SlideShare una empresa de Scribd logo
1 de 31
CINEMATICA
 Luis Fernando Aguas
CINEMÁTICA (MRU)
CONCEPTO DE CINEMÁTICA
Estudia las propiedades geométricas de las
trayectorias que describen los cuerpos en
movimiento mecánico, independientemente
de la masa del cuerpo y de las fuerzas
aplicadas.
1 . SISTEMA DE REFERENCIA
Para describir y analizar el movimiento mecánico, es
necesario asociar al observador un sistema de coordenadas
cartesianas y un reloj (tiempo). A este conjunto se le
denomina sistema de referencia.
3. ELEMENTOS DEL MOVIMIENTO MECÁNICO
a) Móvil
Es el cuerpo que cambia de posición respecto de un
sistema de referencia. Si el cuerpo no cambia de posición,
se dice que está en reposo relativo.
b) Trayectoria
Es aquella línea continua que describe un móvil respecto de
un sistema de referencia. Es decir la trayectoria es relativa.
Si la trayectoria es una línea curva, el movimiento se llama
curvilíneo y si es una recta, rectilíneo.
c) Recorrido (e)
Es la longitud de la trayectoria entre dos puntos (A y B).
d) Desplazamiento (d)
Es aquella magnitud vectorial que se define como el cambio
  de posición que experimenta un cuerpo. Se consigue
  uniendo la posición inicial con la posición final. Es
  independiente de la trayectoria que sigue el móvil.
e) Distancia (d)
Es aquella magnitud escalar que se define como el módulo
  del vector desplazamiento. Se cumple que:
4. MEDIDA DEL MOVIMIENTO
a) Velocidad media (Vm)
Es aquella magnitud física vectorial, que mide la rapidez del
cambio de posición que experimenta el móvil respecto de un
sistema de referencia. Se define como la relación entre el
vector desplazamiento y el intervalo de tiempo
correspondiente.
EJEMPLO:
Una mosca se traslada de la posición A (2;2) a la posición
B(5; 6) en 0,02 segundo, siguiendo la trayectoria mostrada.
Determinar la velocidad media entre A y B.
b) Rapidez Lineal (RL)
Es aquella magnitud física escalar que mide la rapidez del
cambio de posición en función del recorrido. Se define como
la relación entre el recorrido (e) y el intervalo de tiempo
correspondiente.
5. MOVIMIENTO RECTILÍNEO
El móvil describe una trayectoria rectilínea respecto de un
sistema de referencia.




 En esta forma de movimiento, la distancia y el recorrido
 tienen el mismo módulo, en consecuencia el módulo de
 la velocidad media y la rapidez lineal tienen el mismo
 valor.
6. MOVIMIENTO RECTILÍNEO UNIFORME (M.R.U.)
Es aquel tipo de movimiento que tiene como trayectoria una
línea recta, sobre el cual el móvil recorre distancias iguales
en tiempos iguales. Se caracteriza por mantener su velocidad
media constante en módulo, dirección y sentido, durante su
movimiento.
a) Velocidad (V)
Es aquella magnitud física vectorial que mide la
rapidez del cambio de posición respecto de un
sistema de referencia. En consecuencia la velocidad
tiene tres elementos: módulo, dirección y sentido. Al
módulo de la velocidad también se le llama
RAPIDEZ.
b) Desplazamiento (d)
El desplazamiento que experimenta el móvil es directamente
proporcional al tiempo transcurrido.
c) Tiempo de encuentro (Te)
Si dos móviles inician su movimiento simultáneamente en
sentidos opuestos, el tiempo de encuentro es:




d) Tiempo de alcance (Ta)
Si dos móviles inician su movimiento simultáneamente en
el mismo sentido, el tiempo de alcance es:
CINEMÁTICA (MRUV)
¿QUÉ   ES  EL   MOVIMIENTO                  RECTILÍNEO
UNIFORMEMENTE VARIADO?
Es un movimiento mecánico que experimenta un móvil donde
la trayectoria es rectilínea y la aceleración es constante.


¿QUÉ ES LA ACELERACIÓN?
Es una magnitud vectorial que nos permite
determinar la rapidez con la que un móvil
cambia de velocidad.
EJEMPLO:
Un móvil comienza a moverse sobre una trayectoria
horizontal variando el módulo de su velocidad a razón de 4
m/s en cada 2 segundos. Hallar la aceleración.


RESOLUCIÓN:
POSICIÓN DE UNA PARTÍCULA PARA EL M.R.U.V.
La posición de una partícula, que se mueve en el eje “x” en el
instante “t” es.
ECUACIONES DEL M.R.U.V.
TIPOS DE MOVIMIENTO
I. ACELERADO
– El signo (+) es para un movimiento acelerado (aumento de
velocidad).




II. DESACELERADO
– EL signo (–) es para un movimiento desacelerado
(disminución de velocidad).
OBSERVACIÓN:
Números de Galileo




EJEMPLO:
Un móvil que parte del reposo con MRUV recorre en el primer
segundo una distancia de 5m. ¿Qué distancia recorre en el cuarto
segundo?
MOVIMIENTO RECTILÍNEO UNIFORME
Hemos expresado la posición x de un objeto como una función del
tiempo t indicando la función matemática que relacionaba a x y a t.
Luego se obtuvo su velocidad calculando la derivada de x con
respecto a t. Finalmente, se calculó la aceleración a de un objeto
derivando la velocidad con respecto al tiempo t. Un movimiento
rectilíneo uniforme es aquél en el cual la velocidad es constante,
por tanto, la aceleración es cero (la derivada de una constante es
cero).




La función desplazamiento es la integral de la función velocidad
que en este caso es constante v ( t ) = C, por tanto el
desplazamiento será x ( t ) = xo + v . t , donde x0 será la posición
inicial del móvil
MOVIMIENTO               RECTILÍNEO                     UNIFORMEMENTE
ACELERADO
Si un objeto se mueve con aceleración constante en una sola
dimensión ¿Existe alguna forma de ir de a a v y luego a x ?
Sí, por un proceso llamado integración. Dada la aceleración
podemos obtener la función velocidad integrando la
aceleración y dada la velocidad podemos obtener la función
desplazamiento integrando la velocidad.




La función velocidad es la integral de la aceleración a ( t ) = C
, por tanto la velocidad será v ( t ) = v0 + a . t . La función
desplazamiento es la integral deexpresión generaluna la por tanto:objeto en
                          Esta es la
                                      la velocidad, posición conun
                          el caso del movimiento en
                                                    de
                                                       dimensión
                                                                 de
                                                                    aceleración
                                constante, donde x0 es la posición inicial del objeto.
CAÍDA LIBRE
Si permitimos que un cuerpo caiga en vacío, de modo
que la resistencia del aire no afecte su movimiento,
encontraremos un hecho notable: todos los cuerpos
independientemente de su tamaño, forma o composición,
caen con la misma aceleración en la misma región vecina
a la superficie de la Tierra. Esta aceleración, denotada
por el símbolo g , se llama aceleración en caída libre
Si bien hablamos de cuerpos en caída, los cuerpos con
movimiento hacia arriba experimentan la misma
aceleración en magnitud y dirección. El valor exacto de la
aceleración en caída libre varía con la latitud y con la
altitud. Hay también variaciones significativas causadas
por diferencias en la densidad local de la corteza
terrestre, pero este no es el caso que vamos a estudiar
en esta sección.
Las ecuaciones vistas en la sección anterior para un
movimiento rectilíneo con aceleración constante pueden
ser aplicadas a la caída libre, con las siguientes
variaciones:
Establecemos la dirección de la caída libre como el eje Y y
tomamos como positiva la dirección hacia arriba.+

Reemplazamos en las ecuaciones de un movimiento
uniformemente acelerado a la aceleración por -g , puesto que
nuestra elección de la dirección positiva del eje Y es hacia
arriba, significa que la aceleración es negativa.
Reemplazamos en las ecuaciones de un movimiento
uniformemente acelerado a la aceleración por -g , puesto que
nuestra elección de la dirección positiva del eje Y es hacia
arriba, significa que la aceleración es negativa.

             En la gráfica podemos observar la dirección de los vectores aceleración
             y velocidad, de un objeto que ha sido lanzado hacia arriba con una
             velocidad inicial; en el primer instante (bola a la izquierda) notamos que
             el vector velocidad apunta hacia arriba, en el sentido positivo del eje Y,
             mientras el vector aceleración ( g ) tiene una dirección hacia abajo, en
             el sentido negativo del eje Y. En el segundo instante cuando el objeto
             cae (bola a la derecha) la dirección de la velocidad es hacia abajo en el
             mismo sentido del desplazamiento y el vector aceleración ( g ) mantiene
             su misma dirección, en el sentido negativo del eje Y.
Con estas variaciones las ecuaciones resultan ser:

a(t)=-g

v ( t ) = v0 - g
EJERCICIOS
1. (15) Dos coches partieron al mismo tiempo uno de “A” con dirección a
  “B” y el otro de “B” con dirección a “A”, cuando se encontraron había
  recorrido el primer coche 36 km más que el segundo. A partir del momento
  en que se encontraron. El primero tardó 1 hora en llegar a “B” y el
  segundo 4 horas en llegar a “A”. Hallar la distancia entre “A” y “B”.


        A
                                             etotal = 2x + 36
            1                           2B
                                             (I)
Durante         e1       1 2       e2        e2 = V2 x T2 = X
                                             e1 = V1 x T1 = X + 36
                X + 36         x
            2                           1
Final
                                             (II)
                                             e2 = V1 x T2 = (V1) (1h)
                                             e1 = V2 x T1 = (V2) (4h)
De la ecuación I
e2 = X = V2T
e1 = X + 36 = V1T        Cuando se encuentran T2 = T1 = T


V2 = X
     T
V1 = X + 36
        T
Reemplazando en las ecuaciones II
e2 = X = (V1) (1h) = (X + 36) (1)  X + 36 = X T  T= X + 36
                           T                                   X
e1 = X + 36 = (V2) (4h) = X (4)
                           T
Reemplazo III
X + 36 = ( X2 ) (4)  4 X 2 = (X + 36)2  (raíz) X = 36
            X + 36
                                = 108 m
etotal = 2 x + 36 = 2(36) + 36
2. (17) Un móvil parte del reposo con una aceleración constante de
     10/ms2, luego de transcurrir cierto tiempo, el móvil empieza a desacelerar
     en forma constante con a = 5 m/s2 hasta detenerse, si el tiempo total
     empleado es de 30 segundos. ¿Cuál es el espacio recorrido?.
V0           T1                         T2           Vf        Ttotal = 30 Seg

                  e1                    e2                     T 1 + T 2 = 30 Seg
                                                               X = e1 + e2
                                 X

  Para el primer                       Para el segundo         Como T1 + T2 = 30 ….. (a)
         tramo                              tramo
                                                               T1 + (2T1) = 30 … reemplazo II en a
Vf1 = V0 ± a T1                      Vf = Vi ± aT
                                                               3T1 = 30  T1=10
Vf1 = 0 + (10) T1                    Vf = Vf1 ± aT
                                                               T2 = 20
Vf1= 10 T1             (I)           0 = 10 T1 – (5) (T2) ….
                                     Reemplazo (I)             Se cumple:
                                     T2 = 2T1         (II)     e2 = (Vf1) (T2) – 1 (5) (T2) 2
e1 = (V0) (T1) + 1 (10) (T1)     2

                                                                             2
                             2
                                                               e2 = (10 T1) (T2) – 1 (5) (T2)2
e = 1 (10) (T )2
Sumando e2 y e2
e1 + e2 = 10 T1 T2 – ( 1 ) (5) T22 + 5T12
            2

X = 10 (10) (20) – ( 1 ) (5) (20)2 + (5) (10)2
      2
X = 1500 m

Más contenido relacionado

La actualidad más candente

Movimiento parabolico presentacion
Movimiento parabolico presentacionMovimiento parabolico presentacion
Movimiento parabolico presentacion
Omar Mora Diaz
 
Fisica movimeinto parabolico
Fisica movimeinto parabolicoFisica movimeinto parabolico
Fisica movimeinto parabolico
Johnny Alex
 
Dinámica rotacional
Dinámica rotacionalDinámica rotacional
Dinámica rotacional
Freddy Moya
 

La actualidad más candente (20)

Movimiento Unidimensional (Cinemática)
Movimiento Unidimensional (Cinemática)Movimiento Unidimensional (Cinemática)
Movimiento Unidimensional (Cinemática)
 
Movimiento parabolico presentacion
Movimiento parabolico presentacionMovimiento parabolico presentacion
Movimiento parabolico presentacion
 
Fisica movimeinto parabolico
Fisica movimeinto parabolicoFisica movimeinto parabolico
Fisica movimeinto parabolico
 
Movimiento parabólico y circular
Movimiento parabólico y circularMovimiento parabólico y circular
Movimiento parabólico y circular
 
Movimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
 
Trabajo final de fisica i
Trabajo final de fisica iTrabajo final de fisica i
Trabajo final de fisica i
 
Unidad iii. movimiento en dos y tres dimensiones
Unidad iii. movimiento en dos y tres dimensionesUnidad iii. movimiento en dos y tres dimensiones
Unidad iii. movimiento en dos y tres dimensiones
 
Caída libre y tiro vertical, Tiro parabólico (horizontal y oblicuo)
Caída libre y tiro vertical, Tiro parabólico (horizontal y oblicuo)Caída libre y tiro vertical, Tiro parabólico (horizontal y oblicuo)
Caída libre y tiro vertical, Tiro parabólico (horizontal y oblicuo)
 
GUIA EJERCICIOS RESUELTOS FISICA 113 DINAMICA UTEM
GUIA EJERCICIOS RESUELTOS FISICA 113 DINAMICA UTEMGUIA EJERCICIOS RESUELTOS FISICA 113 DINAMICA UTEM
GUIA EJERCICIOS RESUELTOS FISICA 113 DINAMICA UTEM
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Ejer resueltos de fisika ultima hoja
Ejer resueltos de fisika ultima hojaEjer resueltos de fisika ultima hoja
Ejer resueltos de fisika ultima hoja
 
unidad 10.- caída libre y tiro vertical
unidad 10.- caída libre y tiro verticalunidad 10.- caída libre y tiro vertical
unidad 10.- caída libre y tiro vertical
 
Problemas resueltos-caida-libre
Problemas resueltos-caida-libreProblemas resueltos-caida-libre
Problemas resueltos-caida-libre
 
Movimiento parabólico
Movimiento parabólicoMovimiento parabólico
Movimiento parabólico
 
Preguntas conceptuales geancoli
Preguntas conceptuales geancoliPreguntas conceptuales geancoli
Preguntas conceptuales geancoli
 
Ejercicios Resueltos (movimiento con aceleración constante)
Ejercicios Resueltos (movimiento con aceleración constante)Ejercicios Resueltos (movimiento con aceleración constante)
Ejercicios Resueltos (movimiento con aceleración constante)
 
Pendulo fisico y torsion
Pendulo fisico y torsionPendulo fisico y torsion
Pendulo fisico y torsion
 
Rapidez, velocidad y aceleracion
Rapidez, velocidad y aceleracionRapidez, velocidad y aceleracion
Rapidez, velocidad y aceleracion
 
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
 
Dinámica rotacional
Dinámica rotacionalDinámica rotacional
Dinámica rotacional
 

Similar a MRUV

Cinematica
CinematicaCinematica
Cinematica
jec1828
 
1 Notas Mov Rec Unif
1 Notas  Mov Rec Unif1 Notas  Mov Rec Unif
1 Notas Mov Rec Unif
Laura
 
Tipos de movimiento y sus causas
Tipos de movimiento y sus causasTipos de movimiento y sus causas
Tipos de movimiento y sus causas
CETI
 
Tema 5. cinemática del punto material
Tema 5. cinemática del punto materialTema 5. cinemática del punto material
Tema 5. cinemática del punto material
Loli Méndez
 
Nivelación física primer periodo
Nivelación física primer periodoNivelación física primer periodo
Nivelación física primer periodo
nasoraca1
 
Nivelación física primer periodo
Nivelación física primer periodoNivelación física primer periodo
Nivelación física primer periodo
nasoraca1
 

Similar a MRUV (20)

EK INTERESANTE MUNDO DE LA MECANICA DE cinematica.ppt
EK INTERESANTE MUNDO DE LA MECANICA DE cinematica.pptEK INTERESANTE MUNDO DE LA MECANICA DE cinematica.ppt
EK INTERESANTE MUNDO DE LA MECANICA DE cinematica.ppt
 
cinematica
cinematicacinematica
cinematica
 
Cinematica
CinematicaCinematica
Cinematica
 
Grupo #1 tercera-cinematica
Grupo #1 tercera-cinematicaGrupo #1 tercera-cinematica
Grupo #1 tercera-cinematica
 
02 guia 02 fisica 9no grado
02 guia 02 fisica 9no grado02 guia 02 fisica 9no grado
02 guia 02 fisica 9no grado
 
Cinematica
CinematicaCinematica
Cinematica
 
Mru y uniformemente acelerado
Mru y uniformemente aceleradoMru y uniformemente acelerado
Mru y uniformemente acelerado
 
Mru y uniformemente acelerado
Mru y uniformemente aceleradoMru y uniformemente acelerado
Mru y uniformemente acelerado
 
Mru y uniformemente acelerado
Mru y uniformemente aceleradoMru y uniformemente acelerado
Mru y uniformemente acelerado
 
Cinematica
CinematicaCinematica
Cinematica
 
Contenido unidad ii
Contenido unidad iiContenido unidad ii
Contenido unidad ii
 
CAP-4 CINEMATICA DEL MOVIMIENTO RECTILINEO.pdf
CAP-4 CINEMATICA DEL MOVIMIENTO RECTILINEO.pdfCAP-4 CINEMATICA DEL MOVIMIENTO RECTILINEO.pdf
CAP-4 CINEMATICA DEL MOVIMIENTO RECTILINEO.pdf
 
El movimiento teoría
El movimiento teoríaEl movimiento teoría
El movimiento teoría
 
Mru listo
Mru listoMru listo
Mru listo
 
Cinematica
CinematicaCinematica
Cinematica
 
1 Notas Mov Rec Unif
1 Notas  Mov Rec Unif1 Notas  Mov Rec Unif
1 Notas Mov Rec Unif
 
Tipos de movimiento y sus causas
Tipos de movimiento y sus causasTipos de movimiento y sus causas
Tipos de movimiento y sus causas
 
Tema 5. cinemática del punto material
Tema 5. cinemática del punto materialTema 5. cinemática del punto material
Tema 5. cinemática del punto material
 
Nivelación física primer periodo
Nivelación física primer periodoNivelación física primer periodo
Nivelación física primer periodo
 
Nivelación física primer periodo
Nivelación física primer periodoNivelación física primer periodo
Nivelación física primer periodo
 

Más de Luis Fernando Aguas Bucheli (20)

EFC-ISW-Luis Fernando Aguas.pptx
EFC-ISW-Luis Fernando Aguas.pptxEFC-ISW-Luis Fernando Aguas.pptx
EFC-ISW-Luis Fernando Aguas.pptx
 
P-S2.pptx
P-S2.pptxP-S2.pptx
P-S2.pptx
 
EBTS-S1.pptx
EBTS-S1.pptxEBTS-S1.pptx
EBTS-S1.pptx
 
P-S3.pptx
P-S3.pptxP-S3.pptx
P-S3.pptx
 
EBTS-S4.pptx
EBTS-S4.pptxEBTS-S4.pptx
EBTS-S4.pptx
 
P-S4.pptx
P-S4.pptxP-S4.pptx
P-S4.pptx
 
P-S1.pptx
P-S1.pptxP-S1.pptx
P-S1.pptx
 
EBTS-S3.pptx
EBTS-S3.pptxEBTS-S3.pptx
EBTS-S3.pptx
 
EBTS-S2.pptx
EBTS-S2.pptxEBTS-S2.pptx
EBTS-S2.pptx
 
PDIDTI-S7.pptx
PDIDTI-S7.pptxPDIDTI-S7.pptx
PDIDTI-S7.pptx
 
PDIDTI-S4.pptx
PDIDTI-S4.pptxPDIDTI-S4.pptx
PDIDTI-S4.pptx
 
PDIDTI-S2.pptx
PDIDTI-S2.pptxPDIDTI-S2.pptx
PDIDTI-S2.pptx
 
PDIDTI-S1.pptx
PDIDTI-S1.pptxPDIDTI-S1.pptx
PDIDTI-S1.pptx
 
PDIDTI-S8.pptx
PDIDTI-S8.pptxPDIDTI-S8.pptx
PDIDTI-S8.pptx
 
PDIDTI-S6.pptx
PDIDTI-S6.pptxPDIDTI-S6.pptx
PDIDTI-S6.pptx
 
PDIDTI-S5.pptx
PDIDTI-S5.pptxPDIDTI-S5.pptx
PDIDTI-S5.pptx
 
PDIDTI-S3.pptx
PDIDTI-S3.pptxPDIDTI-S3.pptx
PDIDTI-S3.pptx
 
TIC-S4.pptx
TIC-S4.pptxTIC-S4.pptx
TIC-S4.pptx
 
TIC-S3.pptx
TIC-S3.pptxTIC-S3.pptx
TIC-S3.pptx
 
TIC-S2.pptx
TIC-S2.pptxTIC-S2.pptx
TIC-S2.pptx
 

Último

Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
AnnimoUno1
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
FagnerLisboa3
 

Último (15)

guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdf
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
 
presentacion de PowerPoint de la fuente de poder.pptx
presentacion de PowerPoint de la fuente de poder.pptxpresentacion de PowerPoint de la fuente de poder.pptx
presentacion de PowerPoint de la fuente de poder.pptx
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
Presentación de elementos de afilado con esmeril
Presentación de elementos de afilado con esmerilPresentación de elementos de afilado con esmeril
Presentación de elementos de afilado con esmeril
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 

MRUV

  • 3. CONCEPTO DE CINEMÁTICA Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y de las fuerzas aplicadas. 1 . SISTEMA DE REFERENCIA Para describir y analizar el movimiento mecánico, es necesario asociar al observador un sistema de coordenadas cartesianas y un reloj (tiempo). A este conjunto se le denomina sistema de referencia.
  • 4. 3. ELEMENTOS DEL MOVIMIENTO MECÁNICO a) Móvil Es el cuerpo que cambia de posición respecto de un sistema de referencia. Si el cuerpo no cambia de posición, se dice que está en reposo relativo. b) Trayectoria Es aquella línea continua que describe un móvil respecto de un sistema de referencia. Es decir la trayectoria es relativa. Si la trayectoria es una línea curva, el movimiento se llama curvilíneo y si es una recta, rectilíneo.
  • 5. c) Recorrido (e) Es la longitud de la trayectoria entre dos puntos (A y B). d) Desplazamiento (d) Es aquella magnitud vectorial que se define como el cambio de posición que experimenta un cuerpo. Se consigue uniendo la posición inicial con la posición final. Es independiente de la trayectoria que sigue el móvil. e) Distancia (d) Es aquella magnitud escalar que se define como el módulo del vector desplazamiento. Se cumple que:
  • 6. 4. MEDIDA DEL MOVIMIENTO a) Velocidad media (Vm) Es aquella magnitud física vectorial, que mide la rapidez del cambio de posición que experimenta el móvil respecto de un sistema de referencia. Se define como la relación entre el vector desplazamiento y el intervalo de tiempo correspondiente.
  • 7. EJEMPLO: Una mosca se traslada de la posición A (2;2) a la posición B(5; 6) en 0,02 segundo, siguiendo la trayectoria mostrada. Determinar la velocidad media entre A y B.
  • 8. b) Rapidez Lineal (RL) Es aquella magnitud física escalar que mide la rapidez del cambio de posición en función del recorrido. Se define como la relación entre el recorrido (e) y el intervalo de tiempo correspondiente.
  • 9.
  • 10. 5. MOVIMIENTO RECTILÍNEO El móvil describe una trayectoria rectilínea respecto de un sistema de referencia. En esta forma de movimiento, la distancia y el recorrido tienen el mismo módulo, en consecuencia el módulo de la velocidad media y la rapidez lineal tienen el mismo valor.
  • 11. 6. MOVIMIENTO RECTILÍNEO UNIFORME (M.R.U.) Es aquel tipo de movimiento que tiene como trayectoria una línea recta, sobre el cual el móvil recorre distancias iguales en tiempos iguales. Se caracteriza por mantener su velocidad media constante en módulo, dirección y sentido, durante su movimiento.
  • 12. a) Velocidad (V) Es aquella magnitud física vectorial que mide la rapidez del cambio de posición respecto de un sistema de referencia. En consecuencia la velocidad tiene tres elementos: módulo, dirección y sentido. Al módulo de la velocidad también se le llama RAPIDEZ.
  • 13. b) Desplazamiento (d) El desplazamiento que experimenta el móvil es directamente proporcional al tiempo transcurrido.
  • 14. c) Tiempo de encuentro (Te) Si dos móviles inician su movimiento simultáneamente en sentidos opuestos, el tiempo de encuentro es: d) Tiempo de alcance (Ta) Si dos móviles inician su movimiento simultáneamente en el mismo sentido, el tiempo de alcance es:
  • 16. ¿QUÉ ES EL MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VARIADO? Es un movimiento mecánico que experimenta un móvil donde la trayectoria es rectilínea y la aceleración es constante. ¿QUÉ ES LA ACELERACIÓN? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad.
  • 17. EJEMPLO: Un móvil comienza a moverse sobre una trayectoria horizontal variando el módulo de su velocidad a razón de 4 m/s en cada 2 segundos. Hallar la aceleración. RESOLUCIÓN:
  • 18. POSICIÓN DE UNA PARTÍCULA PARA EL M.R.U.V. La posición de una partícula, que se mueve en el eje “x” en el instante “t” es.
  • 20. TIPOS DE MOVIMIENTO I. ACELERADO – El signo (+) es para un movimiento acelerado (aumento de velocidad). II. DESACELERADO – EL signo (–) es para un movimiento desacelerado (disminución de velocidad).
  • 21. OBSERVACIÓN: Números de Galileo EJEMPLO: Un móvil que parte del reposo con MRUV recorre en el primer segundo una distancia de 5m. ¿Qué distancia recorre en el cuarto segundo?
  • 22. MOVIMIENTO RECTILÍNEO UNIFORME Hemos expresado la posición x de un objeto como una función del tiempo t indicando la función matemática que relacionaba a x y a t. Luego se obtuvo su velocidad calculando la derivada de x con respecto a t. Finalmente, se calculó la aceleración a de un objeto derivando la velocidad con respecto al tiempo t. Un movimiento rectilíneo uniforme es aquél en el cual la velocidad es constante, por tanto, la aceleración es cero (la derivada de una constante es cero). La función desplazamiento es la integral de la función velocidad que en este caso es constante v ( t ) = C, por tanto el desplazamiento será x ( t ) = xo + v . t , donde x0 será la posición inicial del móvil
  • 23. MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Si un objeto se mueve con aceleración constante en una sola dimensión ¿Existe alguna forma de ir de a a v y luego a x ? Sí, por un proceso llamado integración. Dada la aceleración podemos obtener la función velocidad integrando la aceleración y dada la velocidad podemos obtener la función desplazamiento integrando la velocidad. La función velocidad es la integral de la aceleración a ( t ) = C , por tanto la velocidad será v ( t ) = v0 + a . t . La función desplazamiento es la integral deexpresión generaluna la por tanto:objeto en Esta es la la velocidad, posición conun el caso del movimiento en de dimensión de aceleración constante, donde x0 es la posición inicial del objeto.
  • 24. CAÍDA LIBRE Si permitimos que un cuerpo caiga en vacío, de modo que la resistencia del aire no afecte su movimiento, encontraremos un hecho notable: todos los cuerpos independientemente de su tamaño, forma o composición, caen con la misma aceleración en la misma región vecina a la superficie de la Tierra. Esta aceleración, denotada por el símbolo g , se llama aceleración en caída libre Si bien hablamos de cuerpos en caída, los cuerpos con movimiento hacia arriba experimentan la misma aceleración en magnitud y dirección. El valor exacto de la aceleración en caída libre varía con la latitud y con la altitud. Hay también variaciones significativas causadas por diferencias en la densidad local de la corteza terrestre, pero este no es el caso que vamos a estudiar en esta sección. Las ecuaciones vistas en la sección anterior para un movimiento rectilíneo con aceleración constante pueden ser aplicadas a la caída libre, con las siguientes variaciones:
  • 25. Establecemos la dirección de la caída libre como el eje Y y tomamos como positiva la dirección hacia arriba.+ Reemplazamos en las ecuaciones de un movimiento uniformemente acelerado a la aceleración por -g , puesto que nuestra elección de la dirección positiva del eje Y es hacia arriba, significa que la aceleración es negativa. Reemplazamos en las ecuaciones de un movimiento uniformemente acelerado a la aceleración por -g , puesto que nuestra elección de la dirección positiva del eje Y es hacia arriba, significa que la aceleración es negativa. En la gráfica podemos observar la dirección de los vectores aceleración y velocidad, de un objeto que ha sido lanzado hacia arriba con una velocidad inicial; en el primer instante (bola a la izquierda) notamos que el vector velocidad apunta hacia arriba, en el sentido positivo del eje Y, mientras el vector aceleración ( g ) tiene una dirección hacia abajo, en el sentido negativo del eje Y. En el segundo instante cuando el objeto cae (bola a la derecha) la dirección de la velocidad es hacia abajo en el mismo sentido del desplazamiento y el vector aceleración ( g ) mantiene su misma dirección, en el sentido negativo del eje Y.
  • 26. Con estas variaciones las ecuaciones resultan ser: a(t)=-g v ( t ) = v0 - g
  • 28. 1. (15) Dos coches partieron al mismo tiempo uno de “A” con dirección a “B” y el otro de “B” con dirección a “A”, cuando se encontraron había recorrido el primer coche 36 km más que el segundo. A partir del momento en que se encontraron. El primero tardó 1 hora en llegar a “B” y el segundo 4 horas en llegar a “A”. Hallar la distancia entre “A” y “B”. A etotal = 2x + 36 1 2B (I) Durante e1 1 2 e2 e2 = V2 x T2 = X e1 = V1 x T1 = X + 36 X + 36 x 2 1 Final (II) e2 = V1 x T2 = (V1) (1h) e1 = V2 x T1 = (V2) (4h)
  • 29. De la ecuación I e2 = X = V2T e1 = X + 36 = V1T Cuando se encuentran T2 = T1 = T V2 = X T V1 = X + 36 T Reemplazando en las ecuaciones II e2 = X = (V1) (1h) = (X + 36) (1)  X + 36 = X T  T= X + 36 T X e1 = X + 36 = (V2) (4h) = X (4) T Reemplazo III X + 36 = ( X2 ) (4)  4 X 2 = (X + 36)2  (raíz) X = 36 X + 36 = 108 m etotal = 2 x + 36 = 2(36) + 36
  • 30. 2. (17) Un móvil parte del reposo con una aceleración constante de 10/ms2, luego de transcurrir cierto tiempo, el móvil empieza a desacelerar en forma constante con a = 5 m/s2 hasta detenerse, si el tiempo total empleado es de 30 segundos. ¿Cuál es el espacio recorrido?. V0 T1 T2 Vf Ttotal = 30 Seg e1 e2 T 1 + T 2 = 30 Seg X = e1 + e2 X Para el primer Para el segundo Como T1 + T2 = 30 ….. (a) tramo tramo T1 + (2T1) = 30 … reemplazo II en a Vf1 = V0 ± a T1 Vf = Vi ± aT 3T1 = 30  T1=10 Vf1 = 0 + (10) T1 Vf = Vf1 ± aT T2 = 20 Vf1= 10 T1 (I) 0 = 10 T1 – (5) (T2) …. Reemplazo (I) Se cumple: T2 = 2T1 (II) e2 = (Vf1) (T2) – 1 (5) (T2) 2 e1 = (V0) (T1) + 1 (10) (T1) 2 2 2 e2 = (10 T1) (T2) – 1 (5) (T2)2 e = 1 (10) (T )2
  • 31. Sumando e2 y e2 e1 + e2 = 10 T1 T2 – ( 1 ) (5) T22 + 5T12 2 X = 10 (10) (20) – ( 1 ) (5) (20)2 + (5) (10)2 2 X = 1500 m