SlideShare a Scribd company logo
1 of 103
Introduction to Corals, Coral Reefs Dr. Mark A. McGinley Texas Tech University BIOL 5311 Summer 2011
Great Barrier Reef The largest biogenic (made by life) stuctures in the world are coral reefs stretches over 2,600 kilometers (1,600 mi) area of approximately 344,400 square kilometers (133,000 sq mi).[
Great Barrier Reef From Space
Barrier Reefs Thickest reef almost 1 mile thick.
Coral Reefs Thick layer of calcium carbonate covered by thin layer of living organisms Built up over extremely long periods of time
Cnidarians Corals contain living animals from the Phylum Cnidaria
Some Members Of Phylum Cnidaria
Cnidarian Morphology
Coral Polyps A coral is a colony containing thousands of tiny polyps 9
Coral Polyps
Coral Feeding The coral polyps feed on either small living  organisms or on dead material (detritus)  that floats in the water.
Scleractinian Corals (reef building corals) secrete CaCO3			 external skeletons secreted by epidermis
Coral Skeleton
Hard Corals 14
Why Should You Care About Corals? Cool Incredibly diverse Very important economically http://www.underseaproductions.com/demo_reels/marine_life_behaviour_video_footage.html
Coral Ecology Corals are involved in a lot of interesting ecological interactions. Let me tell you about a few.
Energetics and Ecosystems Energy is required to do work Biological work Maintaining concentration gradients across membranes Active transport Biosynthesis Breaking down and building up bio molecules Movement Cilia Muscles
First Law of Thermodynamics Energy can not be created or destroyed It can only be converted from one form to another Forms of energy Electromagnetic Kinetic Nuclear Potential
Photosynthesis The most important energetic process taking place for life on earth Converts electromagnetic energy from the sun (released by fusion reactions in the sun) to potential energy stored in the chemical bonds of glucose
Cellular Respiration Energy stored in the chemical bonds of glucose is converted into energy stored in the chemical bonds of ATP ATP releases that energy Used to do biological work
Energy Flow Through Ecosystem Sun Plants Primary producers Herbivores Primary consumers Carnivores Secondary consumers Decomposers Energy lost as heat to environment
Flow of Energy From One Trophic Level to the Next is Inefficient Only about 10% of energy captured by plants is passed on to primary consumers About 10% of energy captured by primary consumers is passed on to secondary consumers
Energy Pyramid
Biomass Pyramid
Forests In terrestrial ecosystems you see lots of plants. Forests are full of trees….
Prairies Prairies have lots of grasses.
Deserts You can even see lots of plants in the desert.
Coral Reef Video Schooling Fish http://www.underseaproductions.com/demo_reels/schooling_fish_video_footage.html
Coral Reef Video http://www.underseaproductions.com/demo_reels/seascapes_video_footage.html How many plants do you see on this video?
Coral Reefs Do not see many aquatic plants (algae) on coral reefs Yet coral reefs are teeming with life and are one of the most diverse communities on the planet How can this be?????
The Mystery of the “Inverted Energy Pyramid”
Missing Primary Producers Two possibilities Maybe plants are photosynthesizing but the plant material is eaten by herbivores as fast as it is produced. - Therefore we don’t see a build up of plants
Lots of Herbivores Living or Coral Reefs Parrotfish eat the algae living in corals by scraping  off the outer layer using their very sharp teeth.   They grind up the rocks, digest the algae, and  poop out a lot of sand
Biogenic Sand So remember, when you are taking a romantic stroll down the beach with your  sweetie much of the sand you are walking on is parrotfish poop.
Long-spined Urchin (Diademaantillarum) Long-spined urchins are important  herbivores on coral reefs.
Results of Overfishing and Diadema Die-off About 20 years ago a disease entered the Caribbean  Sea through the Panama Canal.  This disease killed  almost 90 percent of the urchins.  In some places,  fishing by humans has reduced the number of  herbivorous fishes.  The loss of the fishes and the  urchins has allowed algae  to grow.  Because algae grows so much faster than corals algae is  able to outcompete the corals  so many corals have been covered by algae.
Missing Primary Producers In undisturbed reefs, primary productivity of algae is rapidly removed by the herbivores But calculations of rate of photosynthesis by algae was not enough to explain the energy and biomass at higher tropic levels
Missing Primary Producers Not looking in the right place. Scientists (and the video we just saw) looked all over the coral reef for primary producers Needed to look “inside” of corals
Symbiotic Zooxanthellae Little photosynthetic microorganisms called Zooxanthellae are found living inside of the coral polyps.
CORAL REEFS - ZOOXANTHELLAE --- Are group of algae called     dinoflagellates (also form red tides). Symbiodinium spp.)  --- Are different colors; brown, green, yellow. --- Dinoflagellatesmutualistic with other groups; sea slugs, giant clams, tunicates. --- Can live outside host
Mutualistic Relationship Between Corals Polyps and Zooxanthellae Mutualistic interaction Interaction between two species in which both species benefit.
Green polyp tissue, red zooxanthellae Coral – Zooxanthellae Mutualism Zooxanthellae provide corals: Energy  (photosynthesis products) and as a by-product ability to grow and reproduce fast enough to produce reefs. Zooxanthellae can provide up to 90% of a coral’s energy requirements Corals provide zooxanthellae with: Protection from predators via Cnidarian nematocysts. Removal of dissolved organic material from water column (to keep water clear) Waste products useful for algal photosynthesis (nitrogen and phosphorous) )
Coral-Zooxanthellae Mutualism Explains one aspect of the distribution of coral reefs Coral Reefs are found Shallow water Near continents Tropical Eastern sides of continents
Distribution of Corals
Coral reefs limited to the “photic zone” Zooxanthellae require light for photosynthesis Corals limited to relatively shallow water
Coral Reef Zonation There are consistent patterns of zonation on coral reefs with increasing depth Water absorbs light so there is less light as depth increases Thus, ability of zooxanthellae to provide corals with energy decreases with depth 46
Coral Species Change Growth Form at  Depth Plating in Star Coral (Monastrea) 47
More Sponges and Fewer Corals at Greater Depths
Mutualisms Important for the two participant species to be able to find each other How do they do this?
Transmission of Zooxanthellae Maternally passed from parent   to offspring -vertical transmission
Coral Life Cycle Corals can reproduce sexually or asexually Zooxanthellae easily passed from parent to offspring in asexual reproduction Corals also reproduce sexually Egg and sperm Mothers can place zooxanthellae in eggs
Sexual Reproduction in Corals Some species of corals release both eggs and sperm in the water Fertilization occurs in the water column Spawners Other species hold the eggs but release the sperm in the water Fertilization occurs in the Mom, later release larvae brooders Maternal transmission of zooxanthellae occurs more often in brooders than spawners
Transmission of Zooxanthellae ,[object Object]
Free-living Zooxanthellae enter new corals each  generationThis is very important for some of the issues we will talk about later
Benefits of Coral Reefs Fisheries
Benefits of Coral Reefs  Protect Shore
Benefits of Coral  Reefs Tourism
Benefits of Coral Reefs Biodiversity
Many Coral Reefs Are Threatened
Decline of Caribbean Coral Reefs
Threats to Coral Reefs Storm Damage
Threats to Coral Reefs Crown of Thorns Starfish Occasionally, there are large population outbreaks of this big (and ugly) starfish.  The starfish feeds on coral polyps and can kill large areas of coral reefs.
What Causes Such Large Increases in Population Size of the Starfish? One theory is that collecting Tritons to sell their shells has reduced the population size of the most important predator of the starfish. Without any predators the population size of the starfish increases greatly.
63 Threats to Coral Reefs Siltation When the land is disturbed by building or farming soil erosion can cause silt to be carried into the ocean. When the silt covers the coral the polyps can not feed and the Zooxanthellae can not photosynthesize so the coral dies.
Threats to Coral Reefs Algal Blooms The addition of nutrients to the ocean from fertilizer run off or human sewage can fertilize faster growth of algae.   When  the algae covers the coral it blocks the light to the Zooxanthellae.
Threats to Coral Reefs Blast fishing In some places fishermen capture the fish by stunning them with explosions. Obviously, these explosions to a lot of damage to the reef. I heard blast fishing for the first time while diving in Malaysia last year!
Threats to Coral Reefs Coral Bleaching
Coral Bleaching
Coral Bleaching
Coral Bleaching Environmental stress puts a strain on the symbiotic relationship fresh water dilution sedimentation subaerial exposure solar irradiance temperature
Coral Bleaching Fresh water dilution and sedimentation are local conditions so coral bleaching due to these factors is limited to certain small areas. Solar irradiance and especially temperature are stressors that cause coral bleaching on a global scale Potentially a much bigger problem
Coral Bleaching Coral bleaching is occurring all over the world!
Coral Bleaching Polyps can live for a while without the zooxanthellae, but growth rate is greatly reduced If stress is eliminated the zooxanthellae may return to the polyps and the coral recovers If stress continue for too long, then the polyps will die
New Guinea
Temperature and Coral Bleaching Coral reefs are vulnerable to increased temperature, which causes corals to lose their symbiotic algae in a process called coral bleaching.  Small increase in water temperature is enough to trigger bleaching Over the last 30 years, average ocean temperatures have increased 0.3 to 0.4 degrees Celsius. Mass coral bleaching episodes have increased dramatically over the last 2-3 decades.
Temperature and Coral Bleaching El Nino events can change the pattern of ocean currents and bring warmer water to reefs 16 % of the world’s coral reefs experienced bleaching in 1997-1998  mortality approaching 90% in some places about half of damaged reefs have not recovered.
Mechanisms of Coral Bleaching Not well understood Often talk about polyps “expelling zooxanthellae” This may or may not be an accurate word choice This discussion might benefit from a better knowledge of about theories of mutualisms
Mechanisms of Coral Bleaching Zooxanthellae may be lost from polyps “unintentionally” Cell Adhesion Dysfunction High temperature shock could result in cell adhesion dysfunction between the cnidarianendodermal cells and the zooxanthellae cells. Cell adhesion dysfunction would cause the detachment and loss of zooxanthellae from the coral.
Mutualisms Mutualisms are interactions between two species in which both species benefit Often think of species behaving altruistically  Probably more complicated then that.
Mutualisms Species are involved in mutualistic relationships because the benefits of interacting with the other species are larger than the costs of that interaction If something happens to alter the benefits and costs then species might “reconsider” whether or not they want to be involved in the relationship Whether or not they can do anything about it can vary from system to system
Zooxanthellae may “choose” to leave the polyps Stressed corals may give provide zooxanthellae fewer nutrients for photosynthesis  	- less benefit to the mutualism  If the fitness of algae living independently is greater than the fitness of algae living in polyps then the algae may “decide” to leave the polyp and exist independently.
Polyps may “Expell” Zooxanthellae Coral polyps might “decide” to end the relationship with the zooxanthellae if The costs of hosting zooxanthellae increase The benefits received from the zooxanthellae decrease
Polyps may “Expell” Zooxanthellae Stress might alter the physiology of the zooxanthellaeand cause them to release compounds that are harmful to polyps (perhaps free oxygen radicals) Polyps will release the zooxanthellae rather than suffer the effects of the toxins.
Polyps may “Expell” Zooxanthellae Adaptation Mechanism If certain strains of zooxanthellae cannot function when stressed, the polyps expell these zooxanthellae to leave their tissues open to be recolonized by a different strain of zooxanthellaethat are better adapted to the current environment
Coral Diseases Coral diseases are another threat to coral reefs Coral diseases were first identified in the 1970s and their prevalence has increased since then
Black-band Disease Black-band disease is characterized by a blackish concentric or crescent-shaped band, 1 to 30 mm wide and up to 2 m long, that “consumes” live coral tissue as it passes over the colony surface, leaving behind bare skeleton.
Black-band Disease The disease is caused primarily by a cyanobacteria sulfide-oxidizing bacteria, sulfur- reducing bacteria, other bacteria and nematodes, ciliate protozoans, flatworms and fungal filaments also are present.  The photosynthetic pigments of the dominant cyanobacteria gives the band its maroon to black color
Black-band Disease The dead skeleton will be attacked by boring algae, boring sponges, boring clams, and parrot fish which will gnaw away the skeleton remove about 1 cm per year.  This means that in 100 years, a 1-meter high coral head will be completely consumed and converted to sediment.
White-band Disease White-band disease  was first identified in 1977 on reefs surrounding St. Croix. It is now known to occur throughout the Caribbean where it is believed to only affect staghorn and elkhorn corals.  This disease is characterized by tissue that peels or sloughs off the coral skeleton in a uniform band, generally beginning at the base of the colony and working its way up to branch tips The band ranges from a few millimeters up to 10 cm wide, and tissue is lost at a rate of about 5 mm per day
White-band Disease The cause of White-band Disease is unknown.  unusual aggregates of rod-shaped bacteria were found in the tissue of corals affected by White-band Disease scientists have not determined the role of this microorganism
White-band Disease Since the 1980s, Acroporacervicornis has been virtually eliminated from reef environments throughout the Caribbean.  In the U.S. Virgin Islands, populations of Acroporapalmata declined from 85 percent cover to 5 percent within 10 years White-band disease currently is the only coral disease known to cause major changes in the composition and structure of reefs
Yellow Blotch Disease Affects only star corals in the genus Montastraea and the brain coral Colpophyllianatans  First identified in 1994 in the lower Florida Keys. It is now known to occur throughout the Caribbean
Yellow Blotch Disease Yellow blotch disease begins as pale, circular blotches of translucent tissue or as a narrow band of pale tissue at the colony margin, with affected areas being surrounded by normal, fully pigmented tissue.  As the disease progresses, the tissue first affected in the center of the patch dies, and exposed skeleton is colonized by algae .  The area of affected tissue progressively radiates outward, slowly killing the coral.
Yellow Blotch Disease The rate of tissue loss by corals afflicted with YBD averages 5 t 11 cm per year, which is less than that of other coral diseases.  However, corals can be affected for many years, and the disease can affect multiple locations on a colony.  Though the cause of Yellow Blotch Disease remains unknown
Red-band Disease Red-band disease consists of a narrow band of filamentous cyanobacteria that advances slowly across the surface of a coral, killing living tissue as it progresses. Affects massive and plating stony corals, and also sea fans throughout the wider Caribbean.  exposed skeletal surfaces are rapidly colonized by algae and other competing organisms.
Sea Fan Aspergillosis Caused by the pathenogenic fungus Aspergillussydowii. 
Why has the prevalence of coral diseases increased so much in the last 40 years? One theory is that anthropogenic stresses on the environment have made corals more susceptible to infection by coral diseases
Dust Hypothesis Changes in global climate and land use in Africa resulted in severe droughts in the Sahara and Sahel of Africa starting in the 1970s.
Dust Hypothesis Hundreds of millions of tons of African dust are transported annually from the Sahara and Sahel to the Caribbean and southeastern U.S. A similar dust system in Asia carries dust from the Gobi and TakliMakan deserts across Korea, Japan, and the northern Pacific to the Hawaiian Islands, the western U.S., and as far eastward as Europe.
I’ve cleaned this dust off of boats in the Caribbean.
Dust Hypothesis African and Asian dust air masses transport nutrients (iron, nitrates, other nutrients), pollutants, and viable microorganisms that may adversely affect human health and downwind ecosystems such as coral reefs.
Dust Hypothesis- Mechanisms interfere with a coral's immune system, making it more susceptible to disease pathogens.  induce pathogenicity in a microorganism in the reef environment.  trigger a rapid increase in the number of pathogenic microorganisms.  fuel macroalgae or phytoplankton growth has been shown for Red tides in the Gulf of Mexico directly deposit pathogenic microorganisms.

More Related Content

What's hot (20)

Life In The Ocean
Life In The OceanLife In The Ocean
Life In The Ocean
 
Coral reef presentation
Coral reef presentationCoral reef presentation
Coral reef presentation
 
An Introduction to Coral Reefs
An Introduction to Coral ReefsAn Introduction to Coral Reefs
An Introduction to Coral Reefs
 
Mangroves & Seagrasses PR10_v0310
Mangroves & Seagrasses PR10_v0310Mangroves & Seagrasses PR10_v0310
Mangroves & Seagrasses PR10_v0310
 
Coral Reef Destruction
Coral Reef DestructionCoral Reef Destruction
Coral Reef Destruction
 
Coral reefs and Mangroves
Coral reefs and MangrovesCoral reefs and Mangroves
Coral reefs and Mangroves
 
Origin and reefs of the world
Origin and reefs of the worldOrigin and reefs of the world
Origin and reefs of the world
 
Coastal Systems - Salt Marsh Vegetation
Coastal Systems - Salt Marsh VegetationCoastal Systems - Salt Marsh Vegetation
Coastal Systems - Salt Marsh Vegetation
 
Coral ecology ppt
Coral ecology pptCoral ecology ppt
Coral ecology ppt
 
Biology of coral,beauty of sea.
Biology of coral,beauty of sea.Biology of coral,beauty of sea.
Biology of coral,beauty of sea.
 
Coral Reefs: Biodiversity and Beauty at Risk
Coral Reefs: Biodiversity and Beauty at RiskCoral Reefs: Biodiversity and Beauty at Risk
Coral Reefs: Biodiversity and Beauty at Risk
 
Mass extinction
Mass extinctionMass extinction
Mass extinction
 
Coral reefs
Coral reefsCoral reefs
Coral reefs
 
Phylum mollusca
Phylum molluscaPhylum mollusca
Phylum mollusca
 
Seagrass lecture
Seagrass lectureSeagrass lecture
Seagrass lecture
 
Coral reefs
Coral reefsCoral reefs
Coral reefs
 
Coral reef presentation
Coral reef presentationCoral reef presentation
Coral reef presentation
 
Types of coral reefs and its distribution
Types of coral reefs and its distributionTypes of coral reefs and its distribution
Types of coral reefs and its distribution
 
Marine ecology
Marine ecology Marine ecology
Marine ecology
 
Coral Reefs
Coral ReefsCoral Reefs
Coral Reefs
 

Viewers also liked

Aquaculture an introduction
Aquaculture  an introductionAquaculture  an introduction
Aquaculture an introductionSama Syed
 
Coral Disease Outbreak Ahihi 011409
Coral Disease Outbreak Ahihi 011409Coral Disease Outbreak Ahihi 011409
Coral Disease Outbreak Ahihi 011409darlajwhite
 
Introduction to coral disease
Introduction to coral diseaseIntroduction to coral disease
Introduction to coral diseaseWsorc
 
Coral diseases, coral bleaching and other health issues affecting Red Sea cor...
Coral diseases, coral bleaching and other health issues affecting Red Sea cor...Coral diseases, coral bleaching and other health issues affecting Red Sea cor...
Coral diseases, coral bleaching and other health issues affecting Red Sea cor...Amin Mohamed
 
Lesson Three Coral Reefs
Lesson Three   Coral ReefsLesson Three   Coral Reefs
Lesson Three Coral Reefstotal
 
East Coast MARE Ocean Lecture Jan 30, 2013 - Corals: Changes with Climate
East Coast MARE Ocean Lecture Jan 30, 2013 - Corals: Changes with ClimateEast Coast MARE Ocean Lecture Jan 30, 2013 - Corals: Changes with Climate
East Coast MARE Ocean Lecture Jan 30, 2013 - Corals: Changes with Climatecoseenow
 
An introduction to coral reefs
An introduction to coral reefsAn introduction to coral reefs
An introduction to coral reefsWsorc
 
Relationships in coral reef presentation
Relationships in coral reef presentationRelationships in coral reef presentation
Relationships in coral reef presentationmelissadina
 
Coral reef and fisheries habitat restoration in the coral triangle
Coral reef and fisheries habitat restoration in the coral triangleCoral reef and fisheries habitat restoration in the coral triangle
Coral reef and fisheries habitat restoration in the coral trianglebayuvita
 

Viewers also liked (20)

Living Corals
Living CoralsLiving Corals
Living Corals
 
Ch14 fish and shelfish
Ch14 fish and shelfishCh14 fish and shelfish
Ch14 fish and shelfish
 
Coral Reefs
Coral ReefsCoral Reefs
Coral Reefs
 
Aquaculture an introduction
Aquaculture  an introductionAquaculture  an introduction
Aquaculture an introduction
 
Coral Disease Outbreak Ahihi 011409
Coral Disease Outbreak Ahihi 011409Coral Disease Outbreak Ahihi 011409
Coral Disease Outbreak Ahihi 011409
 
Introduction to coral disease
Introduction to coral diseaseIntroduction to coral disease
Introduction to coral disease
 
Coral diseases, coral bleaching and other health issues affecting Red Sea cor...
Coral diseases, coral bleaching and other health issues affecting Red Sea cor...Coral diseases, coral bleaching and other health issues affecting Red Sea cor...
Coral diseases, coral bleaching and other health issues affecting Red Sea cor...
 
Coral Reef Zonation
Coral Reef ZonationCoral Reef Zonation
Coral Reef Zonation
 
Soft corals & their ecology
Soft corals & their ecologySoft corals & their ecology
Soft corals & their ecology
 
Corals
CoralsCorals
Corals
 
Lesson Three Coral Reefs
Lesson Three   Coral ReefsLesson Three   Coral Reefs
Lesson Three Coral Reefs
 
Corals Reefs
Corals ReefsCorals Reefs
Corals Reefs
 
East Coast MARE Ocean Lecture Jan 30, 2013 - Corals: Changes with Climate
East Coast MARE Ocean Lecture Jan 30, 2013 - Corals: Changes with ClimateEast Coast MARE Ocean Lecture Jan 30, 2013 - Corals: Changes with Climate
East Coast MARE Ocean Lecture Jan 30, 2013 - Corals: Changes with Climate
 
An introduction to coral reefs
An introduction to coral reefsAn introduction to coral reefs
An introduction to coral reefs
 
Plants and animals associates of living reef corals
Plants and animals associates of living reef coralsPlants and animals associates of living reef corals
Plants and animals associates of living reef corals
 
Coral Reef
Coral ReefCoral Reef
Coral Reef
 
Mammoths & corals
Mammoths & coralsMammoths & corals
Mammoths & corals
 
Relationships in coral reef presentation
Relationships in coral reef presentationRelationships in coral reef presentation
Relationships in coral reef presentation
 
Coral reef and fisheries habitat restoration in the coral triangle
Coral reef and fisheries habitat restoration in the coral triangleCoral reef and fisheries habitat restoration in the coral triangle
Coral reef and fisheries habitat restoration in the coral triangle
 
Coral reefs
Coral reefsCoral reefs
Coral reefs
 

Similar to Intro to Corals (13)

So You Think You Are Alone Corals
So You Think You Are Alone   CoralsSo You Think You Are Alone   Corals
So You Think You Are Alone Corals
 
coralreef-161031020823.pdf
coralreef-161031020823.pdfcoralreef-161031020823.pdf
coralreef-161031020823.pdf
 
Coral reef
Coral reefCoral reef
Coral reef
 
Crawfish Comparison
Crawfish ComparisonCrawfish Comparison
Crawfish Comparison
 
Great barrier reef presentation
Great barrier reef presentationGreat barrier reef presentation
Great barrier reef presentation
 
Great barrier reef presentation
Great barrier reef presentationGreat barrier reef presentation
Great barrier reef presentation
 
Coral Reefs
Coral ReefsCoral Reefs
Coral Reefs
 
Coral Reefs
Coral ReefsCoral Reefs
Coral Reefs
 
Coral reefs
Coral reefsCoral reefs
Coral reefs
 
Origin and reefs of the world
Origin and reefs of the worldOrigin and reefs of the world
Origin and reefs of the world
 
Coral reef
Coral reefCoral reef
Coral reef
 
Coral reef ecosystem
Coral reef ecosystemCoral reef ecosystem
Coral reef ecosystem
 
Vinay ppt
Vinay pptVinay ppt
Vinay ppt
 

More from Mark McGinley

How Did Scientists discover the properties of electrons
How Did Scientists discover the properties of electronsHow Did Scientists discover the properties of electrons
How Did Scientists discover the properties of electronsMark McGinley
 
Applying scientific thinking joe texas and suzy housewife
Applying scientific thinking joe texas and suzy housewifeApplying scientific thinking joe texas and suzy housewife
Applying scientific thinking joe texas and suzy housewifeMark McGinley
 
Introduction to natural disasters
Introduction to natural disastersIntroduction to natural disasters
Introduction to natural disastersMark McGinley
 
Brief introduction to chemistry I
Brief introduction to chemistry IBrief introduction to chemistry I
Brief introduction to chemistry IMark McGinley
 
Fires & wolves yellowstone
Fires & wolves yellowstoneFires & wolves yellowstone
Fires & wolves yellowstoneMark McGinley
 
Indigenous people of east malaysia
Indigenous people of east malaysiaIndigenous people of east malaysia
Indigenous people of east malaysiaMark McGinley
 
History of east malaysia
History of east malaysiaHistory of east malaysia
History of east malaysiaMark McGinley
 
Indigenous peoples of malaysia
Indigenous peoples of malaysiaIndigenous peoples of malaysia
Indigenous peoples of malaysiaMark McGinley
 
Human population growth
Human population growthHuman population growth
Human population growthMark McGinley
 
Dive Trip to Puerto Galera, Philippines
Dive Trip to Puerto Galera, PhilippinesDive Trip to Puerto Galera, Philippines
Dive Trip to Puerto Galera, PhilippinesMark McGinley
 
Earth’s Atmosphere: A Basic Intro
Earth’s Atmosphere: A Basic IntroEarth’s Atmosphere: A Basic Intro
Earth’s Atmosphere: A Basic IntroMark McGinley
 

More from Mark McGinley (20)

How Did Scientists discover the properties of electrons
How Did Scientists discover the properties of electronsHow Did Scientists discover the properties of electrons
How Did Scientists discover the properties of electrons
 
Applying scientific thinking joe texas and suzy housewife
Applying scientific thinking joe texas and suzy housewifeApplying scientific thinking joe texas and suzy housewife
Applying scientific thinking joe texas and suzy housewife
 
Introduction to natural disasters
Introduction to natural disastersIntroduction to natural disasters
Introduction to natural disasters
 
Brief introduction to chemistry I
Brief introduction to chemistry IBrief introduction to chemistry I
Brief introduction to chemistry I
 
Mark McGinley Story
Mark McGinley StoryMark McGinley Story
Mark McGinley Story
 
Fires & wolves yellowstone
Fires & wolves yellowstoneFires & wolves yellowstone
Fires & wolves yellowstone
 
Indigenous people of east malaysia
Indigenous people of east malaysiaIndigenous people of east malaysia
Indigenous people of east malaysia
 
History of east malaysia
History of east malaysiaHistory of east malaysia
History of east malaysia
 
Indigenous peoples of malaysia
Indigenous peoples of malaysiaIndigenous peoples of malaysia
Indigenous peoples of malaysia
 
Cop 19
Cop 19Cop 19
Cop 19
 
Human population growth
Human population growthHuman population growth
Human population growth
 
Plate Tectonics II
Plate Tectonics IIPlate Tectonics II
Plate Tectonics II
 
Plate Tectonics I
Plate Tectonics IPlate Tectonics I
Plate Tectonics I
 
How Old is Stuff?
How Old is Stuff?How Old is Stuff?
How Old is Stuff?
 
The earth part ii
The earth  part iiThe earth  part ii
The earth part ii
 
Coastal Ecosystems
Coastal EcosystemsCoastal Ecosystems
Coastal Ecosystems
 
Waves
WavesWaves
Waves
 
Tides
TidesTides
Tides
 
Dive Trip to Puerto Galera, Philippines
Dive Trip to Puerto Galera, PhilippinesDive Trip to Puerto Galera, Philippines
Dive Trip to Puerto Galera, Philippines
 
Earth’s Atmosphere: A Basic Intro
Earth’s Atmosphere: A Basic IntroEarth’s Atmosphere: A Basic Intro
Earth’s Atmosphere: A Basic Intro
 

Recently uploaded

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 

Recently uploaded (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 

Intro to Corals

  • 1. Introduction to Corals, Coral Reefs Dr. Mark A. McGinley Texas Tech University BIOL 5311 Summer 2011
  • 2. Great Barrier Reef The largest biogenic (made by life) stuctures in the world are coral reefs stretches over 2,600 kilometers (1,600 mi) area of approximately 344,400 square kilometers (133,000 sq mi).[
  • 3. Great Barrier Reef From Space
  • 4. Barrier Reefs Thickest reef almost 1 mile thick.
  • 5. Coral Reefs Thick layer of calcium carbonate covered by thin layer of living organisms Built up over extremely long periods of time
  • 6. Cnidarians Corals contain living animals from the Phylum Cnidaria
  • 7. Some Members Of Phylum Cnidaria
  • 9. Coral Polyps A coral is a colony containing thousands of tiny polyps 9
  • 11. Coral Feeding The coral polyps feed on either small living organisms or on dead material (detritus) that floats in the water.
  • 12. Scleractinian Corals (reef building corals) secrete CaCO3 external skeletons secreted by epidermis
  • 15. Why Should You Care About Corals? Cool Incredibly diverse Very important economically http://www.underseaproductions.com/demo_reels/marine_life_behaviour_video_footage.html
  • 16. Coral Ecology Corals are involved in a lot of interesting ecological interactions. Let me tell you about a few.
  • 17. Energetics and Ecosystems Energy is required to do work Biological work Maintaining concentration gradients across membranes Active transport Biosynthesis Breaking down and building up bio molecules Movement Cilia Muscles
  • 18. First Law of Thermodynamics Energy can not be created or destroyed It can only be converted from one form to another Forms of energy Electromagnetic Kinetic Nuclear Potential
  • 19. Photosynthesis The most important energetic process taking place for life on earth Converts electromagnetic energy from the sun (released by fusion reactions in the sun) to potential energy stored in the chemical bonds of glucose
  • 20. Cellular Respiration Energy stored in the chemical bonds of glucose is converted into energy stored in the chemical bonds of ATP ATP releases that energy Used to do biological work
  • 21. Energy Flow Through Ecosystem Sun Plants Primary producers Herbivores Primary consumers Carnivores Secondary consumers Decomposers Energy lost as heat to environment
  • 22. Flow of Energy From One Trophic Level to the Next is Inefficient Only about 10% of energy captured by plants is passed on to primary consumers About 10% of energy captured by primary consumers is passed on to secondary consumers
  • 25. Forests In terrestrial ecosystems you see lots of plants. Forests are full of trees….
  • 26. Prairies Prairies have lots of grasses.
  • 27. Deserts You can even see lots of plants in the desert.
  • 28. Coral Reef Video Schooling Fish http://www.underseaproductions.com/demo_reels/schooling_fish_video_footage.html
  • 29. Coral Reef Video http://www.underseaproductions.com/demo_reels/seascapes_video_footage.html How many plants do you see on this video?
  • 30. Coral Reefs Do not see many aquatic plants (algae) on coral reefs Yet coral reefs are teeming with life and are one of the most diverse communities on the planet How can this be?????
  • 31. The Mystery of the “Inverted Energy Pyramid”
  • 32. Missing Primary Producers Two possibilities Maybe plants are photosynthesizing but the plant material is eaten by herbivores as fast as it is produced. - Therefore we don’t see a build up of plants
  • 33. Lots of Herbivores Living or Coral Reefs Parrotfish eat the algae living in corals by scraping off the outer layer using their very sharp teeth. They grind up the rocks, digest the algae, and poop out a lot of sand
  • 34. Biogenic Sand So remember, when you are taking a romantic stroll down the beach with your sweetie much of the sand you are walking on is parrotfish poop.
  • 35. Long-spined Urchin (Diademaantillarum) Long-spined urchins are important herbivores on coral reefs.
  • 36. Results of Overfishing and Diadema Die-off About 20 years ago a disease entered the Caribbean Sea through the Panama Canal. This disease killed almost 90 percent of the urchins. In some places, fishing by humans has reduced the number of herbivorous fishes. The loss of the fishes and the urchins has allowed algae to grow. Because algae grows so much faster than corals algae is able to outcompete the corals so many corals have been covered by algae.
  • 37. Missing Primary Producers In undisturbed reefs, primary productivity of algae is rapidly removed by the herbivores But calculations of rate of photosynthesis by algae was not enough to explain the energy and biomass at higher tropic levels
  • 38. Missing Primary Producers Not looking in the right place. Scientists (and the video we just saw) looked all over the coral reef for primary producers Needed to look “inside” of corals
  • 39. Symbiotic Zooxanthellae Little photosynthetic microorganisms called Zooxanthellae are found living inside of the coral polyps.
  • 40. CORAL REEFS - ZOOXANTHELLAE --- Are group of algae called dinoflagellates (also form red tides). Symbiodinium spp.) --- Are different colors; brown, green, yellow. --- Dinoflagellatesmutualistic with other groups; sea slugs, giant clams, tunicates. --- Can live outside host
  • 41. Mutualistic Relationship Between Corals Polyps and Zooxanthellae Mutualistic interaction Interaction between two species in which both species benefit.
  • 42. Green polyp tissue, red zooxanthellae Coral – Zooxanthellae Mutualism Zooxanthellae provide corals: Energy (photosynthesis products) and as a by-product ability to grow and reproduce fast enough to produce reefs. Zooxanthellae can provide up to 90% of a coral’s energy requirements Corals provide zooxanthellae with: Protection from predators via Cnidarian nematocysts. Removal of dissolved organic material from water column (to keep water clear) Waste products useful for algal photosynthesis (nitrogen and phosphorous) )
  • 43. Coral-Zooxanthellae Mutualism Explains one aspect of the distribution of coral reefs Coral Reefs are found Shallow water Near continents Tropical Eastern sides of continents
  • 45. Coral reefs limited to the “photic zone” Zooxanthellae require light for photosynthesis Corals limited to relatively shallow water
  • 46. Coral Reef Zonation There are consistent patterns of zonation on coral reefs with increasing depth Water absorbs light so there is less light as depth increases Thus, ability of zooxanthellae to provide corals with energy decreases with depth 46
  • 47. Coral Species Change Growth Form at Depth Plating in Star Coral (Monastrea) 47
  • 48. More Sponges and Fewer Corals at Greater Depths
  • 49. Mutualisms Important for the two participant species to be able to find each other How do they do this?
  • 50. Transmission of Zooxanthellae Maternally passed from parent to offspring -vertical transmission
  • 51. Coral Life Cycle Corals can reproduce sexually or asexually Zooxanthellae easily passed from parent to offspring in asexual reproduction Corals also reproduce sexually Egg and sperm Mothers can place zooxanthellae in eggs
  • 52. Sexual Reproduction in Corals Some species of corals release both eggs and sperm in the water Fertilization occurs in the water column Spawners Other species hold the eggs but release the sperm in the water Fertilization occurs in the Mom, later release larvae brooders Maternal transmission of zooxanthellae occurs more often in brooders than spawners
  • 53.
  • 54. Free-living Zooxanthellae enter new corals each generationThis is very important for some of the issues we will talk about later
  • 55. Benefits of Coral Reefs Fisheries
  • 56. Benefits of Coral Reefs Protect Shore
  • 57. Benefits of Coral Reefs Tourism
  • 58. Benefits of Coral Reefs Biodiversity
  • 59. Many Coral Reefs Are Threatened
  • 60. Decline of Caribbean Coral Reefs
  • 61. Threats to Coral Reefs Storm Damage
  • 62. Threats to Coral Reefs Crown of Thorns Starfish Occasionally, there are large population outbreaks of this big (and ugly) starfish. The starfish feeds on coral polyps and can kill large areas of coral reefs.
  • 63. What Causes Such Large Increases in Population Size of the Starfish? One theory is that collecting Tritons to sell their shells has reduced the population size of the most important predator of the starfish. Without any predators the population size of the starfish increases greatly.
  • 64. 63 Threats to Coral Reefs Siltation When the land is disturbed by building or farming soil erosion can cause silt to be carried into the ocean. When the silt covers the coral the polyps can not feed and the Zooxanthellae can not photosynthesize so the coral dies.
  • 65. Threats to Coral Reefs Algal Blooms The addition of nutrients to the ocean from fertilizer run off or human sewage can fertilize faster growth of algae. When the algae covers the coral it blocks the light to the Zooxanthellae.
  • 66. Threats to Coral Reefs Blast fishing In some places fishermen capture the fish by stunning them with explosions. Obviously, these explosions to a lot of damage to the reef. I heard blast fishing for the first time while diving in Malaysia last year!
  • 67. Threats to Coral Reefs Coral Bleaching
  • 70. Coral Bleaching Environmental stress puts a strain on the symbiotic relationship fresh water dilution sedimentation subaerial exposure solar irradiance temperature
  • 71. Coral Bleaching Fresh water dilution and sedimentation are local conditions so coral bleaching due to these factors is limited to certain small areas. Solar irradiance and especially temperature are stressors that cause coral bleaching on a global scale Potentially a much bigger problem
  • 72. Coral Bleaching Coral bleaching is occurring all over the world!
  • 73. Coral Bleaching Polyps can live for a while without the zooxanthellae, but growth rate is greatly reduced If stress is eliminated the zooxanthellae may return to the polyps and the coral recovers If stress continue for too long, then the polyps will die
  • 75. Temperature and Coral Bleaching Coral reefs are vulnerable to increased temperature, which causes corals to lose their symbiotic algae in a process called coral bleaching. Small increase in water temperature is enough to trigger bleaching Over the last 30 years, average ocean temperatures have increased 0.3 to 0.4 degrees Celsius. Mass coral bleaching episodes have increased dramatically over the last 2-3 decades.
  • 76. Temperature and Coral Bleaching El Nino events can change the pattern of ocean currents and bring warmer water to reefs 16 % of the world’s coral reefs experienced bleaching in 1997-1998 mortality approaching 90% in some places about half of damaged reefs have not recovered.
  • 77. Mechanisms of Coral Bleaching Not well understood Often talk about polyps “expelling zooxanthellae” This may or may not be an accurate word choice This discussion might benefit from a better knowledge of about theories of mutualisms
  • 78. Mechanisms of Coral Bleaching Zooxanthellae may be lost from polyps “unintentionally” Cell Adhesion Dysfunction High temperature shock could result in cell adhesion dysfunction between the cnidarianendodermal cells and the zooxanthellae cells. Cell adhesion dysfunction would cause the detachment and loss of zooxanthellae from the coral.
  • 79. Mutualisms Mutualisms are interactions between two species in which both species benefit Often think of species behaving altruistically Probably more complicated then that.
  • 80. Mutualisms Species are involved in mutualistic relationships because the benefits of interacting with the other species are larger than the costs of that interaction If something happens to alter the benefits and costs then species might “reconsider” whether or not they want to be involved in the relationship Whether or not they can do anything about it can vary from system to system
  • 81. Zooxanthellae may “choose” to leave the polyps Stressed corals may give provide zooxanthellae fewer nutrients for photosynthesis - less benefit to the mutualism If the fitness of algae living independently is greater than the fitness of algae living in polyps then the algae may “decide” to leave the polyp and exist independently.
  • 82. Polyps may “Expell” Zooxanthellae Coral polyps might “decide” to end the relationship with the zooxanthellae if The costs of hosting zooxanthellae increase The benefits received from the zooxanthellae decrease
  • 83. Polyps may “Expell” Zooxanthellae Stress might alter the physiology of the zooxanthellaeand cause them to release compounds that are harmful to polyps (perhaps free oxygen radicals) Polyps will release the zooxanthellae rather than suffer the effects of the toxins.
  • 84. Polyps may “Expell” Zooxanthellae Adaptation Mechanism If certain strains of zooxanthellae cannot function when stressed, the polyps expell these zooxanthellae to leave their tissues open to be recolonized by a different strain of zooxanthellaethat are better adapted to the current environment
  • 85. Coral Diseases Coral diseases are another threat to coral reefs Coral diseases were first identified in the 1970s and their prevalence has increased since then
  • 86. Black-band Disease Black-band disease is characterized by a blackish concentric or crescent-shaped band, 1 to 30 mm wide and up to 2 m long, that “consumes” live coral tissue as it passes over the colony surface, leaving behind bare skeleton.
  • 87. Black-band Disease The disease is caused primarily by a cyanobacteria sulfide-oxidizing bacteria, sulfur- reducing bacteria, other bacteria and nematodes, ciliate protozoans, flatworms and fungal filaments also are present. The photosynthetic pigments of the dominant cyanobacteria gives the band its maroon to black color
  • 88. Black-band Disease The dead skeleton will be attacked by boring algae, boring sponges, boring clams, and parrot fish which will gnaw away the skeleton remove about 1 cm per year. This means that in 100 years, a 1-meter high coral head will be completely consumed and converted to sediment.
  • 89. White-band Disease White-band disease was first identified in 1977 on reefs surrounding St. Croix. It is now known to occur throughout the Caribbean where it is believed to only affect staghorn and elkhorn corals. This disease is characterized by tissue that peels or sloughs off the coral skeleton in a uniform band, generally beginning at the base of the colony and working its way up to branch tips The band ranges from a few millimeters up to 10 cm wide, and tissue is lost at a rate of about 5 mm per day
  • 90. White-band Disease The cause of White-band Disease is unknown. unusual aggregates of rod-shaped bacteria were found in the tissue of corals affected by White-band Disease scientists have not determined the role of this microorganism
  • 91. White-band Disease Since the 1980s, Acroporacervicornis has been virtually eliminated from reef environments throughout the Caribbean. In the U.S. Virgin Islands, populations of Acroporapalmata declined from 85 percent cover to 5 percent within 10 years White-band disease currently is the only coral disease known to cause major changes in the composition and structure of reefs
  • 92. Yellow Blotch Disease Affects only star corals in the genus Montastraea and the brain coral Colpophyllianatans First identified in 1994 in the lower Florida Keys. It is now known to occur throughout the Caribbean
  • 93. Yellow Blotch Disease Yellow blotch disease begins as pale, circular blotches of translucent tissue or as a narrow band of pale tissue at the colony margin, with affected areas being surrounded by normal, fully pigmented tissue. As the disease progresses, the tissue first affected in the center of the patch dies, and exposed skeleton is colonized by algae . The area of affected tissue progressively radiates outward, slowly killing the coral.
  • 94. Yellow Blotch Disease The rate of tissue loss by corals afflicted with YBD averages 5 t 11 cm per year, which is less than that of other coral diseases. However, corals can be affected for many years, and the disease can affect multiple locations on a colony. Though the cause of Yellow Blotch Disease remains unknown
  • 95. Red-band Disease Red-band disease consists of a narrow band of filamentous cyanobacteria that advances slowly across the surface of a coral, killing living tissue as it progresses. Affects massive and plating stony corals, and also sea fans throughout the wider Caribbean. exposed skeletal surfaces are rapidly colonized by algae and other competing organisms.
  • 96. Sea Fan Aspergillosis Caused by the pathenogenic fungus Aspergillussydowii. 
  • 97. Why has the prevalence of coral diseases increased so much in the last 40 years? One theory is that anthropogenic stresses on the environment have made corals more susceptible to infection by coral diseases
  • 98. Dust Hypothesis Changes in global climate and land use in Africa resulted in severe droughts in the Sahara and Sahel of Africa starting in the 1970s.
  • 99. Dust Hypothesis Hundreds of millions of tons of African dust are transported annually from the Sahara and Sahel to the Caribbean and southeastern U.S. A similar dust system in Asia carries dust from the Gobi and TakliMakan deserts across Korea, Japan, and the northern Pacific to the Hawaiian Islands, the western U.S., and as far eastward as Europe.
  • 100. I’ve cleaned this dust off of boats in the Caribbean.
  • 101. Dust Hypothesis African and Asian dust air masses transport nutrients (iron, nitrates, other nutrients), pollutants, and viable microorganisms that may adversely affect human health and downwind ecosystems such as coral reefs.
  • 102. Dust Hypothesis- Mechanisms interfere with a coral's immune system, making it more susceptible to disease pathogens. induce pathogenicity in a microorganism in the reef environment. trigger a rapid increase in the number of pathogenic microorganisms. fuel macroalgae or phytoplankton growth has been shown for Red tides in the Gulf of Mexico directly deposit pathogenic microorganisms.
  • 103.
  • 104. Lots of topics for future research about the role of microbes in coral reef ecosystems