  So-­‐called	
  non-­‐conservers	
  aren’t	
  “enslaved	
  by	
  their	
  
senses”	
  but	
  haven’t	
  yet	
  privileged	
  the	
  analytic	
  act	
  of	
  counting	
  over	
  other	
  ways	
  of	
  making	
  
social	
  and	
  mathematical	
  sense	
  of	
  the	
  world.)	
  For	
  children	
  whose	
  logic	
  still	
  works	
  that	
  way,	
  
the	
  claim	
  that	
                         	
  +	
        	
  is	
  the	
  same	
  amount	
  as	
              	
  can	
  hardly	
  make	
  
sense.	
  Faced	
  with	
  the	
  requirement	
  to	
  assert	
  that	
  5	
  +	
  2	
  =	
  7,	
  “non-­‐conservers”	
  have	
  only	
  two	
  
options.	
  Some	
  divorce	
  the	
  assertion	
  from	
  their	
  current	
  “common	
  sense”—after	
  all,	
  they	
  
“know”	
  that	
  the	
  two	
  quantities	
  are	
  not	
  the	
  same—and	
  learn	
  “5	
  +	
  2	
  =	
  7”	
  as	
  an	
  arbitrary	
  but	
  
learnable	
  fact,	
  the	
  same	
  way	
  they	
  learn	
  the	
  names	
  of	
  their	
  classmates.	
  For	
  them,	
  math	
  is	
  
memory.	
  Others	
  find	
  it	
  hard	
  to	
  accept	
  what	
  their	
  logic	
  tells	
  them	
  is	
  “not	
  true”	
  and,	
  instead,	
  
just	
  feel	
  like	
  they	
  “don’t	
  get	
  it.”	
  	
  
An	
  important	
  property	
  of	
  addition	
  before	
  addition,	
  itself	
  
What	
  will	
  later	
  be	
  formalized	
  as	
  the	
  commutative	
  and	
  associative	
  laws	
  of	
  addition	
  begins	
  as	
  
an	
  intuitive	
  sense	
  of	
  stability/invariance	
  of	
  quantity	
  under	
  rearrangement.	
  Piaget	
  (1952)	
  
called	
  it	
  conservation	
  of	
  number;	
  Wirtz,	
  et	
  al.	
  (1964)	
  and	
  Sawyer	
  (2003)	
  called	
  it	
  the	
  “any	
  
order	
  any	
  grouping	
  property.”	
  Prior	
  to	
  conservation,	
  while	
  arrangement	
  trumps	
  number,	
  
              may	
  not	
  have	
  a	
  fixed	
  number	
  associated	
  with	
  it.	
  Later,	
  the	
  new	
  conserver	
  may	
  not	
  yet	
  
         	
  
know	
  how	
  many	
  fingers	
                    	
  are	
  without	
  counting,	
  but	
  will	
  be	
  sure	
  that	
  the	
  number,	
  

whatever	
  it	
  is,	
  stays	
  put	
  if	
  the	
  hands	
  are	
  moved	
  like	
  this	
     or	
  even	
  like	
  this,	
           .	
  	
  

   That	
  algebraic	
  idea,	
  a	
  property	
  of	
  aggregation,	
  must	
  exist	
  before	
  the	
  arithmetic	
  fact—
knowing	
  what	
  number	
  2	
  +	
  5	
  is—can	
  make	
  sense.	
  In	
  a	
  similar	
  way,	
  if	
  a	
  bunch	
  of	
  coins	
  are	
  
hidden	
  and	
  we	
  ask	
  “how	
  much	
  money	
  is	
  there?”	
  children	
  for	
  whom	
  the	
  question	
  makes	
  any	
  
sense	
  will	
  be	
  absolutely	
  certain	
  that	
  there	
  is	
  an	
  answer,	
  and	
  that	
  only	
  one	
  answer	
  is	
  correct.	
  
They	
  may	
  be	
  uncertain	
  about	
  methods	
  of	
  counting,	
  and	
  may	
  think	
  that	
  some	
  methods	
  
might	
  give	
  incorrect	
  answers.	
  The	
  complexities	
  of	
  communication	
  may	
  even	
  make	
  it	
  seem	
  
that	
  they	
  believe	
  that	
  the	
  amount,	
  itself,	
  could	
  vary	
  depending	
  on	
  what	
  method	
  they	
  use	
  as	
  
they	
  count	
  but,	
  in	
  all	
  likelihood,	
  other	
  means	
  of	
  questioning	
  would	
  suggest	
  that	
  they’re	
  sure	
  
that	
  the	
  amount	
  is	
  stable.	
  In	
  fact,	
  if	
  they	
  do	
  believe	
  the	
  amount	
  can	
  vary,	
  they’re	
  not	
  
cognitively	
  ready	
  for	
  the	
  question	
  of	
  what	
  “the	
  amount”	
  is.	
  There	
  is	
  no	
  “the	
  amount”	
  if	
  it	
  can	
  
vary.	
  Some	
  six	
  year	
  olds,	
  but	
  not	
  many,	
  do	
  not	
  yet	
  conserve	
  number;	
  by	
  seven,	
  nearly	
  all	
  do.	
  
    Having	
  confidence	
  that	
                      	
  and	
     	
  represent	
  the	
  same	
  quantity	
  is	
  not	
  the	
  same	
  as	
  
knowing	
  the	
  commutative	
  property	
  of	
  addition.	
  The	
  commutative	
  property	
  is	
  not	
  about	
  the	
  
arrangement	
  of	
  physical	
  objects	
  in	
  space,	
  but	
  about	
  the	
  behavior	
  of	
  a	
  particular	
  element	
  
(here,	
  the	
  +	
  sign)	
  in	
  a	
  formal	
  syntactic	
  system	
  of	
  written	
  symbols.	
  In	
  some	
  contexts,	
  
children	
  can	
  make	
  perfect	
  sense	
  out	
  of	
  written	
  symbols—even	
  significant	
  parts	
  of	
  algebraic	
  
notation—but	
  most	
  young	
  children	
  cannot	
  make	
  sense	
  of	
  formal	
  operations	
  on	
  a	
  string	
  of	
  


©	
  Education	
  Development	
  Center,	
  Inc.	
                     	
                                                                     page	
  2	
  
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                                                   The	
  algebra	
  of	
  little	
  kids	
  


symbols.	
  So,	
  at	
  this	
  stage,	
  commutativity	
  remains	
  largely	
  an	
  intuitively	
  obvious	
  idea	
  about	
  
the	
  “physics	
  of	
  mathematics”:	
  the	
  nature	
  of	
  aggregation,	
  not	
  the	
  nature	
  of	
  symbols.	
  Even	
  so,	
  
we,	
  as	
  educators,	
  can	
  support	
  the	
  young	
  child’s	
  logic	
  better	
  if	
  we	
  recognize	
  that	
  it	
  is	
  already	
  
relying	
  on	
  the	
  underlying	
  ideas	
  that	
  formal	
  mathematics	
  will	
  later	
  codify.	
  The	
  fact	
  that	
  
children	
  see	
  that	
  the	
  principle	
  applies	
  regardless	
  of	
  the	
  numbers	
  means	
  that	
  it	
  captures	
  the	
  
essential	
  algebraic	
  aspect	
  of	
  the	
  structure	
  of	
  addition	
  that	
  commutativity	
  is	
  about.	
  	
  
Logical	
  precursors	
  of	
  the	
  distributive	
  property	
  of	
  multiplication	
  over	
  addition:	
  	
  
Pick	
  a	
  number.	
  Multiply	
  it	
  by	
  5;	
  also	
  multiply	
  it	
  (your	
  original	
  number)	
  by	
  2;	
  now	
  add	
  those	
  
results.	
  You	
  get	
  the	
  same	
  answer	
  you’d	
  get	
  if	
  you	
  multiplied	
  your	
  original	
  number	
  by	
  7.	
  The	
  
distributive	
  property,	
  a	
  general	
  statement	
  of	
  that	
  fact,	
  is	
  possibly	
  the	
  most	
  central	
  idea	
  in	
  
elementary	
  arithmetic,	
  key	
  to	
  understanding	
  the	
  algorithms,	
  at	
  the	
  core	
  of	
  fluent	
  mental	
  
calculations	
  (e.g.,	
  102	
  ×	
  27	
  can	
  be	
  computed	
  in	
  two	
  parts,	
  as	
  100	
  ×	
  27	
  +	
  2	
  ×	
  27),	
  and	
  the	
  
logical	
  basis	
  for	
  many	
  “rules”	
  of	
  algebra	
  that	
  might	
  otherwise	
  seem	
  arbitrary.	
  
    This	
  property	
  relates	
  multiplication	
  and	
  addition,	
  but	
  children	
  “know	
  it”	
  long	
  before	
  they	
  
even	
  meet	
  multiplication!	
  It’s	
  in	
  the	
  language	
  (and	
  logic)	
  they	
  use	
  when	
  they	
  say	
  that	
  5	
  
(fingers,	
  pennies,	
  or	
  27s)	
  plus	
  2	
  (fingers,	
  pennies,	
  27s)	
  make	
  7	
  (fingers,	
  pennies,	
  27s).	
  These	
  
dialogues	
  with	
  6-­‐year-­‐olds,	
  late	
  in	
  their	
  kindergarten	
  year,	
  give	
  a	
  sense	
  of	
  what	
  their	
  logic	
  
does	
  and	
  does	
  not	
  handle.	
  What	
  distinguishes	
  the	
  questions	
  the	
  children	
  get	
  “right”	
  from	
  
those	
  they	
  get	
  “wrong”?	
  What	
  logic	
  might	
  explain	
  the	
  particular	
  wrong	
  answers	
  they	
  get?	
  
       T	
   What’s	
  a	
  really	
  big	
  number?	
  
       Ne	
  (girl):	
  A	
  million!	
  
       T:	
   Suppose	
  I	
  said	
  “How	
  much	
  is	
  a	
  thousand	
  plus	
  a	
  thousand?”	
  What	
  would	
  you	
  say?	
  
       Ne:	
   I	
  have	
  no	
  idea!	
  (big	
  smile)	
  
       T:	
   And	
  suppose	
  I	
  said	
  “How	
  much	
  is	
  two	
  thousand	
  plus	
  three	
  thousand?”	
  
       Ne:	
   (thinks,	
  then	
  confidently)	
  Five	
  thousand!	
  
	
  
       T:	
  Suppose	
  I	
  said	
  “How	
  much	
  is	
  a	
  hundred	
  plus	
  a	
  hundred?”	
  What	
  would	
  you	
  say?	
  
       Gi	
  (girl):	
   A	
  hundred.	
  
       T:	
   What	
  about	
  “Two	
  hundred	
  plus	
  three	
  hundred”?	
  	
  
       Gi:	
   Five	
  hundred.	
  
       T:	
   (playfully)	
  And	
  what	
  if	
  I	
  said	
  “how	
  much	
  is	
  a	
  thousand	
  plus	
  a	
  thousand?”	
  …	
  
       Gi:	
   A	
  million!	
  
	
  

       T:	
  Suppose	
  I	
  said	
  “How	
  much	
  is	
  a	
  hundred	
  plus	
  a	
  hundred?”	
  What	
  would	
  you	
  say?	
  
       De	
  (boy):	
  De	
  may	
  hear	
  “a	
  hundred”	
  as	
  one	
  word,	
  so	
  confidently	
  says:	
  Two	
  ahundred.	
  	
  
       T:	
   And	
  suppose	
  I	
  said	
  “How	
  much	
  is	
  two	
  hundred	
  plus	
  three	
  hundred?”	
  
       De:	
   Five	
  hundred.	
  
	
  
       T:	
  Suppose	
  I	
  said	
  “How	
  much	
  is	
  a	
  thousand	
  plus	
  a	
  thousand?”	
  What	
  would	
  you	
  say?	
  
       Co	
  (boy):	
  A	
  thousand	
  two.	
  (Co	
  might	
  have	
  meant	
  “A	
  thousand,	
  too.”	
  We	
  don’t	
  know.)	
  
       T:	
   And	
  suppose	
  I	
  said	
  “How	
  much	
  is	
  two	
  thousand	
  plus	
  three	
  thousand?”	
  
       Co:	
   Two	
  three	
  a	
  thousand.	
  (Co	
  clearly	
  isn’t	
  yet	
  adding	
  naturally.)	
  
    As	
  soon	
  as	
  children	
  are	
  comfortable	
  with	
  the	
  idea	
  (and	
  language	
  and	
  knowledge)	
  to	
  
answer	
  “what’s	
  three	
  sheep	
  plus	
  two	
  sheep?”	
  perhaps	
  late	
  in	
  K	
  or	
  early	
  in	
  first	
  grade,	
  they’ll	
  
happily	
  apply	
  that	
  to	
  give	
  the	
  “correct”	
  answer	
  to	
  the	
  spoken	
  question	
  “what’s	
  three	
  eighths	
  
plus	
  two	
  eighths?”	
  or	
  “what’s	
  three	
  hundred	
  plus	
  two	
  hundred?”	
  The	
  answer	
  is	
  “correct,”	
  
but	
  what	
  they	
  have	
  in	
  mind	
  may	
  well	
  be	
  quite	
  different	
  from	
  what	
  we	
  have	
  in	
  mind	
  when	
  


©	
  Education	
  Development	
  Center,	
  Inc.	
                       	
                                                                       page	
  3	
  
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                                              The	
  algebra	
  of	
  little	
  kids	
  


we	
  give	
  the	
  same	
  answer.	
  We	
  can	
  see	
  how	
  different	
  their	
  ideas	
  are	
  when	
  we	
  ask	
  a	
  slightly	
  
different	
  question:	
  “what’s	
  a	
  hundred	
  plus	
  a	
  hundred”	
  (with	
  no	
  audible	
  “small”	
  numbers	
  
like	
  “two”	
  or	
  “three”).	
  To	
  this	
  question,	
  young	
  six-­‐year-­‐olds	
  may	
  well	
  repeat	
  “a	
  hundred”	
  or	
  
say	
  something	
  like	
  “a	
  million.”	
  If,	
  instead,	
  we	
  ask	
  “what’s	
  an	
  eighth	
  plus	
  an	
  eighth,”	
  little	
  
ones	
  may	
  just	
  give	
  a	
  puzzled	
  stare	
  and	
  not	
  answer	
  at	
  all;	
  or,	
  if	
  their	
  arithmetic	
  is	
  strong	
  
enough,	
  they	
  might	
  possibly	
  count	
  and	
  answer	
  “sixteen”	
  (or,	
  sometimes	
  “nine”).	
  	
  
      How	
  can	
  we	
  explain	
  such	
  different	
  responses	
  to	
  questions	
  that	
  adults	
  see	
  as	
  so	
  similar?	
  
Again,	
  the	
  answer	
  rests	
  more	
  in	
  language	
  and	
  general	
  cognition	
  than	
  mathematics.	
  
Kindergarteners	
  typically	
  have	
  hundred	
  and	
  half	
  as	
  vocabulary	
  items.	
  For	
  most	
  little	
  ones,	
  
these	
  terms	
  don’t	
  represent	
  precise	
  or	
  fixed	
  amounts,	
  just	
  as	
  “a	
  zillion”	
  is	
  not	
  a	
  specific	
  
fixed	
  amount	
  to	
  us,	
  but	
  the	
  children	
  do	
  know	
  that	
  “half”	
  means	
  only	
  part.	
  Most	
  even	
  know	
  
that	
  halves	
  should	
  be	
  equal—	
  no	
  fair	
  if	
  yours	
  is	
  bigger!—though	
  they	
  might	
  not	
  know	
  that	
  
they	
  must	
  be	
  equal	
  or	
  that	
  there	
  are	
  only	
  two	
  of	
  them.	
  And	
  they	
  almost	
  certainly	
  don’t	
  
know	
  that	
  half	
  is	
  a	
  number.	
  Likewise,	
  they	
  know	
  that	
  “a	
  hundred”	
  is	
  big,	
  though	
  they	
  are	
  
unlikely	
  to	
  know	
  how	
  big.	
  The	
  question	
  “what’s	
  a	
  hundred	
  plus	
  a	
  hundred”	
  is,	
  therefore,	
  
more	
  or	
  less,	
  “what	
  is	
  a	
  big	
  amount	
  plus	
  another	
  big	
  amount?”	
  The	
  natural	
  response	
  is	
  “a	
  
big	
  amount”	
  (“a	
  hundred”)	
  or	
  a	
  very	
  big	
  amount	
  (“a	
  million”),	
  not	
  “two	
  big	
  amounts”	
  (“two	
  
hundred”).	
  But	
  when	
  fixed	
  specific	
  quantities	
  are	
  available,	
  children	
  use	
  them.	
  The	
  question	
  
“what’s	
  two	
  hundred	
  plus	
  three	
  hundred”	
  is	
  linguistically	
  and	
  cognitively	
  like	
  “what’s	
  two	
  
sheep	
  plus	
  three	
  sheep”—it	
  draws	
  attention	
  to	
  2	
  +	
  3,	
  not	
  to	
  the	
  nature	
  of	
  a	
  sheep	
  or	
  a	
  
hundred.	
  Children	
  for	
  whom	
  2	
  +	
  3	
  makes	
  sense	
  answer	
  correctly.	
  Of	
  course,	
  children	
  for	
  
whom	
  2	
  +	
  3	
  does	
  not	
  yet	
  make	
  sense	
  try	
  to	
  find	
  some	
  other	
  way	
  of	
  making	
  sense	
  of	
  the	
  task,	
  
but	
  their	
  answers	
  don’t	
  reflect	
  addition.	
  (The	
  different	
  response	
  to	
  “what’s	
  an	
  eighth	
  plus	
  
an	
  eighth”—the	
  puzzled	
  look—is	
  because	
  an	
  eighth	
  not	
  even	
  part	
  of	
  the	
  child’s	
  vocabulary,	
  
and	
  thus,	
  with	
  no	
  meaning,	
  gives	
  the	
  child	
  less	
  of	
  a	
  context	
  for	
  responding.	
  Anna	
  Sfard,	
  
2008,	
  suggests	
  that	
  a	
  child	
  might	
  well	
  treat	
  “hundred”	
  as	
  a	
  number,	
  rather	
  than	
  a	
  sheep,	
  
and	
  still	
  treat	
  “three	
  hundred”	
  not	
  as	
  a	
  number,	
  but	
  as	
  an	
  expression	
  composed	
  of	
  two	
  
number	
  words.	
  If	
  so,	
  our	
  kindergarteners	
  seem	
  to	
  treat	
  these	
  numbers	
  differently,	
  one	
  as	
  a	
  
counter,	
  the	
  other	
  as	
  a	
  unit	
  or	
  object,	
  which	
  might	
  be	
  consistent	
  with	
  Sfard.)	
  
     Why	
  these	
  errors	
  are	
  made,	
  and	
  why	
  “hundred”	
  and	
  “eighth”	
  lead	
  to	
  different	
  errors,	
  is	
  a	
  
diversion.	
  The	
  point	
  is	
  that	
  when	
  no	
  audible	
  small	
  numbers	
  like	
  “two”	
  or	
  “three”	
  are	
  given,	
  
little	
  children	
  tend	
  to	
  give	
  wrong	
  answers.	
  But	
  when	
  we	
  say	
  how	
  many	
  eighths	
  or	
  hundreds,	
  
and	
  the	
  numbers	
  are	
  not	
  too	
  large,	
  even	
  kindergarteners	
  tend	
  to	
  answer	
  correctly,	
  more	
  
first	
  graders	
  do,	
  and	
  we	
  can	
  absolutely	
  count	
  on	
  it	
  in	
  second	
  grade.	
  Whatever	
  an	
  eighth	
  or	
  a	
  
hundred	
  is,	
  the	
  children	
  are	
  sure	
  that	
  three	
  of	
  them	
  plus	
  two	
  of	
  them	
  is	
  five	
  of	
  them!	
  This	
  
does	
  not	
  constitute	
  “knowing	
  the	
  distributive	
  property,”	
  but	
  it	
  does	
  tell	
  us	
  that	
  the	
  children	
  
already	
  have	
  the	
  underlying	
  idea	
  that	
  the	
  distributive	
  property	
  will	
  later	
  encode	
  formally.	
  
       If	
  we	
  use	
  sevens	
  (a	
  fully	
  understood	
  fixed	
  quantity)	
  in	
  place	
  of	
  hundred	
  (which	
  may	
  still	
  
be	
  a	
  nonspecific	
  “zillion”	
  for	
  young	
  children),	
  children	
  still	
  know	
  that	
  three	
  of	
  them	
  plus	
  
two	
  of	
  them	
  makes	
  five	
  of	
  them,	
  but	
  that’s	
  of	
  little	
  use	
  if	
  “three	
  sevens”	
  does	
  not	
  (yet)	
  have	
  
meaning.	
  Once	
  a	
  child	
  does	
  have	
  meaning	
  for	
  “three	
  sevens”	
  and	
  that	
  meaning	
  is	
  a	
  specific	
  
number	
  (even	
  if	
  the	
  child	
  doesn’t	
  yet	
  remember	
  which	
  number),	
  the	
  child’s	
  long-­‐standing	
  
logic/intuition/linguistic	
  knowledge	
  that	
  “three	
  sevens	
  plus	
  two	
  sevens	
  is	
  five	
  sevens”	
  
becomes	
  arithmetically	
  usable.	
  	
  



©	
  Education	
  Development	
  Center,	
  Inc.	
                    	
                                                                      page	
  4	
  
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                                                                   The	
  algebra	
  of	
  little	
  kids	
  

       The	
  meaning	
  of	
  “three	
  sevens”	
  might	
  be	
  given	
  in	
  several	
  ways:	
  as	
  an	
  image	
                                        ,	
  or	
  a	
  
sum,	
  7	
  +	
  7	
  +	
  7,	
  or	
  a	
  product	
  3	
  ×	
  7,	
  or	
  in	
  other	
  ways.	
  Each	
  way	
  has	
  something	
  threeish	
  and	
  
something	
  sevenish	
  about	
  it.	
  Because	
  7	
  +	
  7	
  +	
  7	
  and	
  3	
  ×	
  7	
  are	
  both	
  language,	
  such	
  
expressions	
  are	
  best	
  introduced	
  as	
  (mathematical)	
  descriptions	
  of	
  a	
  situation—for	
  
example,	
  the	
  array	
  image—that	
  communicates	
  partly	
  without	
  analyzing	
  the	
  language	
  
formally.	
  The	
  image,	
  of	
  course,	
  requires	
  some	
  analysis,	
  too—visual	
  rather	
  than	
  linguistic—
to	
  see	
  the	
  three	
  sevens.	
  To	
  connect	
  “three	
  sevens”	
  with	
  21,	
  the	
  “normal”	
  name	
  for	
  that	
  
number,	
  we	
  must	
  agree	
  that	
  what	
  makes	
                                             	
  “seven”	
  is	
  its	
  seven	
  squares.	
  Then	
            	
  is	
  
21	
  because	
  of	
  its	
  21	
  squares,	
  but	
  it	
  is	
  also	
  a	
  picture	
  of	
  three	
  sevens:	
  a	
  multiplication	
  fact.	
  
Similarly,	
  if	
                      	
  is	
  “seven,”	
  then	
                 	
  is	
  two	
  sevens.	
  The	
  picture	
               	
  shows	
  that	
  three	
  
sevens	
  and	
  two	
  sevens	
  make	
  five	
  sevens.	
  
    In	
  spoken	
  form,	
  “three	
  sevens	
  plus	
  two	
  sevens	
  make	
  five	
  sevens”	
  is	
  familiar.	
  The	
  
pictures	
  support	
  the	
  semantics	
  of	
  the	
  situation,	
  helping	
  to	
  establish	
  the	
  role	
  of	
  sevens	
  and	
  
preserve	
  its	
  numerical	
  meaning	
  rather	
  than	
  letting	
  it	
  degenerate	
  into	
  a	
  non-­‐numeric	
  object,	
  
like	
  sheep.	
  But	
  the	
  classical	
  written	
  form—(3	
  ×	
  7)	
  +	
  (2	
  ×	
  7)	
  =	
  5	
  ×	
  7—is	
  quite	
  another	
  story.	
  
Spoken	
  symbols	
  vs.	
  written	
  symbols	
  
Knowing	
  that	
  the	
  finger	
  collections	
                    	
  and	
                      	
  can	
  be	
  described	
  by	
  the	
  same	
  number	
  
does	
  not	
  guarantee	
  that	
  a	
  child	
  will	
  know	
  that	
  the	
  print	
  statements	
  5	
  +	
  2	
  and	
  2	
  +	
  5	
  refer	
  to	
  
the	
  same	
  number.	
  The	
  written	
  language	
  of	
  mathematics	
  presents	
  challenges	
  that	
  can	
  be	
  
finessed	
  by	
  spoken	
  language	
  and	
  by	
  appropriate	
  visual	
  presentations.	
  Perhaps	
  the	
  most	
  
glaring	
  example	
  is	
  the	
  canonical	
  wrong	
  fourth-­‐grade	
  response	
  to	
   8 + 8 = ? .	
  No	
  first	
  grader	
  
                                                                                                                          3    2


would	
  ever	
  say	
  “five	
  sixteenths.”	
  It’s	
  uninformative—in	
  fact,	
  misleading—to	
  “explain”	
  such	
  
errors	
  simply	
  by	
  claiming	
  that	
  these	
  expressions	
  are	
  “too	
  abstract”	
  or	
  that	
  children	
  “can’t	
  
handle	
  symbols.”	
  Spoken	
  words	
  are	
  symbols,	
  too,	
  and	
  words	
  like	
  the—which	
  young	
  
children	
  use	
  flawlessly—are	
  about	
  as	
  abstract	
  as	
  one	
  can	
  get.	
  It’s	
  worth	
  understanding	
  the	
  
difference	
  between	
                 	
  =	
      	
  and	
  5	
  +	
  2	
  =	
  2	
  +	
  5	
  to	
  see	
  why	
  the	
  challenge	
  of	
  print	
  for	
  
children	
  may	
  not	
  be	
  a	
  mathematical	
  challenge.	
  	
  
       Humans	
  have	
  evolved	
  to	
  be	
  quite	
  flexible	
  about	
  visual	
  order	
  and	
  
orientation,	
  but	
  in	
  the	
  life	
  of	
  any	
  individual	
  human,	
  it	
  takes	
  some	
  
learning.	
  Infants	
  who	
  have	
  come	
  to	
  recognize	
  a	
  bottle	
  when	
  it	
  is	
  
handed	
  to	
  them	
  in	
  the	
  proper	
  orientation	
                	
  do	
  not,	
  at	
  first,	
  reach	
  
for	
  it	
  when	
  it	
  is	
  handed	
  to	
  them	
  in	
  some	
  unfamiliar	
  orientation	
  (e.g.,	
  
with	
  the	
  nipple	
  visible,	
  but	
  facing	
  away	
  like	
  this	
                  ).	
  But	
  very	
  
soon	
  they	
  do	
  learn	
  to	
  recognize	
  objects	
  regardless	
  of	
  their	
  
orientation.	
  When	
  you	
  consider	
  the	
  visual	
  processing	
  required,	
  this	
  
is	
  quite	
  an	
  impressive	
  accomplishment.	
  Even	
  if	
  the	
  bottle	
  is	
                                                                                             	
  
presented	
  in	
  the	
  same	
  orientation	
  but	
  at	
  different	
  distances,	
  very	
                                            Figure	
  1:	
  	
  In	
  this	
  photo,	
  
different	
  images	
  are	
  projected	
  onto	
  the	
  retina.	
  The	
  distortion	
  of	
                                             the	
  distance	
  from	
  the	
  tip	
  
                                                                                                                                           of	
  the	
  nipple	
  to	
  the	
  
parts	
  relative	
  to	
  each	
  other	
  can	
  be	
  extreme,	
  and	
  yet	
  the	
  baby	
                                           bottle	
  is	
  the	
  same	
  as	
  the	
  
recognizes	
  all	
  of	
  these	
  projections—most	
  of	
  them	
  never	
  seen	
                                                      length	
  of	
  the	
  entire	
  rest	
  
before—as	
  the	
  same	
  object.	
                                                                                                      of	
  the	
  bottle.	
  Measure	
  to	
  
                                                                                                                                           see	
  for	
  yourself!	
  



©	
  Education	
  Development	
  Center,	
  Inc.	
                                 	
                                                                                    page	
  5	
  
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                                                                        The	
  algebra	
  of	
  little	
  kids	
  


Though	
  this	
  complex	
  neural	
  computation	
  needs	
  data	
  (learning)	
  to	
  tune	
  it	
  up,	
  the	
  ability,	
  
itself,	
  is	
  wired	
  in.	
  This	
  evolutionary	
  gift	
  is	
  essential	
  for	
  survival.	
  Otherwise,	
  we’d	
  have	
  been	
  
meals	
  for	
  tigers	
  we	
  didn’t	
  recognize	
  because	
  they	
  didn’t	
  happen	
  to	
  be	
  facing	
  exactly	
  the	
  
same	
  way	
  as	
  first	
  we	
  saw	
  them!	
  For	
  our	
  ancestors,	
  it	
  was	
  necessary	
  to	
  “see”	
  the	
  same	
  object	
  
despite	
  different	
  retinal	
  images,	
  as	
  long	
  as	
  those	
  images	
  could	
  be	
  made	
  “the	
  same”	
  under	
  
rotation,	
  reflection,	
  dilation,	
  or	
  certain	
  projective	
  transformations,	
  and	
  so	
  our	
  brains	
  are	
  
adept	
  at	
  them.	
  (The	
  spatial	
  tests	
  that	
  some	
  people	
  find	
  quite	
  difficult	
  are	
  a	
  very	
  different	
  
sort	
  of	
  thing.	
  The	
  “look-­‐alike”	
  objects	
  on	
  these	
  tests	
  require	
  an	
  analysis	
  that	
  goes	
  beyond	
  
what	
  was	
  evolutionarily	
  useful.	
  Our	
  ancestors	
  didn’t	
  care	
  if	
  the	
  tiger	
  was	
  left-­‐handed!)	
  
    But	
  those	
  ancestors	
  didn’t	
  read.	
  The	
  letters	
  d,	
  b,	
  q,	
  and	
  p	
  are	
  the	
  same	
  shape	
  and	
  differ	
  
only	
  by	
  rotation	
  or	
  reflection.	
  To	
  read,	
  children	
  must	
  learn	
  to	
  see	
  them	
  as	
  different	
  objects,	
  
not	
  as	
  the	
  same	
  object	
  in	
  different	
  orientations.	
  Young	
  children’s	
  letter	
  reversals	
  are	
  not	
  
neurological	
  failures	
  at	
  all—seeing	
  that	
  way	
  is	
  one	
  of	
  evolution’s	
  gifts—but,	
  just	
  for	
  this	
  
one	
  purpose	
  of	
  decoding	
  print,	
  children	
  must	
  unlearn	
  a	
  principle	
  that	
  applies	
  to	
  nearly	
  
everything	
  else	
  they	
  will	
  encounter	
  during	
  their	
  entire	
  life.	
  They	
  must	
  treat	
  print	
  as	
  an	
  
exception	
  to	
  the	
  usual	
  rules	
  of	
  seeing.	
  
       Moreover,	
  w as	
  and	
  s aw—each	
  just	
  three	
  print-­‐squiggles	
  arranged	
  in	
  a	
  different	
  
order—must	
  not	
  be	
  recognized	
  as	
  “the	
  same.”	
  Alas,	
  then	
  come	
  2 +5	
  and	
  5 +2,	
  two	
  perfectly	
  
good	
  examples	
  of	
  print-­‐squiggles	
  that	
  are	
  to	
  be	
  treated	
  as	
  “the	
  same.”	
  (As	
  always,	
  the	
  truth	
  
is	
  not	
  so	
  simple.	
  On	
  a	
  number	
  line,	
  numbers	
  represent	
  addresses—the	
  names	
  of	
  specific	
  
points/locations	
  along	
  the	
  line—and	
  also	
  distances	
  between	
  addresses.	
  The	
  child	
  who	
  
“enacts”	
  2 +5,	
  perhaps	
  by	
  jumping	
  along	
  a	
  large	
  number	
  line	
  on	
  the	
  floor	
  would	
  enact	
  5 +2	
  
differently.)	
  It	
  is	
  therefore	
  not	
  surprising	
  that	
  the	
  notation,	
  in	
  some	
  contexts,	
  can	
  cause	
  
confusions,	
  but	
  this	
  is	
  an	
  issue	
  of	
  notation,	
  not	
  of	
  concept.	
  Print	
  is	
  just	
  plain	
  different!	
  
       Similarly,	
  the	
  picture	
                                   	
  lets	
  children	
  see	
  what	
  written	
  descriptions	
  like	
  
(3	
  ×	
  7)	
  +	
  (2	
  ×	
  7)	
  =	
  (3	
  +	
  2)	
  ×	
  7	
  or	
  (3	
  ×	
  7)	
  +	
  (2	
  ×	
  7)	
  =	
  5	
  ×	
  7	
  typically	
  leave	
  opaque,	
  unless	
  they	
  
are	
  written	
  as	
  an	
  abbreviated	
  version	
  of	
  language	
  the	
  children	
  themselves	
  are	
  using	
  to	
  
describe	
  the	
  picture.	
  But	
  the	
  difficulty	
  is	
  with	
  the	
  notation—a	
  difficulty	
  with	
  the	
  manner	
  in	
  
which	
  the	
  underlying	
  mathematical	
  idea	
  is	
  being	
  communicated—not	
  a	
  lack	
  of	
  the	
  idea	
  
itself.	
  In	
  fact,	
  the	
  way	
  that	
  teachers	
  of	
  kindergarten	
  and	
  early	
  first	
  grade	
  teach	
  writing	
  could	
  
help	
  them	
  teach	
  this	
  symbolic	
  language,	
  too:	
  children	
  tell	
  stories,	
  and	
  the	
  teacher	
  encodes	
  
their	
  language	
  in	
  writing.	
  Here,	
  children	
  might	
  describe	
  how	
  a	
  three-­‐by-­‐seven	
  array	
  can	
  be	
  
put	
  with	
  a	
  two-­‐by-­‐seven	
  array	
  to	
  make	
  a	
  five-­‐by-­‐seven	
  array,	
  and	
  the	
  teacher	
  can	
  be	
  
writing	
  (3	
  ×	
  7)	
  +	
  (2	
  ×	
  7)	
  =	
  (5	
  ×	
  7)	
  as	
  the	
  children	
  speak.	
  Before	
  that	
  can	
  happen,	
  children	
  
need	
  to	
  have	
  the	
  idea	
  that	
  we	
  can	
  name	
  the	
  arrays,	
  and	
  that	
  one	
  useful	
  name	
  for	
                                                  	
  is	
  
(3	
  ×	
  7).	
  Imagine	
  that	
  array	
  to	
  be	
  on	
  a	
  card	
  we	
  hold	
  in	
  our	
  hands.	
  That	
  card	
  can	
  be	
  held	
  in	
  
any	
  position	
  at	
  all—vertically,	
  slantwise,	
  horizontally—and	
  is	
  still	
  the	
  same	
  card.	
  It	
  makes	
  
sense	
  to	
  give	
  it	
  the	
  same	
  name	
  no	
  matter	
  which	
  way	
  we	
  hold	
  it.	
  We	
  could	
  also	
  have	
  called	
  it	
  
(7	
  ×	
  3),	
  or	
  even	
  21	
  (or	
  a	
  zillion	
  other	
  things,	
  like	
  “half	
  of	
  6	
  ×	
  7”	
  if	
  we	
  had	
  a	
  6	
  ×	
  7	
  array	
  that	
  
we	
  had	
  already	
  named).	
  So	
  (3	
  ×	
  7)	
  =	
  (7	
  ×	
  3)	
  =…	
  

    The	
  visual	
  idea	
          	
  and	
  the	
  symbols	
  that	
  describe	
  what	
  the	
  children	
  see	
  are	
  not	
  yet	
  
fully	
  generic—not	
  yet	
  a	
  property	
  of	
  +	
  and	
  ×	
  that	
  can	
  be	
  used	
  in	
  syntactic	
  manipulations	
  of	
  



©	
  Education	
  Development	
  Center,	
  Inc.	
                                    	
                                                                                      page	
  6	
  
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                                                                         The	
  algebra	
  of	
  little	
  kids	
  


strings	
  of	
  symbols	
  to	
  generate	
  (a	
  ×	
  c)	
  +	
  (b	
  ×	
  c)	
  from	
  (a	
  +	
  b)	
  ×	
  c	
  or	
  vice	
  versa.	
  In	
  fact,	
  there	
  
are	
  so	
  many	
  parts	
  to	
  keep	
  track	
  of	
  that	
  doing	
  so	
  is	
  not	
  trivial.	
  Getting	
  good	
  enough	
  to	
  
recognize	
  and	
  use	
  this	
  valuable	
  property,	
  even	
  with	
  arrays	
  as	
  a	
  particularly	
  powerful	
  
representation,	
  takes	
  time	
  and	
  practice.	
  But	
  the	
  underlying	
  idea	
  is	
  there	
  very	
  early,	
  as	
  part	
  
of	
  the	
  child’s	
  cognitive	
  structure,	
  as	
  soon	
  as	
  the	
  child	
  can	
  meaningfully	
  make	
  statements	
  
like	
  “two	
  sheep	
  plus	
  three	
  sheep	
  are	
  five	
  sheep.”	
  Again,	
  the	
  underlying	
  idea	
  must	
  be	
  there	
  
before	
  any	
  practice	
  of	
  it	
  can	
  make	
  sense.	
  
         Written	
  symbols	
  often	
  present	
  major	
  challenges	
  that	
  the	
  spoken	
  symbols	
  do	
  not.	
  
Possibly	
  because	
  of	
  print’s	
  special	
  status,	
  the	
  logic	
  that	
  children	
  apply	
  when	
  information	
  is	
  
presented	
  in	
  spoken	
  symbols	
  may	
  not	
  be	
  applied	
  when	
  the	
  same	
  information	
  is	
  presented	
  
in	
  print.	
  The	
  canonical	
  error	
  with	
  fractions	
  is	
  a	
  perfect	
  example:	
  The	
  spoken	
  question	
  
“what’s	
  three	
  eighths	
  plus	
  two	
  eighths”	
  focuses	
  attention	
  on	
  “three	
  plus	
  two”	
  and	
  tends	
  to	
  
evoke	
  the	
  correct	
  reasoning	
  and	
  get	
  the	
  correct	
  answer;	
  by	
  contrast,	
  the	
  written	
  question	
  
 3
 8
    + 8 = ? 	
  doesn’t	
  focus	
  attention	
  only	
  on	
  the	
  top	
  numbers.	
  Children	
  for	
  whom	
  the	
  meaning	
  is	
  
          2


not	
  already	
  strongly	
  established	
  tend	
  to	
  interpret	
  the	
  plus	
  sign	
  as	
  “add	
  everything	
  in	
  sight.”	
  
In	
  fact,	
  mathematical	
  reading	
  and	
  writing	
  are	
  quite	
  different	
  from	
  prose	
  reading	
  and	
  
writing.	
  For	
  prose,	
  we	
  proceed	
  in	
  a	
  line,	
  strictly	
  left	
  to	
  right.	
  Even	
  top-­‐to-­‐bottom	
  movement	
  
just	
  accommodates	
  the	
  limited	
  width	
  of	
  a	
  page;	
  it	
  gives	
  no	
  information	
  that	
  would	
  not	
  have	
  
been	
  present	
  if	
  the	
  writing	
  were	
  strung	
  out	
  in	
  one	
  dimension—a	
  line—on	
  a	
  very	
  wide	
  	
  
scroll	
  of	
  paper.	
  (The	
  real	
  story	
  is,	
  of	
  course,	
  more	
  complex.	
  
Strict	
  left	
  to	
  right	
  reading	
  applies	
  only	
  at	
  the	
  very	
  earliest	
  
stages,	
  if	
  at	
  all.	
  A	
  fluent	
  reader,	
  largely	
  without	
  conscious	
  
awareness,	
  takes	
  in	
  much	
  more	
  of	
  the	
  sentence	
  than	
  a	
  
strictly	
  left-­‐to-­‐right	
  approach	
  would	
  give.)	
  By	
  contrast,	
  bar	
  
graphs,	
  coordinate	
  graphs,	
  histograms,	
  charts	
  and	
  tables,	
  
and	
  the	
  like	
  are	
  two-­‐dimensional	
  records.	
  One	
  must	
  attend	
  
to	
  horizontal	
  and	
  vertical	
  position	
  in	
  order	
  to	
  interpret	
  the	
  
information	
  they	
  contain.	
  Even	
  symbolic	
  expressions	
  can	
  
require	
  attention	
  to	
  vertical	
  as	
  well	
  as	
  horizontal	
  position:	
  
32	
  is	
  not	
  the	
  same	
  as	
  32.	
  Moreover,	
  mathematical	
  writing	
  
that	
  is	
  just	
  horizontal	
  are	
  not	
  to	
  be	
  read	
  strictly	
  left	
  to	
  
right:	
  2	
  ×	
  (3	
  +	
  5),	
  	
  7	
  +	
  6	
  ÷	
  2,	
  and	
  7	
  +	
  ___	
  =	
  5	
  +	
  4	
  all	
  require	
  
attention	
  to	
  the	
  right	
  side	
  before	
  attention	
  to	
  the	
  left.	
  In	
  
fact,	
  7	
  +	
  6	
  ÷	
  2	
  requires	
  both	
  left-­‐to-­‐right	
  and	
  right-­‐to-­‐left	
                                                                                     	
  
analysis:	
  6	
  ÷	
  2	
  must	
  be	
  evaluated	
  left-­‐to-­‐right	
  (because	
                                             Figure	
  2:	
  	
  Bar	
  graphs,	
  among	
  the	
  
2	
  ÷	
  6	
  is	
  different),	
  and	
  yet	
  the	
  convention	
  about	
  order	
  of	
                                      earliest	
  graphs	
  children	
  make,	
  
                                                                                                                                   require	
  attention	
  to	
  two	
  
operations	
  dictates	
  that	
  the	
  6	
  ÷	
  2	
  part	
  must	
  be	
  evaluated	
                                          dimensions:	
  which	
  bar	
  (horizontal	
  
before	
  the	
  addition	
  that	
  is	
  specified	
  by	
  “7	
  +	
  .”	
                                                      position)	
  and	
  the	
  bar’s	
  height.	
  
Algebra	
  as	
  a	
  language	
  for	
  expressing	
  what	
  we	
  know	
  
Algebraic	
  notation	
  is	
  used	
  in	
  two	
  distinct	
  ways:	
  for	
  describing	
  what	
  we	
  know,	
  and	
  for	
  
deriving	
  what	
  we	
  don’t	
  know.	
  In	
  the	
  first	
  use,	
  algebra	
  is	
  a	
  language	
  for	
  describing	
  the	
  
structure	
  of	
  a	
  computation,	
  a	
  numerical	
  pattern	
  we’ve	
  observed,	
  a	
  relationship	
  among	
  
varying	
  quantities,	
  and	
  so	
  on.	
  Young	
  children	
  are	
  phenomenal	
  language	
  learners!	
  



©	
  Education	
  Development	
  Center,	
  Inc.	
                                     	
                                                                                      page	
  7	
  
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                                                                                  The	
  algebra	
  of	
  little	
  kids	
  


       Exercises	
  like	
  the	
  one	
  in	
  Figure	
  3,	
  but	
  without	
  the	
  leftmost	
  column,	
  are	
  familiar	
  enough	
  
in	
  many	
  curricula.	
  Children	
  look	
  for	
  a	
  pattern	
  in	
  the	
  inputs	
  and	
  outputs,	
  figure	
  out	
  a	
  rule,	
  
and	
  complete	
  the	
  table.	
  Think	
  Math!	
  often	
  adds	
  a	
  “pattern	
  indicator”	
  (the	
  first	
  column)	
  to	
  
problems	
  of	
  this	
  kind.	
  When	
  Michelle,	
  a	
  second	
  grader	
  in	
  a	
  Think	
  Math!	
  classroom	
  finished	
  
filling	
  out	
  this	
  table	
  before	
  I	
  had	
  finished	
  handing	
  out	
  copies	
  to	
  all	
  the	
  children,	
  I	
  asked	
  her	
  
how	
  she	
  had	
  done	
  it	
  so	
  fast.	
  	
  She	
  said	
  “Well,	
  I	
  saw	
  it	
  was	
  take-­‐away	
  8	
  because	
  I	
  looked	
  at	
  the	
  
28	
  and	
  20,	
  and	
  then	
  I	
  saw	
  that	
  10	
  and	
  2	
  was	
  take-­‐away	
  8	
  again,	
  and	
  then	
  I	
  saw	
  8	
  and	
  0.”	
  	
  
	
  

             n	
           10	
                       8	
              28	
              18	
                    17	
              	
               	
              58	
      57	
  
         n	
  –	
  8	
      2	
                       0	
              20	
                	
                      	
             3	
              4	
                	
        	
  
Figure	
  3:	
  A	
  “pattern	
  indicator”	
  gains	
  meaning	
  from	
  context	
  when	
  it	
  accompanies	
  a	
  “find-­‐a-­‐rule”	
  exercise.	
  
       And	
  then	
  she	
  grinned	
  as	
  if	
  I	
  had	
  left	
  the	
  “clue”	
  by	
  accident,	
  pointed	
  to	
  the	
  left	
  column	
  
and	
  added	
  “Besides,	
  it	
  says	
  that	
  right	
  here!”	
  How	
  did	
  Michelle	
  know?	
  Though	
  the	
  algebraic	
  
language	
  was	
  there,	
  nobody	
  ever	
  discussed	
  “variables”	
  or	
  “letters	
  standing	
  for	
  numbers”	
  or	
  
even	
  mentioned	
  that	
  column.	
  Had	
  Michelle	
  seen	
  just	
  the	
  table	
  in	
  Figure	
  4,	
  with	
  no	
  examples	
  
to	
  infer	
  from,	
  she	
  most	
  likely	
  would	
  not	
  have	
  felt	
  the	
  symbols	
  “said”	
  anything.	
  But	
  after	
  she	
  
discovered	
  the	
  pattern,	
  the	
  symbols	
  looked	
  “close	
  enough”	
  to	
  mean	
  the	
  same	
  thing,	
  and	
  so	
  
she	
  then	
  assigned	
  them	
  that	
  meaning.	
  	
  
	
  

                                        n	
                   18	
              17	
                      	
               	
             58	
             57	
  
                                    n	
  –	
  8	
               	
                	
                     3	
              4	
               	
               	
  
Figure	
  4:	
  A	
  “pattern	
  indicator”	
  without	
  a	
  pattern	
  from	
  which	
  to	
  infer	
  its	
  meaning	
  would	
  just	
  be	
  more	
  to	
  learn.	
  
       In	
  other	
  words,	
  she	
  did	
  what	
  little	
  children	
  excel	
  at:	
  she	
  learned	
  language	
  (in	
  this	
  case	
  
“n	
  –	
  8”)	
  from	
  context.	
  If	
  algebraic	
  language	
  is	
  part	
  of	
  the	
  environment,	
  used	
  where	
  context	
  
gives	
  it	
  meaning,	
  children	
  can	
  apply	
  their	
  natural—and	
  extraordinary—language-­‐learning	
  
prowess	
  to	
  it,	
  and	
  learn	
  to	
  use	
  it	
  descriptively.	
  Just	
  as	
  children	
  learning	
  their	
  native	
  
language	
  understand,	
  at	
  first,	
  more	
  than	
  they	
  can	
  say,	
  Michelle	
  could	
  not	
  immediately	
  
produce	
  such	
  descriptive	
  language,	
  but	
  she	
  and	
  others	
  try	
  these	
  interesting	
  ways	
  of	
  writing	
  
down	
  what	
  they	
  know	
  and,	
  over	
  time,	
  become	
  good	
  at	
  it.	
  	
  
        Fourth	
  graders	
  learn	
  a	
  number	
  trick:	
  Think	
  of	
  a	
  number;	
  add	
  3;	
  double	
  that;	
  subtract	
  4;	
  
cut	
  that	
  in	
  half;	
  subtract	
  your	
  original	
  number;	
  aha,	
  your	
  result	
  is	
  1!	
  They	
  love	
  it	
  and	
  want	
  
to	
  do	
  it	
  to	
  their	
  parents	
  and	
  friends.	
  They	
  also	
  want	
  to	
  know	
  how	
  it	
  works,	
  so	
  we	
  add	
  
pictures.	
  When	
  we	
  say	
  Think	
  of	
  a	
  number,	
  we	
  picture	
  a	
  bag	
  with	
  that	
  number	
  of	
  grapes	
  in	
  
it:	
   .	
  For	
  add	
  3,	
  we	
  picture	
       	
  and	
  double	
  that	
  becomes	
          .	
  This	
  act	
  of	
  doubling,	
  which	
  
most	
  fourth	
  graders	
  find	
  quite	
  natural	
  and	
  “obvious,”	
  is,	
  again,	
  the	
  distributive	
  property	
  in	
  
action.	
  While	
  the	
  expression	
  2(b	
  +	
  3)	
  does	
  not	
  make	
  obvious	
  what	
  the	
  result	
  is,	
  children	
  do	
  
readily	
  learn	
  to	
  describe	
  the	
  picture	
  as	
  “two	
  bags	
  plus	
  6”	
  and	
  abbreviate	
  that	
  description	
  as	
  
2b	
  +	
  6.	
  We	
  don’t	
  talk	
  about	
  “variables”	
  or	
  “letters	
  standing	
  for	
  numbers”;	
  we	
  simply	
  
describe	
  what	
  we	
  know,	
  and	
  write	
  it	
  down	
  as	
  simply	
  as	
  we	
  can.	
  (See	
  a	
  detailed	
  description	
  
of	
  the	
  activity	
  with	
  children	
  at	
  http://thinkmath.edc.org/index.php/Algebraic_thinking	
  and	
  
see	
  Sawyer	
  (1964)	
  for	
  the	
  original	
  source	
  of	
  this	
  idea.)	
  June	
  Mark,	
  et	
  al.,	
  (2009)	
  describe	
  yet	
  
another	
  way	
  in	
  which	
  Think	
  Math!	
  gives	
  students	
  this	
  algebra-­‐as-­‐description-­‐of-­‐what-­‐you-­‐
know	
  experience.	
  



©	
  Education	
  Development	
  Center,	
  Inc.	
                                                	
                                                                                   page	
  8	
  
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                                              The	
  algebra	
  of	
  little	
  kids	
  


So	
  why	
  don’t	
  we	
  teach	
  algebra-­the-­course	
  in	
  grade	
  4?	
  
Because	
  that	
  other	
  use	
  of	
  algebra—deriving	
  what	
  we	
  don’t	
  know—is	
  a	
  formal	
  syntactic	
  
operation	
  on	
  a	
  set	
  of	
  symbols,	
  and	
  children	
  are	
  (generally)	
  not	
  able	
  to	
  divorce	
  symbols	
  
from	
  meanings	
  before	
  roughly	
  age	
  12.	
  This	
  is	
  not	
  because	
  they	
  cannot	
  handle	
  “symbolic”	
  or	
  
“abstract”	
  things—words	
  are	
  symbols;	
  pictures	
  are	
  symbols;	
  little	
  children	
  can	
  be	
  symbolic	
  
and	
  abstract	
  from	
  babyhood—but	
  because	
  the	
  use	
  of	
  the	
  symbols	
  is	
  different.	
  Formal	
  
operations	
  on	
  strings	
  of	
  algebraic	
  symbols—rearranging	
  them,	
  apart	
  from	
  their	
  semantics,	
  
to	
  create	
  other	
  strings	
  of	
  symbols	
  that	
  “solve”	
  a	
  problem—are,	
  well,	
  formal	
  operations,	
  and	
  
children	
  are	
  not,	
  by	
  and	
  large,	
  formal	
  operational	
  before	
  11,	
  and	
  not	
  reliably	
  so	
  before	
  
about	
  13,	
  whence	
  the	
  common	
  need	
  to	
  wait	
  until	
  that	
  age	
  for	
  “algebra.”	
  But	
  only	
  that	
  part	
  
of	
  algebra	
  that	
  requires	
  deduction	
  by	
  formal	
  rules	
  needs	
  to	
  wait	
  that	
  long.	
  The	
  part	
  of	
  
algebra	
  that	
  is	
  expressive	
  of	
  what	
  we	
  already	
  know—that	
  is,	
  essentially,	
  a	
  shorthand	
  for	
  
semantic	
  content	
  clearly	
  tied	
  to	
  a	
  context	
  we	
  already	
  understand—that	
  part	
  can	
  be	
  learned	
  
earlier.	
  It	
  is	
  just	
  language	
  to	
  express	
  oneself,	
  and	
  children	
  are	
  excellent	
  language	
  learners.	
  
They	
  don’t	
  learn	
  language	
  from	
  explanations	
  or	
  formal	
  lessons;	
  they	
  learn	
  it	
  from	
  use	
  in	
  
context.	
  And,	
  if	
  is	
  it	
  learned	
  all	
  along,	
  as	
  it	
  becomes	
  developmentally	
  possible,	
  then,	
  when	
  
the	
  child	
  is	
  in	
  late	
  middle	
  school,	
  the	
  transition	
  to	
  the	
  new	
  use	
  of	
  that	
  language	
  for	
  
deductive	
  purposes	
  could,	
  presumably,	
  be	
  much	
  easier,	
  much	
  more	
  accessible	
  for	
  all	
  
children,	
  much	
  less	
  of	
  a	
  brick	
  wall	
  of	
  a	
  million	
  seemingly	
  new	
  things	
  to	
  learn	
  all	
  at	
  once.	
  
What	
  does	
  this	
  tell	
  us	
  about	
  elementary	
  school	
  teaching	
  and	
  learning?	
  
    Taking	
  advantage	
  of	
  children’s	
  natural	
  algebraic	
  ideas	
  and	
  honing	
  them	
  is	
  a	
  focus	
  on	
  
habits	
  of	
  mind,	
  rather	
  than	
  on	
  rules	
  that	
  can	
  otherwise	
  seem	
  arbitrary.	
  The	
  precursors	
  of	
  
commutative	
  and	
  distributive	
  properties	
  that	
  we	
  described	
  earlier	
  do	
  need	
  to	
  be	
  refined,	
  
honed,	
  extended,	
  practiced,	
  codified,	
  and	
  generalized,	
  but	
  they	
  are	
  already	
  there	
  as	
  
“natural”	
  logic,	
  the	
  child’s	
  natural	
  habits	
  of	
  mind	
  and	
  the	
  building	
  blocks	
  of	
  higher	
  
mathematics.	
  If	
  children	
  are	
  to	
  become	
  competent	
  at	
  mathematics,	
  including	
  arithmetic,	
  
those	
  habits	
  of	
  mind	
  must	
  take	
  precedence	
  over	
  rules,	
  formulas,	
  and	
  procedures	
  that	
  do	
  
not	
  derive	
  from	
  logic	
  that	
  the	
  child	
  can	
  grasp.	
  In	
  fact,	
  children	
  can	
  grasp	
  a	
  lot	
  more	
  if	
  the	
  
foundations	
  for	
  their	
  learning	
  are	
  grounded	
  in	
  their	
  logic,	
  which	
  gives	
  them	
  all	
  the	
  tools	
  to	
  
understand,	
  not	
  just	
  memorize,	
  the	
  algorithms	
  for	
  arithmetic	
  with	
  whole	
  numbers	
  and	
  
fractions.	
  But	
  we	
  all	
  see	
  the	
  dramatically	
  disappointing	
  results	
  of	
  “learning”	
  rules	
  without	
  
understanding:	
  they	
  are	
  easy	
  to	
  mix	
  up	
  and	
  result	
  in	
  procedures	
  that	
  don’t	
  work.	
  
     Organizing	
  the	
  arithmetic	
  part	
  of	
  the	
  elementary	
  school	
  mathematics	
  curriculum	
  
around	
  mathematical	
  habits	
  of	
  mind	
  would	
  not	
  shift	
  the	
  curriculum	
  dramatically	
  in	
  content,	
  
except	
  to	
  give	
  more	
  attention	
  to	
  mental	
  arithmetic	
  than	
  is	
  usual.	
  Paper	
  and	
  pencil	
  methods	
  
are	
  engineered	
  to	
  make	
  the	
  work	
  easy,	
  to	
  reduce	
  the	
  cognitive	
  load,	
  the	
  amount	
  of	
  thinking	
  
one	
  needs	
  to	
  do,	
  of	
  calculation.	
  Judiciously	
  chosen	
  mental	
  arithmetic	
  both	
  exercises	
  and	
  
depends	
  on	
  mathematical	
  ways	
  of	
  thinking	
  that	
  the	
  paper-­‐and-­‐pencil	
  algorithms	
  
deliberately	
  try	
  to	
  avoid,	
  mathematical	
  ways	
  of	
  thinking	
  that	
  are	
  the	
  backbone	
  of	
  the	
  
algebra	
  that	
  we	
  want	
  to	
  prepare	
  children	
  to	
  succeed	
  at.	
  What	
  would	
  shift	
  is	
  the	
  order	
  in	
  
which	
  we	
  acquire	
  that	
  content.	
  Instead	
  of	
  being	
  the	
  preparatory	
  step	
  for	
  computing,	
  
algorithms	
  become	
  the	
  culmination	
  of	
  understanding	
  how	
  the	
  computation	
  works,	
  another	
  
case	
  of	
  describing	
  what	
  we	
  already	
  know,	
  and	
  abbreviating	
  that	
  description.	
  



©	
  Education	
  Development	
  Center,	
  Inc.	
                    	
                                                                     page	
  9	
  
E.	
  Paul	
  Goldenberg,	
  June	
  Mark,	
  and	
  Al	
  Cuoco	
                   The	
  algebra	
  of	
  little	
  kids	
  


References	
  
 Cuoco, A., Goldenberg, E. P., & J. Mark. “Habits of mind: an organizing principle for mathematics curriculum” J.
    Math. Behav. 15(4):375-402. December, 1996.
 Cuoco, A., Goldenberg, E. P., and J. Mark. “Organizing a curriculum around mathematical habits of mind.”
    Mathematics Teacher. (submitted)
 Education Development Center, Inc. (EDC). Think Math! comprehensive K-5 curriculum. Boston: Houghton
    Mifflin Harcourt. 2008.
 Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive
    Psychology, 44, 33–66.
 Goldenberg, E. Paul. “‘Habits of mind’ as an organizer for the curriculum” J. of Education 178(1):13-34, Boston
    U. 1996. (Also “‘Hábitos de pensamento’ …”Educação e Matemática, 47 March/April, & 48 May/June, 1998.)
 Goldenberg, E. Paul & N. Shteingold. “Mathematical Habits of Mind.” In Lester, F., et al., eds. Teaching
    Mathematics Through Problem Solving: prekindergarten–Grade 6. Reston, VA: NCTM. 2003.
 Goldenberg, E. Paul & N. Shteingold “The case of Think Math!” In Hirsch, Christian, ed., Perspectives on the
    design and development of school mathematics curricula. Reston, VA: NCTM. 2007.
 Gopnik, A., Meltzoff, A., and P. Kuhl. The scientist in the crib: what early learning tells us about the mind. New
    York: HarperCollins. 2000.
 Mark, J., Cuoco, A., and Goldenberg, E. P. “Developing mathematical habits of mind in the middle grades.”
    Mathematics Teaching in the Middle School. (submitted)
 Piaget, J. The child’s conception of number. London: Routledge and Kegan Paul. 1952.
 Sawyer, W. W. Vision in elementary mathematics. New York: Dover Publications. 2003 (1964).
 Sfard, A. Thinking as Communicating. New York, NY: Cambridge University Press. 2008.
 Wirtz, R., Botel, M., Beberman, M., and W. W. Sawyer. 1964. Math Workshop. Encyclopaedia Britannica Press.




©	
  Education	
  Development	
  Center,	
  Inc.	
              	
                                              page	
  10	
  

Weitere ähnliche Inhalte

Andere mochten auch

MnLC Poster Session Presentation Sloan-C 2009 Rev
MnLC Poster Session Presentation Sloan-C 2009 RevMnLC Poster Session Presentation Sloan-C 2009 Rev
MnLC Poster Session Presentation Sloan-C 2009 RevGary Langer
 
Keynote essex-final-presentation
Keynote essex-final-presentationKeynote essex-final-presentation
Keynote essex-final-presentationjimcurry
 
8 marvelous messy ponytails to try
8 marvelous messy ponytails to try8 marvelous messy ponytails to try
8 marvelous messy ponytails to tryVanneza Villegas
 
3 hendy ifa prague - older drivers and rights
3 hendy ifa prague - older drivers and rights3 hendy ifa prague - older drivers and rights
3 hendy ifa prague - older drivers and rightsifa2012_2
 

Andere mochten auch (6)

MnLC Poster Session Presentation Sloan-C 2009 Rev
MnLC Poster Session Presentation Sloan-C 2009 RevMnLC Poster Session Presentation Sloan-C 2009 Rev
MnLC Poster Session Presentation Sloan-C 2009 Rev
 
Keynote essex-final-presentation
Keynote essex-final-presentationKeynote essex-final-presentation
Keynote essex-final-presentation
 
Migration
MigrationMigration
Migration
 
8 marvelous messy ponytails to try
8 marvelous messy ponytails to try8 marvelous messy ponytails to try
8 marvelous messy ponytails to try
 
Chap003
Chap003Chap003
Chap003
 
3 hendy ifa prague - older drivers and rights
3 hendy ifa prague - older drivers and rights3 hendy ifa prague - older drivers and rights
3 hendy ifa prague - older drivers and rights
 

Ähnlich wie Algebra oflittlekids final

Cognitive Development, Mathematics, and Science Learnin
Cognitive Development,  Mathematics, and Science LearninCognitive Development,  Mathematics, and Science Learnin
Cognitive Development, Mathematics, and Science LearninWilheminaRossi174
 
AQA Psychology A Level Revision Cards - Cognition And Development Topic
AQA Psychology A Level Revision Cards - Cognition And Development TopicAQA Psychology A Level Revision Cards - Cognition And Development Topic
AQA Psychology A Level Revision Cards - Cognition And Development Topicaesop
 
Guided Response Criteria (respond to a minimum of 2 classmates)1..docx
Guided Response Criteria (respond to a minimum of 2 classmates)1..docxGuided Response Criteria (respond to a minimum of 2 classmates)1..docx
Guided Response Criteria (respond to a minimum of 2 classmates)1..docxisaachwrensch
 
Jean piaget (1896 1980) by dr sudhir
Jean piaget (1896 1980) by dr sudhirJean piaget (1896 1980) by dr sudhir
Jean piaget (1896 1980) by dr sudhirSudhir INDIA
 
JEAN PIAGET THEORY/COGNITIVE DEVELOPMENT
JEAN PIAGET THEORY/COGNITIVE DEVELOPMENTJEAN PIAGET THEORY/COGNITIVE DEVELOPMENT
JEAN PIAGET THEORY/COGNITIVE DEVELOPMENTDeepali Gaurav Borde
 
English for Young Learners - Children Development in Term of Cognitive Develo...
English for Young Learners - Children Development in Term of Cognitive Develo...English for Young Learners - Children Development in Term of Cognitive Develo...
English for Young Learners - Children Development in Term of Cognitive Develo...Musfera Nara Vadia
 
Piaget's theory of cognitive development
Piaget's theory of cognitive developmentPiaget's theory of cognitive development
Piaget's theory of cognitive developmentDrGMSunagar1
 
1 piaget's theary of cognitive development
1 piaget's theary of cognitive development1 piaget's theary of cognitive development
1 piaget's theary of cognitive developmentDrGMSunagar
 
Piaget mathematics
Piaget mathematicsPiaget mathematics
Piaget mathematicsAenun Nur
 
Jean Piaget Theory of Cognitive/Moral Development
Jean Piaget Theory of Cognitive/Moral DevelopmentJean Piaget Theory of Cognitive/Moral Development
Jean Piaget Theory of Cognitive/Moral DevelopmentCol Mukteshwar Prasad
 
Approved ISR Poster Spring 2020
Approved ISR Poster Spring 2020Approved ISR Poster Spring 2020
Approved ISR Poster Spring 2020SanikaPalande
 
7Cognitive Development Piaget and VygotskyJupiterimages.docx
7Cognitive Development  Piaget and VygotskyJupiterimages.docx7Cognitive Development  Piaget and VygotskyJupiterimages.docx
7Cognitive Development Piaget and VygotskyJupiterimages.docxblondellchancy
 
Piaget theory of develofment
Piaget theory of develofmentPiaget theory of develofment
Piaget theory of develofmentShakeel Arshad
 
Piaget's cognitive development
Piaget's cognitive developmentPiaget's cognitive development
Piaget's cognitive developmenteiramespi07
 
Piaget's cognitive development
Piaget's   cognitive developmentPiaget's   cognitive development
Piaget's cognitive developmentNazmul Al-deen
 
Cognitive Development power point presentation
Cognitive Development power point presentationCognitive Development power point presentation
Cognitive Development power point presentationfriedryece04
 

Ähnlich wie Algebra oflittlekids final (20)

Cognitive Development, Mathematics, and Science Learnin
Cognitive Development,  Mathematics, and Science LearninCognitive Development,  Mathematics, and Science Learnin
Cognitive Development, Mathematics, and Science Learnin
 
AQA Psychology A Level Revision Cards - Cognition And Development Topic
AQA Psychology A Level Revision Cards - Cognition And Development TopicAQA Psychology A Level Revision Cards - Cognition And Development Topic
AQA Psychology A Level Revision Cards - Cognition And Development Topic
 
Guided Response Criteria (respond to a minimum of 2 classmates)1..docx
Guided Response Criteria (respond to a minimum of 2 classmates)1..docxGuided Response Criteria (respond to a minimum of 2 classmates)1..docx
Guided Response Criteria (respond to a minimum of 2 classmates)1..docx
 
Jean piaget (1896 1980) by dr sudhir
Jean piaget (1896 1980) by dr sudhirJean piaget (1896 1980) by dr sudhir
Jean piaget (1896 1980) by dr sudhir
 
JEAN PIAGET THEORY/COGNITIVE DEVELOPMENT
JEAN PIAGET THEORY/COGNITIVE DEVELOPMENTJEAN PIAGET THEORY/COGNITIVE DEVELOPMENT
JEAN PIAGET THEORY/COGNITIVE DEVELOPMENT
 
English for Young Learners - Children Development in Term of Cognitive Develo...
English for Young Learners - Children Development in Term of Cognitive Develo...English for Young Learners - Children Development in Term of Cognitive Develo...
English for Young Learners - Children Development in Term of Cognitive Develo...
 
THEORIES OF COGNITIVE DEVELOPMENT
THEORIES OF COGNITIVE DEVELOPMENTTHEORIES OF COGNITIVE DEVELOPMENT
THEORIES OF COGNITIVE DEVELOPMENT
 
Theories of a cognitive development
Theories of a cognitive developmentTheories of a cognitive development
Theories of a cognitive development
 
Piaget's theory of cognitive development
Piaget's theory of cognitive developmentPiaget's theory of cognitive development
Piaget's theory of cognitive development
 
1 piaget's theary of cognitive development
1 piaget's theary of cognitive development1 piaget's theary of cognitive development
1 piaget's theary of cognitive development
 
Piaget mathematics
Piaget mathematicsPiaget mathematics
Piaget mathematics
 
Jean Piaget Theory of Cognitive/Moral Development
Jean Piaget Theory of Cognitive/Moral DevelopmentJean Piaget Theory of Cognitive/Moral Development
Jean Piaget Theory of Cognitive/Moral Development
 
Approved ISR Poster Spring 2020
Approved ISR Poster Spring 2020Approved ISR Poster Spring 2020
Approved ISR Poster Spring 2020
 
Piaget Theory.pptx
Piaget Theory.pptxPiaget Theory.pptx
Piaget Theory.pptx
 
7Cognitive Development Piaget and VygotskyJupiterimages.docx
7Cognitive Development  Piaget and VygotskyJupiterimages.docx7Cognitive Development  Piaget and VygotskyJupiterimages.docx
7Cognitive Development Piaget and VygotskyJupiterimages.docx
 
Piaget theory of develofment
Piaget theory of develofmentPiaget theory of develofment
Piaget theory of develofment
 
Piaget's cognitive development
Piaget's cognitive developmentPiaget's cognitive development
Piaget's cognitive development
 
Piaget's cognitive development
Piaget's   cognitive developmentPiaget's   cognitive development
Piaget's cognitive development
 
Piaget Theory
Piaget TheoryPiaget Theory
Piaget Theory
 
Cognitive Development power point presentation
Cognitive Development power point presentationCognitive Development power point presentation
Cognitive Development power point presentation
 

Mehr von Marta Montoro

Presentacion Neurodiversidad
Presentacion NeurodiversidadPresentacion Neurodiversidad
Presentacion NeurodiversidadMarta Montoro
 
Early lap assessment tools
Early lap assessment toolsEarly lap assessment tools
Early lap assessment toolsMarta Montoro
 
Guia oficial sen epilepsia
Guia oficial sen epilepsiaGuia oficial sen epilepsia
Guia oficial sen epilepsiaMarta Montoro
 
Guia para educadores pensamiento critico
Guia para educadores  pensamiento criticoGuia para educadores  pensamiento critico
Guia para educadores pensamiento criticoMarta Montoro
 
Language matrix Larsson
Language matrix LarssonLanguage matrix Larsson
Language matrix LarssonMarta Montoro
 
The early learning accomplishment profile (e lap) l. comley
The early learning accomplishment profile (e lap) l. comleyThe early learning accomplishment profile (e lap) l. comley
The early learning accomplishment profile (e lap) l. comleyMarta Montoro
 
Orientaciones autismo. pdf
Orientaciones autismo. pdfOrientaciones autismo. pdf
Orientaciones autismo. pdfMarta Montoro
 
Atribucion causal emociones en autismo
Atribucion causal emociones en autismoAtribucion causal emociones en autismo
Atribucion causal emociones en autismoMarta Montoro
 
Modelos intervencion en autismo
Modelos intervencion en autismoModelos intervencion en autismo
Modelos intervencion en autismoMarta Montoro
 
Personas con tea y la comprensión de emociones a traves de las tic
Personas con tea y la comprensión de emociones a traves de las ticPersonas con tea y la comprensión de emociones a traves de las tic
Personas con tea y la comprensión de emociones a traves de las ticMarta Montoro
 
Programa de desarrollo conductual
Programa de desarrollo conductualPrograma de desarrollo conductual
Programa de desarrollo conductualMarta Montoro
 
Desarrollo emocional en autismo
Desarrollo emocional en autismoDesarrollo emocional en autismo
Desarrollo emocional en autismoMarta Montoro
 
Ser persona y relacionarse
Ser persona y relacionarseSer persona y relacionarse
Ser persona y relacionarseMarta Montoro
 
Guia intervencion y diagnostico infantil
Guia intervencion y diagnostico infantilGuia intervencion y diagnostico infantil
Guia intervencion y diagnostico infantilMarta Montoro
 
Guia preescolar educación fisica
Guia preescolar  educación fisicaGuia preescolar  educación fisica
Guia preescolar educación fisicaMarta Montoro
 

Mehr von Marta Montoro (20)

Presentacion Neurodiversidad
Presentacion NeurodiversidadPresentacion Neurodiversidad
Presentacion Neurodiversidad
 
Historias sociales
Historias socialesHistorias sociales
Historias sociales
 
Early lap assessment tools
Early lap assessment toolsEarly lap assessment tools
Early lap assessment tools
 
Guia oficial sen epilepsia
Guia oficial sen epilepsiaGuia oficial sen epilepsia
Guia oficial sen epilepsia
 
Guia para educadores pensamiento critico
Guia para educadores  pensamiento criticoGuia para educadores  pensamiento critico
Guia para educadores pensamiento critico
 
Ipad y autismo
Ipad y autismoIpad y autismo
Ipad y autismo
 
Language matrix Larsson
Language matrix LarssonLanguage matrix Larsson
Language matrix Larsson
 
Manual prezi
Manual prezi Manual prezi
Manual prezi
 
The early learning accomplishment profile (e lap) l. comley
The early learning accomplishment profile (e lap) l. comleyThe early learning accomplishment profile (e lap) l. comley
The early learning accomplishment profile (e lap) l. comley
 
Presentacion accegal
Presentacion accegalPresentacion accegal
Presentacion accegal
 
Orientaciones autismo. pdf
Orientaciones autismo. pdfOrientaciones autismo. pdf
Orientaciones autismo. pdf
 
Tecnologia y ayuda
Tecnologia y ayudaTecnologia y ayuda
Tecnologia y ayuda
 
Atribucion causal emociones en autismo
Atribucion causal emociones en autismoAtribucion causal emociones en autismo
Atribucion causal emociones en autismo
 
Modelos intervencion en autismo
Modelos intervencion en autismoModelos intervencion en autismo
Modelos intervencion en autismo
 
Personas con tea y la comprensión de emociones a traves de las tic
Personas con tea y la comprensión de emociones a traves de las ticPersonas con tea y la comprensión de emociones a traves de las tic
Personas con tea y la comprensión de emociones a traves de las tic
 
Programa de desarrollo conductual
Programa de desarrollo conductualPrograma de desarrollo conductual
Programa de desarrollo conductual
 
Desarrollo emocional en autismo
Desarrollo emocional en autismoDesarrollo emocional en autismo
Desarrollo emocional en autismo
 
Ser persona y relacionarse
Ser persona y relacionarseSer persona y relacionarse
Ser persona y relacionarse
 
Guia intervencion y diagnostico infantil
Guia intervencion y diagnostico infantilGuia intervencion y diagnostico infantil
Guia intervencion y diagnostico infantil
 
Guia preescolar educación fisica
Guia preescolar  educación fisicaGuia preescolar  educación fisica
Guia preescolar educación fisica
 

Kürzlich hochgeladen

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 

Kürzlich hochgeladen (20)

Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 

Algebra oflittlekids final

  • 1. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   The  algebra  of  little  kids:       A  mathematical-­‐habits-­‐of-­‐mind  perspective  on  elementary  school1   E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   Education  Development  Center,  Inc.  (EDC)2   Asking  “When  should  algebra  be  taught?”  is  like  asking  “Is  technology  harmful  or   helpful?”  There  are  lots  of  technologies  and  lots  of  uses  of  them.  Some  are  harmful;  some   are  helpful.  Refining  the  question—asking  about  a  particular  use  of  a  particular  technology   for  a  particular  purpose  in  particular  contexts  and  at  particular  stages  in  one’s  learning— makes  the  question  researchable  and  potentially  answerable.  Similarly,  there  are  many   “algebras”—algebra  the  course,  algebra  the  discipline,  algebraic  ideas,  algebraic  language,   early  algebra,  “patterns,  functions,  and  algebra”—and  many  different  takes  on  the  learning   and  teaching  of  each  of  these.  Treating  algebra  as  an  indivisible  whole  obscures  the  options.   It’s  more  useful  to  ask  what  ideas,  logic,  techniques,  and  habits  of  mind  algebra  entails,  and   then,  about  each  of  these,  ask  when  and  to  what  extent  that  one  item  can  be  learned  with   intellectual  integrity  and  how  a  coherent  whole  can  be  woven  out  of  these  learnings.  The   answers  we  get  are  that  some  of  these  ideas  do  have  to  wait  for  eighth  or  ninth  grade,  but   that  others—even  including  aspects  of  algebraic  language—are  already  there,  early  in  the   primary  grades.  Moreover,  children  who  get  to  apply,  refine,  and  strengthen  those  ideas   and  skills  as  they  emerge  gain  the  advantage.   Any  credible  claim  about  habits  of  mind  must  surely  accord  with  features  of  mind:   children’s  cognitive  development.  For  a  charmingly  written  scientific  account  of  the  ways   that  babies  and  young  children  think,  read  The  Scientist  in  the  Crib,  by  Gopnik,  Meltzoff,  and   Kuhl  (2000).  The  habits  of  mind  approach  to  curriculum  that  we  first  described  well  over  a   decade  ago  (Cuoco,  Goldenberg  &  Mark,  1996;  Goldenberg,  1996)  and  have  continued  to   refine  (Goldenberg  &  Shteingold,  2003  and  2007;  Cuoco,  Goldenberg  &  Mark,  2009;  Mark,   et  al.,  2009)  does  accord  well  with  children’s  thinking  and  became  a  central  design   principle  behind  Think  Math!  (2008),  the  newest  NSF-­‐supported  elementary  curriculum,   developed  at  EDC.   Recognizing,  enhancing,  and  building  on  developmentally  natural  habits  of  mind  lets  us   dissect  algebra  and  sort  the  resulting  bits  and  pieces  in  a  developmentally  natural  way,   while  preserving  the  content,  concepts,  and  skills  that  schools  (and  states,  parents,   workplaces,  and  colleges)  expect.  The  fact  that  it  is  possible  to  organize  algebraic  ideas,   logic,  and  techniques  around  the  development  of  mind  makes  clear  that  we  are  truly  talking   about  thinking—habits  of  mind—rather  than  “features  of  mathematics”  or  “idiosyncrasies   of  mathematicians.”  This  article  describes  two  of  these  natural  habits  of  mind.   Two  algebraic  ideas  that  precede  arithmetic   The  common  wisdom  is  arithmetic  first,  algebra  later.  The  truth  is  not  so  simple.  Some   algebraic  ideas—ideas  about  the  properties  of  binary  operations  apart  from  the  numbers   these  operations  may  “combine”—develop  naturally  before  children  learn  arithmetic.                                                                                                                     1  An  adaptation  of  this  paper  has  been  submitted  for  publication  in  Teaching  Children  Mathematics,  NCTM.   2  This  work  was  supported  in  part  by  the  National  Science  Foundation,  grant  numbers  ESI-­‐0099093,  DRL-­‐ 0733015,  and  DRL-­‐0917958.  The  opinions  expressed  are  those  of  the  authors  and  not  necessarily  those  of  the   Foundation.   ©  Education  Development  Center,  Inc.     page  1  
  • 2. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   In  fact,  they  must  develop  before  arithmetic  can  make  sense!  For  example,  for  many  4-­‐ year-­‐olds,  even  those  who  appear  to  count  well,  seven  objects  spread  out  like  this    feel  like  “more”  than  the  same  objects  bunched  together   .  (Though  “conservation”  remains  the  familiar  name  for  this  stage  in   children’s  logic—so  we’ll  still  use  it—child  logic  is  more  nuanced  than  was  previously   thought.  It’s  known,  for  example,  that  for  small  enough  numbers  of  objects,  babies  at  eleven   months  have  not  only  stability  of  number  but  essentially  addition  as  well.  See,  e.g.,   Feigenson,  Carey,  and  Spelke,  2002.  So-­‐called  non-­‐conservers  aren’t  “enslaved  by  their   senses”  but  haven’t  yet  privileged  the  analytic  act  of  counting  over  other  ways  of  making   social  and  mathematical  sense  of  the  world.)  For  children  whose  logic  still  works  that  way,   the  claim  that    +    is  the  same  amount  as    can  hardly  make   sense.  Faced  with  the  requirement  to  assert  that  5  +  2  =  7,  “non-­‐conservers”  have  only  two   options.  Some  divorce  the  assertion  from  their  current  “common  sense”—after  all,  they   “know”  that  the  two  quantities  are  not  the  same—and  learn  “5  +  2  =  7”  as  an  arbitrary  but   learnable  fact,  the  same  way  they  learn  the  names  of  their  classmates.  For  them,  math  is   memory.  Others  find  it  hard  to  accept  what  their  logic  tells  them  is  “not  true”  and,  instead,   just  feel  like  they  “don’t  get  it.”     An  important  property  of  addition  before  addition,  itself   What  will  later  be  formalized  as  the  commutative  and  associative  laws  of  addition  begins  as   an  intuitive  sense  of  stability/invariance  of  quantity  under  rearrangement.  Piaget  (1952)   called  it  conservation  of  number;  Wirtz,  et  al.  (1964)  and  Sawyer  (2003)  called  it  the  “any   order  any  grouping  property.”  Prior  to  conservation,  while  arrangement  trumps  number,   may  not  have  a  fixed  number  associated  with  it.  Later,  the  new  conserver  may  not  yet     know  how  many  fingers    are  without  counting,  but  will  be  sure  that  the  number,   whatever  it  is,  stays  put  if  the  hands  are  moved  like  this   or  even  like  this,   .     That  algebraic  idea,  a  property  of  aggregation,  must  exist  before  the  arithmetic  fact— knowing  what  number  2  +  5  is—can  make  sense.  In  a  similar  way,  if  a  bunch  of  coins  are   hidden  and  we  ask  “how  much  money  is  there?”  children  for  whom  the  question  makes  any   sense  will  be  absolutely  certain  that  there  is  an  answer,  and  that  only  one  answer  is  correct.   They  may  be  uncertain  about  methods  of  counting,  and  may  think  that  some  methods   might  give  incorrect  answers.  The  complexities  of  communication  may  even  make  it  seem   that  they  believe  that  the  amount,  itself,  could  vary  depending  on  what  method  they  use  as   they  count  but,  in  all  likelihood,  other  means  of  questioning  would  suggest  that  they’re  sure   that  the  amount  is  stable.  In  fact,  if  they  do  believe  the  amount  can  vary,  they’re  not   cognitively  ready  for  the  question  of  what  “the  amount”  is.  There  is  no  “the  amount”  if  it  can   vary.  Some  six  year  olds,  but  not  many,  do  not  yet  conserve  number;  by  seven,  nearly  all  do.   Having  confidence  that    and    represent  the  same  quantity  is  not  the  same  as   knowing  the  commutative  property  of  addition.  The  commutative  property  is  not  about  the   arrangement  of  physical  objects  in  space,  but  about  the  behavior  of  a  particular  element   (here,  the  +  sign)  in  a  formal  syntactic  system  of  written  symbols.  In  some  contexts,   children  can  make  perfect  sense  out  of  written  symbols—even  significant  parts  of  algebraic   notation—but  most  young  children  cannot  make  sense  of  formal  operations  on  a  string  of   ©  Education  Development  Center,  Inc.     page  2  
  • 3. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   symbols.  So,  at  this  stage,  commutativity  remains  largely  an  intuitively  obvious  idea  about   the  “physics  of  mathematics”:  the  nature  of  aggregation,  not  the  nature  of  symbols.  Even  so,   we,  as  educators,  can  support  the  young  child’s  logic  better  if  we  recognize  that  it  is  already   relying  on  the  underlying  ideas  that  formal  mathematics  will  later  codify.  The  fact  that   children  see  that  the  principle  applies  regardless  of  the  numbers  means  that  it  captures  the   essential  algebraic  aspect  of  the  structure  of  addition  that  commutativity  is  about.     Logical  precursors  of  the  distributive  property  of  multiplication  over  addition:     Pick  a  number.  Multiply  it  by  5;  also  multiply  it  (your  original  number)  by  2;  now  add  those   results.  You  get  the  same  answer  you’d  get  if  you  multiplied  your  original  number  by  7.  The   distributive  property,  a  general  statement  of  that  fact,  is  possibly  the  most  central  idea  in   elementary  arithmetic,  key  to  understanding  the  algorithms,  at  the  core  of  fluent  mental   calculations  (e.g.,  102  ×  27  can  be  computed  in  two  parts,  as  100  ×  27  +  2  ×  27),  and  the   logical  basis  for  many  “rules”  of  algebra  that  might  otherwise  seem  arbitrary.   This  property  relates  multiplication  and  addition,  but  children  “know  it”  long  before  they   even  meet  multiplication!  It’s  in  the  language  (and  logic)  they  use  when  they  say  that  5   (fingers,  pennies,  or  27s)  plus  2  (fingers,  pennies,  27s)  make  7  (fingers,  pennies,  27s).  These   dialogues  with  6-­‐year-­‐olds,  late  in  their  kindergarten  year,  give  a  sense  of  what  their  logic   does  and  does  not  handle.  What  distinguishes  the  questions  the  children  get  “right”  from   those  they  get  “wrong”?  What  logic  might  explain  the  particular  wrong  answers  they  get?   T   What’s  a  really  big  number?   Ne  (girl):  A  million!   T:   Suppose  I  said  “How  much  is  a  thousand  plus  a  thousand?”  What  would  you  say?   Ne:   I  have  no  idea!  (big  smile)   T:   And  suppose  I  said  “How  much  is  two  thousand  plus  three  thousand?”   Ne:   (thinks,  then  confidently)  Five  thousand!     T:  Suppose  I  said  “How  much  is  a  hundred  plus  a  hundred?”  What  would  you  say?   Gi  (girl):   A  hundred.   T:   What  about  “Two  hundred  plus  three  hundred”?     Gi:   Five  hundred.   T:   (playfully)  And  what  if  I  said  “how  much  is  a  thousand  plus  a  thousand?”  …   Gi:   A  million!     T:  Suppose  I  said  “How  much  is  a  hundred  plus  a  hundred?”  What  would  you  say?   De  (boy):  De  may  hear  “a  hundred”  as  one  word,  so  confidently  says:  Two  ahundred.     T:   And  suppose  I  said  “How  much  is  two  hundred  plus  three  hundred?”   De:   Five  hundred.     T:  Suppose  I  said  “How  much  is  a  thousand  plus  a  thousand?”  What  would  you  say?   Co  (boy):  A  thousand  two.  (Co  might  have  meant  “A  thousand,  too.”  We  don’t  know.)   T:   And  suppose  I  said  “How  much  is  two  thousand  plus  three  thousand?”   Co:   Two  three  a  thousand.  (Co  clearly  isn’t  yet  adding  naturally.)   As  soon  as  children  are  comfortable  with  the  idea  (and  language  and  knowledge)  to   answer  “what’s  three  sheep  plus  two  sheep?”  perhaps  late  in  K  or  early  in  first  grade,  they’ll   happily  apply  that  to  give  the  “correct”  answer  to  the  spoken  question  “what’s  three  eighths   plus  two  eighths?”  or  “what’s  three  hundred  plus  two  hundred?”  The  answer  is  “correct,”   but  what  they  have  in  mind  may  well  be  quite  different  from  what  we  have  in  mind  when   ©  Education  Development  Center,  Inc.     page  3  
  • 4. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   we  give  the  same  answer.  We  can  see  how  different  their  ideas  are  when  we  ask  a  slightly   different  question:  “what’s  a  hundred  plus  a  hundred”  (with  no  audible  “small”  numbers   like  “two”  or  “three”).  To  this  question,  young  six-­‐year-­‐olds  may  well  repeat  “a  hundred”  or   say  something  like  “a  million.”  If,  instead,  we  ask  “what’s  an  eighth  plus  an  eighth,”  little   ones  may  just  give  a  puzzled  stare  and  not  answer  at  all;  or,  if  their  arithmetic  is  strong   enough,  they  might  possibly  count  and  answer  “sixteen”  (or,  sometimes  “nine”).     How  can  we  explain  such  different  responses  to  questions  that  adults  see  as  so  similar?   Again,  the  answer  rests  more  in  language  and  general  cognition  than  mathematics.   Kindergarteners  typically  have  hundred  and  half  as  vocabulary  items.  For  most  little  ones,   these  terms  don’t  represent  precise  or  fixed  amounts,  just  as  “a  zillion”  is  not  a  specific   fixed  amount  to  us,  but  the  children  do  know  that  “half”  means  only  part.  Most  even  know   that  halves  should  be  equal—  no  fair  if  yours  is  bigger!—though  they  might  not  know  that   they  must  be  equal  or  that  there  are  only  two  of  them.  And  they  almost  certainly  don’t   know  that  half  is  a  number.  Likewise,  they  know  that  “a  hundred”  is  big,  though  they  are   unlikely  to  know  how  big.  The  question  “what’s  a  hundred  plus  a  hundred”  is,  therefore,   more  or  less,  “what  is  a  big  amount  plus  another  big  amount?”  The  natural  response  is  “a   big  amount”  (“a  hundred”)  or  a  very  big  amount  (“a  million”),  not  “two  big  amounts”  (“two   hundred”).  But  when  fixed  specific  quantities  are  available,  children  use  them.  The  question   “what’s  two  hundred  plus  three  hundred”  is  linguistically  and  cognitively  like  “what’s  two   sheep  plus  three  sheep”—it  draws  attention  to  2  +  3,  not  to  the  nature  of  a  sheep  or  a   hundred.  Children  for  whom  2  +  3  makes  sense  answer  correctly.  Of  course,  children  for   whom  2  +  3  does  not  yet  make  sense  try  to  find  some  other  way  of  making  sense  of  the  task,   but  their  answers  don’t  reflect  addition.  (The  different  response  to  “what’s  an  eighth  plus   an  eighth”—the  puzzled  look—is  because  an  eighth  not  even  part  of  the  child’s  vocabulary,   and  thus,  with  no  meaning,  gives  the  child  less  of  a  context  for  responding.  Anna  Sfard,   2008,  suggests  that  a  child  might  well  treat  “hundred”  as  a  number,  rather  than  a  sheep,   and  still  treat  “three  hundred”  not  as  a  number,  but  as  an  expression  composed  of  two   number  words.  If  so,  our  kindergarteners  seem  to  treat  these  numbers  differently,  one  as  a   counter,  the  other  as  a  unit  or  object,  which  might  be  consistent  with  Sfard.)   Why  these  errors  are  made,  and  why  “hundred”  and  “eighth”  lead  to  different  errors,  is  a   diversion.  The  point  is  that  when  no  audible  small  numbers  like  “two”  or  “three”  are  given,   little  children  tend  to  give  wrong  answers.  But  when  we  say  how  many  eighths  or  hundreds,   and  the  numbers  are  not  too  large,  even  kindergarteners  tend  to  answer  correctly,  more   first  graders  do,  and  we  can  absolutely  count  on  it  in  second  grade.  Whatever  an  eighth  or  a   hundred  is,  the  children  are  sure  that  three  of  them  plus  two  of  them  is  five  of  them!  This   does  not  constitute  “knowing  the  distributive  property,”  but  it  does  tell  us  that  the  children   already  have  the  underlying  idea  that  the  distributive  property  will  later  encode  formally.   If  we  use  sevens  (a  fully  understood  fixed  quantity)  in  place  of  hundred  (which  may  still   be  a  nonspecific  “zillion”  for  young  children),  children  still  know  that  three  of  them  plus   two  of  them  makes  five  of  them,  but  that’s  of  little  use  if  “three  sevens”  does  not  (yet)  have   meaning.  Once  a  child  does  have  meaning  for  “three  sevens”  and  that  meaning  is  a  specific   number  (even  if  the  child  doesn’t  yet  remember  which  number),  the  child’s  long-­‐standing   logic/intuition/linguistic  knowledge  that  “three  sevens  plus  two  sevens  is  five  sevens”   becomes  arithmetically  usable.     ©  Education  Development  Center,  Inc.     page  4  
  • 5. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   The  meaning  of  “three  sevens”  might  be  given  in  several  ways:  as  an  image   ,  or  a   sum,  7  +  7  +  7,  or  a  product  3  ×  7,  or  in  other  ways.  Each  way  has  something  threeish  and   something  sevenish  about  it.  Because  7  +  7  +  7  and  3  ×  7  are  both  language,  such   expressions  are  best  introduced  as  (mathematical)  descriptions  of  a  situation—for   example,  the  array  image—that  communicates  partly  without  analyzing  the  language   formally.  The  image,  of  course,  requires  some  analysis,  too—visual  rather  than  linguistic— to  see  the  three  sevens.  To  connect  “three  sevens”  with  21,  the  “normal”  name  for  that   number,  we  must  agree  that  what  makes    “seven”  is  its  seven  squares.  Then    is   21  because  of  its  21  squares,  but  it  is  also  a  picture  of  three  sevens:  a  multiplication  fact.   Similarly,  if    is  “seven,”  then    is  two  sevens.  The  picture    shows  that  three   sevens  and  two  sevens  make  five  sevens.   In  spoken  form,  “three  sevens  plus  two  sevens  make  five  sevens”  is  familiar.  The   pictures  support  the  semantics  of  the  situation,  helping  to  establish  the  role  of  sevens  and   preserve  its  numerical  meaning  rather  than  letting  it  degenerate  into  a  non-­‐numeric  object,   like  sheep.  But  the  classical  written  form—(3  ×  7)  +  (2  ×  7)  =  5  ×  7—is  quite  another  story.   Spoken  symbols  vs.  written  symbols   Knowing  that  the  finger  collections    and    can  be  described  by  the  same  number   does  not  guarantee  that  a  child  will  know  that  the  print  statements  5  +  2  and  2  +  5  refer  to   the  same  number.  The  written  language  of  mathematics  presents  challenges  that  can  be   finessed  by  spoken  language  and  by  appropriate  visual  presentations.  Perhaps  the  most   glaring  example  is  the  canonical  wrong  fourth-­‐grade  response  to   8 + 8 = ? .  No  first  grader   3 2 would  ever  say  “five  sixteenths.”  It’s  uninformative—in  fact,  misleading—to  “explain”  such   errors  simply  by  claiming  that  these  expressions  are  “too  abstract”  or  that  children  “can’t   handle  symbols.”  Spoken  words  are  symbols,  too,  and  words  like  the—which  young   children  use  flawlessly—are  about  as  abstract  as  one  can  get.  It’s  worth  understanding  the   difference  between    =    and  5  +  2  =  2  +  5  to  see  why  the  challenge  of  print  for   children  may  not  be  a  mathematical  challenge.     Humans  have  evolved  to  be  quite  flexible  about  visual  order  and   orientation,  but  in  the  life  of  any  individual  human,  it  takes  some   learning.  Infants  who  have  come  to  recognize  a  bottle  when  it  is   handed  to  them  in  the  proper  orientation    do  not,  at  first,  reach   for  it  when  it  is  handed  to  them  in  some  unfamiliar  orientation  (e.g.,   with  the  nipple  visible,  but  facing  away  like  this   ).  But  very   soon  they  do  learn  to  recognize  objects  regardless  of  their   orientation.  When  you  consider  the  visual  processing  required,  this   is  quite  an  impressive  accomplishment.  Even  if  the  bottle  is     presented  in  the  same  orientation  but  at  different  distances,  very   Figure  1:    In  this  photo,   different  images  are  projected  onto  the  retina.  The  distortion  of   the  distance  from  the  tip   of  the  nipple  to  the   parts  relative  to  each  other  can  be  extreme,  and  yet  the  baby   bottle  is  the  same  as  the   recognizes  all  of  these  projections—most  of  them  never  seen   length  of  the  entire  rest   before—as  the  same  object.   of  the  bottle.  Measure  to   see  for  yourself!   ©  Education  Development  Center,  Inc.     page  5  
  • 6. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   Though  this  complex  neural  computation  needs  data  (learning)  to  tune  it  up,  the  ability,   itself,  is  wired  in.  This  evolutionary  gift  is  essential  for  survival.  Otherwise,  we’d  have  been   meals  for  tigers  we  didn’t  recognize  because  they  didn’t  happen  to  be  facing  exactly  the   same  way  as  first  we  saw  them!  For  our  ancestors,  it  was  necessary  to  “see”  the  same  object   despite  different  retinal  images,  as  long  as  those  images  could  be  made  “the  same”  under   rotation,  reflection,  dilation,  or  certain  projective  transformations,  and  so  our  brains  are   adept  at  them.  (The  spatial  tests  that  some  people  find  quite  difficult  are  a  very  different   sort  of  thing.  The  “look-­‐alike”  objects  on  these  tests  require  an  analysis  that  goes  beyond   what  was  evolutionarily  useful.  Our  ancestors  didn’t  care  if  the  tiger  was  left-­‐handed!)   But  those  ancestors  didn’t  read.  The  letters  d,  b,  q,  and  p  are  the  same  shape  and  differ   only  by  rotation  or  reflection.  To  read,  children  must  learn  to  see  them  as  different  objects,   not  as  the  same  object  in  different  orientations.  Young  children’s  letter  reversals  are  not   neurological  failures  at  all—seeing  that  way  is  one  of  evolution’s  gifts—but,  just  for  this   one  purpose  of  decoding  print,  children  must  unlearn  a  principle  that  applies  to  nearly   everything  else  they  will  encounter  during  their  entire  life.  They  must  treat  print  as  an   exception  to  the  usual  rules  of  seeing.   Moreover,  w as  and  s aw—each  just  three  print-­‐squiggles  arranged  in  a  different   order—must  not  be  recognized  as  “the  same.”  Alas,  then  come  2 +5  and  5 +2,  two  perfectly   good  examples  of  print-­‐squiggles  that  are  to  be  treated  as  “the  same.”  (As  always,  the  truth   is  not  so  simple.  On  a  number  line,  numbers  represent  addresses—the  names  of  specific   points/locations  along  the  line—and  also  distances  between  addresses.  The  child  who   “enacts”  2 +5,  perhaps  by  jumping  along  a  large  number  line  on  the  floor  would  enact  5 +2   differently.)  It  is  therefore  not  surprising  that  the  notation,  in  some  contexts,  can  cause   confusions,  but  this  is  an  issue  of  notation,  not  of  concept.  Print  is  just  plain  different!   Similarly,  the  picture    lets  children  see  what  written  descriptions  like   (3  ×  7)  +  (2  ×  7)  =  (3  +  2)  ×  7  or  (3  ×  7)  +  (2  ×  7)  =  5  ×  7  typically  leave  opaque,  unless  they   are  written  as  an  abbreviated  version  of  language  the  children  themselves  are  using  to   describe  the  picture.  But  the  difficulty  is  with  the  notation—a  difficulty  with  the  manner  in   which  the  underlying  mathematical  idea  is  being  communicated—not  a  lack  of  the  idea   itself.  In  fact,  the  way  that  teachers  of  kindergarten  and  early  first  grade  teach  writing  could   help  them  teach  this  symbolic  language,  too:  children  tell  stories,  and  the  teacher  encodes   their  language  in  writing.  Here,  children  might  describe  how  a  three-­‐by-­‐seven  array  can  be   put  with  a  two-­‐by-­‐seven  array  to  make  a  five-­‐by-­‐seven  array,  and  the  teacher  can  be   writing  (3  ×  7)  +  (2  ×  7)  =  (5  ×  7)  as  the  children  speak.  Before  that  can  happen,  children   need  to  have  the  idea  that  we  can  name  the  arrays,  and  that  one  useful  name  for    is   (3  ×  7).  Imagine  that  array  to  be  on  a  card  we  hold  in  our  hands.  That  card  can  be  held  in   any  position  at  all—vertically,  slantwise,  horizontally—and  is  still  the  same  card.  It  makes   sense  to  give  it  the  same  name  no  matter  which  way  we  hold  it.  We  could  also  have  called  it   (7  ×  3),  or  even  21  (or  a  zillion  other  things,  like  “half  of  6  ×  7”  if  we  had  a  6  ×  7  array  that   we  had  already  named).  So  (3  ×  7)  =  (7  ×  3)  =…   The  visual  idea    and  the  symbols  that  describe  what  the  children  see  are  not  yet   fully  generic—not  yet  a  property  of  +  and  ×  that  can  be  used  in  syntactic  manipulations  of   ©  Education  Development  Center,  Inc.     page  6  
  • 7. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   strings  of  symbols  to  generate  (a  ×  c)  +  (b  ×  c)  from  (a  +  b)  ×  c  or  vice  versa.  In  fact,  there   are  so  many  parts  to  keep  track  of  that  doing  so  is  not  trivial.  Getting  good  enough  to   recognize  and  use  this  valuable  property,  even  with  arrays  as  a  particularly  powerful   representation,  takes  time  and  practice.  But  the  underlying  idea  is  there  very  early,  as  part   of  the  child’s  cognitive  structure,  as  soon  as  the  child  can  meaningfully  make  statements   like  “two  sheep  plus  three  sheep  are  five  sheep.”  Again,  the  underlying  idea  must  be  there   before  any  practice  of  it  can  make  sense.   Written  symbols  often  present  major  challenges  that  the  spoken  symbols  do  not.   Possibly  because  of  print’s  special  status,  the  logic  that  children  apply  when  information  is   presented  in  spoken  symbols  may  not  be  applied  when  the  same  information  is  presented   in  print.  The  canonical  error  with  fractions  is  a  perfect  example:  The  spoken  question   “what’s  three  eighths  plus  two  eighths”  focuses  attention  on  “three  plus  two”  and  tends  to   evoke  the  correct  reasoning  and  get  the  correct  answer;  by  contrast,  the  written  question   3 8 + 8 = ?  doesn’t  focus  attention  only  on  the  top  numbers.  Children  for  whom  the  meaning  is   2 not  already  strongly  established  tend  to  interpret  the  plus  sign  as  “add  everything  in  sight.”   In  fact,  mathematical  reading  and  writing  are  quite  different  from  prose  reading  and   writing.  For  prose,  we  proceed  in  a  line,  strictly  left  to  right.  Even  top-­‐to-­‐bottom  movement   just  accommodates  the  limited  width  of  a  page;  it  gives  no  information  that  would  not  have   been  present  if  the  writing  were  strung  out  in  one  dimension—a  line—on  a  very  wide     scroll  of  paper.  (The  real  story  is,  of  course,  more  complex.   Strict  left  to  right  reading  applies  only  at  the  very  earliest   stages,  if  at  all.  A  fluent  reader,  largely  without  conscious   awareness,  takes  in  much  more  of  the  sentence  than  a   strictly  left-­‐to-­‐right  approach  would  give.)  By  contrast,  bar   graphs,  coordinate  graphs,  histograms,  charts  and  tables,   and  the  like  are  two-­‐dimensional  records.  One  must  attend   to  horizontal  and  vertical  position  in  order  to  interpret  the   information  they  contain.  Even  symbolic  expressions  can   require  attention  to  vertical  as  well  as  horizontal  position:   32  is  not  the  same  as  32.  Moreover,  mathematical  writing   that  is  just  horizontal  are  not  to  be  read  strictly  left  to   right:  2  ×  (3  +  5),    7  +  6  ÷  2,  and  7  +  ___  =  5  +  4  all  require   attention  to  the  right  side  before  attention  to  the  left.  In   fact,  7  +  6  ÷  2  requires  both  left-­‐to-­‐right  and  right-­‐to-­‐left     analysis:  6  ÷  2  must  be  evaluated  left-­‐to-­‐right  (because   Figure  2:    Bar  graphs,  among  the   2  ÷  6  is  different),  and  yet  the  convention  about  order  of   earliest  graphs  children  make,   require  attention  to  two   operations  dictates  that  the  6  ÷  2  part  must  be  evaluated   dimensions:  which  bar  (horizontal   before  the  addition  that  is  specified  by  “7  +  .”   position)  and  the  bar’s  height.   Algebra  as  a  language  for  expressing  what  we  know   Algebraic  notation  is  used  in  two  distinct  ways:  for  describing  what  we  know,  and  for   deriving  what  we  don’t  know.  In  the  first  use,  algebra  is  a  language  for  describing  the   structure  of  a  computation,  a  numerical  pattern  we’ve  observed,  a  relationship  among   varying  quantities,  and  so  on.  Young  children  are  phenomenal  language  learners!   ©  Education  Development  Center,  Inc.     page  7  
  • 8. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   Exercises  like  the  one  in  Figure  3,  but  without  the  leftmost  column,  are  familiar  enough   in  many  curricula.  Children  look  for  a  pattern  in  the  inputs  and  outputs,  figure  out  a  rule,   and  complete  the  table.  Think  Math!  often  adds  a  “pattern  indicator”  (the  first  column)  to   problems  of  this  kind.  When  Michelle,  a  second  grader  in  a  Think  Math!  classroom  finished   filling  out  this  table  before  I  had  finished  handing  out  copies  to  all  the  children,  I  asked  her   how  she  had  done  it  so  fast.    She  said  “Well,  I  saw  it  was  take-­‐away  8  because  I  looked  at  the   28  and  20,  and  then  I  saw  that  10  and  2  was  take-­‐away  8  again,  and  then  I  saw  8  and  0.”       n   10   8   28   18   17       58   57   n  –  8   2   0   20       3   4       Figure  3:  A  “pattern  indicator”  gains  meaning  from  context  when  it  accompanies  a  “find-­‐a-­‐rule”  exercise.   And  then  she  grinned  as  if  I  had  left  the  “clue”  by  accident,  pointed  to  the  left  column   and  added  “Besides,  it  says  that  right  here!”  How  did  Michelle  know?  Though  the  algebraic   language  was  there,  nobody  ever  discussed  “variables”  or  “letters  standing  for  numbers”  or   even  mentioned  that  column.  Had  Michelle  seen  just  the  table  in  Figure  4,  with  no  examples   to  infer  from,  she  most  likely  would  not  have  felt  the  symbols  “said”  anything.  But  after  she   discovered  the  pattern,  the  symbols  looked  “close  enough”  to  mean  the  same  thing,  and  so   she  then  assigned  them  that  meaning.       n   18   17       58   57   n  –  8       3   4       Figure  4:  A  “pattern  indicator”  without  a  pattern  from  which  to  infer  its  meaning  would  just  be  more  to  learn.   In  other  words,  she  did  what  little  children  excel  at:  she  learned  language  (in  this  case   “n  –  8”)  from  context.  If  algebraic  language  is  part  of  the  environment,  used  where  context   gives  it  meaning,  children  can  apply  their  natural—and  extraordinary—language-­‐learning   prowess  to  it,  and  learn  to  use  it  descriptively.  Just  as  children  learning  their  native   language  understand,  at  first,  more  than  they  can  say,  Michelle  could  not  immediately   produce  such  descriptive  language,  but  she  and  others  try  these  interesting  ways  of  writing   down  what  they  know  and,  over  time,  become  good  at  it.     Fourth  graders  learn  a  number  trick:  Think  of  a  number;  add  3;  double  that;  subtract  4;   cut  that  in  half;  subtract  your  original  number;  aha,  your  result  is  1!  They  love  it  and  want   to  do  it  to  their  parents  and  friends.  They  also  want  to  know  how  it  works,  so  we  add   pictures.  When  we  say  Think  of  a  number,  we  picture  a  bag  with  that  number  of  grapes  in   it:   .  For  add  3,  we  picture    and  double  that  becomes   .  This  act  of  doubling,  which   most  fourth  graders  find  quite  natural  and  “obvious,”  is,  again,  the  distributive  property  in   action.  While  the  expression  2(b  +  3)  does  not  make  obvious  what  the  result  is,  children  do   readily  learn  to  describe  the  picture  as  “two  bags  plus  6”  and  abbreviate  that  description  as   2b  +  6.  We  don’t  talk  about  “variables”  or  “letters  standing  for  numbers”;  we  simply   describe  what  we  know,  and  write  it  down  as  simply  as  we  can.  (See  a  detailed  description   of  the  activity  with  children  at  http://thinkmath.edc.org/index.php/Algebraic_thinking  and   see  Sawyer  (1964)  for  the  original  source  of  this  idea.)  June  Mark,  et  al.,  (2009)  describe  yet   another  way  in  which  Think  Math!  gives  students  this  algebra-­‐as-­‐description-­‐of-­‐what-­‐you-­‐ know  experience.   ©  Education  Development  Center,  Inc.     page  8  
  • 9. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   So  why  don’t  we  teach  algebra-­the-­course  in  grade  4?   Because  that  other  use  of  algebra—deriving  what  we  don’t  know—is  a  formal  syntactic   operation  on  a  set  of  symbols,  and  children  are  (generally)  not  able  to  divorce  symbols   from  meanings  before  roughly  age  12.  This  is  not  because  they  cannot  handle  “symbolic”  or   “abstract”  things—words  are  symbols;  pictures  are  symbols;  little  children  can  be  symbolic   and  abstract  from  babyhood—but  because  the  use  of  the  symbols  is  different.  Formal   operations  on  strings  of  algebraic  symbols—rearranging  them,  apart  from  their  semantics,   to  create  other  strings  of  symbols  that  “solve”  a  problem—are,  well,  formal  operations,  and   children  are  not,  by  and  large,  formal  operational  before  11,  and  not  reliably  so  before   about  13,  whence  the  common  need  to  wait  until  that  age  for  “algebra.”  But  only  that  part   of  algebra  that  requires  deduction  by  formal  rules  needs  to  wait  that  long.  The  part  of   algebra  that  is  expressive  of  what  we  already  know—that  is,  essentially,  a  shorthand  for   semantic  content  clearly  tied  to  a  context  we  already  understand—that  part  can  be  learned   earlier.  It  is  just  language  to  express  oneself,  and  children  are  excellent  language  learners.   They  don’t  learn  language  from  explanations  or  formal  lessons;  they  learn  it  from  use  in   context.  And,  if  is  it  learned  all  along,  as  it  becomes  developmentally  possible,  then,  when   the  child  is  in  late  middle  school,  the  transition  to  the  new  use  of  that  language  for   deductive  purposes  could,  presumably,  be  much  easier,  much  more  accessible  for  all   children,  much  less  of  a  brick  wall  of  a  million  seemingly  new  things  to  learn  all  at  once.   What  does  this  tell  us  about  elementary  school  teaching  and  learning?   Taking  advantage  of  children’s  natural  algebraic  ideas  and  honing  them  is  a  focus  on   habits  of  mind,  rather  than  on  rules  that  can  otherwise  seem  arbitrary.  The  precursors  of   commutative  and  distributive  properties  that  we  described  earlier  do  need  to  be  refined,   honed,  extended,  practiced,  codified,  and  generalized,  but  they  are  already  there  as   “natural”  logic,  the  child’s  natural  habits  of  mind  and  the  building  blocks  of  higher   mathematics.  If  children  are  to  become  competent  at  mathematics,  including  arithmetic,   those  habits  of  mind  must  take  precedence  over  rules,  formulas,  and  procedures  that  do   not  derive  from  logic  that  the  child  can  grasp.  In  fact,  children  can  grasp  a  lot  more  if  the   foundations  for  their  learning  are  grounded  in  their  logic,  which  gives  them  all  the  tools  to   understand,  not  just  memorize,  the  algorithms  for  arithmetic  with  whole  numbers  and   fractions.  But  we  all  see  the  dramatically  disappointing  results  of  “learning”  rules  without   understanding:  they  are  easy  to  mix  up  and  result  in  procedures  that  don’t  work.   Organizing  the  arithmetic  part  of  the  elementary  school  mathematics  curriculum   around  mathematical  habits  of  mind  would  not  shift  the  curriculum  dramatically  in  content,   except  to  give  more  attention  to  mental  arithmetic  than  is  usual.  Paper  and  pencil  methods   are  engineered  to  make  the  work  easy,  to  reduce  the  cognitive  load,  the  amount  of  thinking   one  needs  to  do,  of  calculation.  Judiciously  chosen  mental  arithmetic  both  exercises  and   depends  on  mathematical  ways  of  thinking  that  the  paper-­‐and-­‐pencil  algorithms   deliberately  try  to  avoid,  mathematical  ways  of  thinking  that  are  the  backbone  of  the   algebra  that  we  want  to  prepare  children  to  succeed  at.  What  would  shift  is  the  order  in   which  we  acquire  that  content.  Instead  of  being  the  preparatory  step  for  computing,   algorithms  become  the  culmination  of  understanding  how  the  computation  works,  another   case  of  describing  what  we  already  know,  and  abbreviating  that  description.   ©  Education  Development  Center,  Inc.     page  9  
  • 10. E.  Paul  Goldenberg,  June  Mark,  and  Al  Cuoco   The  algebra  of  little  kids   References   Cuoco, A., Goldenberg, E. P., & J. Mark. “Habits of mind: an organizing principle for mathematics curriculum” J. Math. Behav. 15(4):375-402. December, 1996. Cuoco, A., Goldenberg, E. P., and J. Mark. “Organizing a curriculum around mathematical habits of mind.” Mathematics Teacher. (submitted) Education Development Center, Inc. (EDC). Think Math! comprehensive K-5 curriculum. Boston: Houghton Mifflin Harcourt. 2008. Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44, 33–66. Goldenberg, E. Paul. “‘Habits of mind’ as an organizer for the curriculum” J. of Education 178(1):13-34, Boston U. 1996. (Also “‘Hábitos de pensamento’ …”Educação e Matemática, 47 March/April, & 48 May/June, 1998.) Goldenberg, E. Paul & N. Shteingold. “Mathematical Habits of Mind.” In Lester, F., et al., eds. Teaching Mathematics Through Problem Solving: prekindergarten–Grade 6. Reston, VA: NCTM. 2003. Goldenberg, E. Paul & N. Shteingold “The case of Think Math!” In Hirsch, Christian, ed., Perspectives on the design and development of school mathematics curricula. Reston, VA: NCTM. 2007. Gopnik, A., Meltzoff, A., and P. Kuhl. The scientist in the crib: what early learning tells us about the mind. New York: HarperCollins. 2000. Mark, J., Cuoco, A., and Goldenberg, E. P. “Developing mathematical habits of mind in the middle grades.” Mathematics Teaching in the Middle School. (submitted) Piaget, J. The child’s conception of number. London: Routledge and Kegan Paul. 1952. Sawyer, W. W. Vision in elementary mathematics. New York: Dover Publications. 2003 (1964). Sfard, A. Thinking as Communicating. New York, NY: Cambridge University Press. 2008. Wirtz, R., Botel, M., Beberman, M., and W. W. Sawyer. 1964. Math Workshop. Encyclopaedia Britannica Press. ©  Education  Development  Center,  Inc.     page  10