SlideShare ist ein Scribd-Unternehmen logo
1 von 22
Physiologic Tooth Movement: Eruption and Shedding


TOOTH ERUPTION
        The jaws of an infant can only accommodate a few small teeth. Since teeth, once formed
cannot increase in size, the larger jaws of an adult require not only more but bigger teeth. This
accommodation is accomplished in humans by having two dentitions. The first is known as the
deciduous teeth (primary teeth), and the second is the permanent teeth (secondary teeth).


        The early development of teeth develops within the tissues of the jaw thus for teeth to
become functional, considerable movement is required to bring them into the occlusal plane.
The movements teeth make are complex and may be described as:
        1. Preeruptive tooth movement. Made by deciduous and permanent tooth germs within
           tissues of the jaw before they begin to erupt
        2. Eruptive tooth movement. Made by a tooth to move from its position within the bone
           of the jaw to its functional position in the occlusion
        3. Posteruptive tooth movement. Maintaining the osition of the erupted tooth in
           occlusion while the jaw continues to grow and compensate for occlusal and proximal
           tooth wear.


TOOTH MOVEMENT
   I.   Preeruptive Tooth Movement
           When the deciduous tooth germs first differentiate, they are extremely small and
there is a good deal of space for them in the developing jaw. Because they grow rapidly,
however, they become crowded together. The crowding Is gradually alleviated by a lengthening
of the jaws which permits the deciduous second molar tooth germs to move backward and
anterior germs to move forward. At the same time the tooth germs are moving bodily outward
and upward with the increasing length as well as width and height of the jaws.


           The origin of the successional permanent teeth develops on the lingual aspect of
their deciduoud predecessors, in the same bony crypt. From this position they shift considerably
as the jaws develop. The successional anterior teeth eventually come to occupy on the lingual
of the roots of their deciduous teeth and the posterior premolar tooth gers are finally positioned
between the divergent roots of the deciduous molars.
The permanent molar tooth germs without predecessors develop from the backward
extension of the dental lamina. At first there is a litter room in the jaws to accommodate these
tooth germs so that in the upper jaw the molar tooth germs develop first with their oclusal
surfaces facing distally and swinginto position only when the maxilla has grown sufficiently to
provide room for such movement. It is almost the same with the permanent molars in the
mandible but instead of a distal inclination, there is a mesial inclination prior to the development
of the jaw.


              Analysis has shown that these preeruptive movement of teeth are a combination of
two factors: total bodily movement and growth in which one part of the tooth germ remains fixed
while the rest continues to grow.


    II. Eruptive Tooth Movement
              During the phase of eruptive tooth movement the tooth moves from its position within
the bone of the jaw to its functional position in occlusion, and the principal direction of
movement is occlusal or axial.The mechanisms of eruption for deciduous and permanent teeth
are similar, resulting in axial or occlusal movement of the tooth from its developmental position
within the jaw to its final functional position in the occlusal plane.


        A. Eruptive Phase (Prefunctional Phase)
              Begins when the root starts to form and ends when the tooth reaches the occlusal
plane. The PDL develops only after root formation has been initiated; once established, the PDL
must be remodeled to accommodate continued eruptive tooth movement. Tooth germ
undergoes intraosseous stage and supraosseous stage.During the intraosseous stage, the
tooth moves out of its bony crypt to pierce the gingival. During the supraosseous stage, the
tooth moves into its final occlusal plane.
A specialized feature associated with the erupting permanent tooth is the presence
of a gubernacular canal. This canal occurs where the roof of the alveolar crypt of the permanent
tooth is not complete. The canal enables the dental follicle of the tooth germ to communicate
with, and be attached to, the overlying oral mucosa. The gubernacular canal contains the
gubernacular cord, composed of a central strand of epithelium derived from dental lamina. As
the successional tooth erupts, its gubernacular canal is widened rapidly by local osteoclastic
activity, delineating the eruptive pathway for the tooth.
Reduced enamel epithelium unites with the oral epithelium. It will migrate occlusally
or incisally until surface is reached, preventing the gingiva to bleed during the crown eruption.
The crown breaks the double layer epithelium overlying it and enters the oral cavity.




           The rate of eruption depends on the phase of movement.When the erupting tooth
appears in the oral cavity, it is subjected to environmental factors that help determine its final
position in the dental arch. Muscle forces from the tongue, cheeks and lips play on the tooth, as
do the forces of contact of the erupting tooth with other erupted teeth. A sustained muscular
force of only 4 to 5 grams is sufficient to move a tooth. The childhood habit of thumb-sucking is
an obvious example of environmental destruction of tooth position.


        B. Functional Phase
            - Begins when the tooth reaches the occlusal plane and continues its functions as
long as the tooth remains in the oral cavity. As the teeth meet their antagonists, the bone is
stimulated and the periodontal ligament strengthens. There is a continuous vertical eruption
mesially and occlusally but the process may decrease because it is supposed by their
antagonist teeth.
            -




        Mechanisms of Tooth Movement Currently Favored
                These mechanisms are still debatable and are likely to be a combination of a
number of factors. Eruptive mechanisms are not understood fully yet, and most reviews on this
subject have concluded that eruption is a multifactorial process in which cause and effect are
difficult to separate.


            1. Root Formation
                The root growth theory supposes that the proliferating root impinges on a fixed
case, thus converting an apically directed force of the tooth into occlusal movement. Root
formation should be an obvious cause of tooth eruption because it causes an overall increase in
the length of the tooth. But it produces enough forces that lead to the resorption of the bone.
Rootless tooth still erupts. Some teeth erupt more than the total length of the roots. And the
teeth still erupt after the complete formation of the root. Therefore root formation is
accommodated during tooth eruption and is a consequence, not a cause, of the eruption
process.


       Hammock Ligament Theory
               According to Sicher, a band of fibrous tissue exists below the root apex spanning
from one side of alveolar wall to another. This fibrous tissue appears to form a network below
the developing root and is rich in fluid droplets. The developing root forces itself against this
band of tissue, which in turn applies an oclusally directed force on tooth.


           2. Bone Remodeling
               Bone remodeling theory supposes that selective formation and resorption of
bone brings about eruption.The bone at the base of the socket cannot act as a fixed base
because pressure on bone results in its resorption.


           3. Periodontal Ligament
               The ligament traction theory supposes that cells and fibers of the ligament push
the tooth into occlusion.PDL is rich in fibroblasts that contain contractile tissue. The contraction
of these PDL fibers mainly the oblique group of fibers result in axial movement of the teeth.


           4. Vascular Pressure
               The vascular pressure theory supposes that a local increase in tissue fluid
pressure in the periapical region is sufficient to move the tooth.The tissue around the developing
end of the root is highly vascular. This vascular pressure is believed to cause the axial
movement of the teeth.It is known that teeth move in synchrony with the arterial pulse, so local
volume changes can produce limited tooth movement.


  III. Post Eruptive phase
               Posteruptive tooth movements are those made by the tooth after it ahs reached
its functional position in the occlusal plane. It includes three categories: (1) movements to
accommodate the growing jaws, (2) those to compensate for continued occlusal wear, (3) those
to accommodate interproximal wear.
1. Accommodation of Growth
               Accommodating the growth of the jaws are completed toward the end of the
second decade, when jaw growth ceases. Readjustment of the position of the tooth socket is
achieved by the formation of new bone at the alveolar crest and on the socket floor to keep
pace with the increasing height of the jaws. This readjustment usually occurs between the ages
14 to 18 years, when active movement of the tooth takes place. The apices of the teeth move 2
to 3 mm away from the inferior dental canal. This occurs earlier in girls than in boys and is
related to the bust of the condylar growth that separates the jaws and the teeth.


       2. Compensation for Occlusal Wear
               This is achieved by the continued cementum deposition around the apex of the
tooth; however, the deposition of cementum in this location occurs only after the tooth has
moved. This emphasizes the role of the periodontal ligament. Axial movement that a tooth
makes in most likely achieved by the same mechanism as eruptive tooth movement.


       3. Accomodation for Interproximal Wear
               Wear also occurs at the contact points between teeth, on their proximal surfaces
and its extent can be considerable (more than 7 mm in the mandible). Mesial or approximal
drifting compensates for the interproximal wear.


               This is important in the practice of Orthodontics because the maintenance of
tooth position after treatment depends on the extent of such drift. Mesial drift is multifactorial
and include: (A) anterior component of occlusal force, (B) contraction of the transseptal ligament
between teeth and (C) soft tissue pressure.


           A. Anterior component of occlusal force
               When teeth are brought into contact, like during clenching of the jaws, and
anteriorly directed force is generated.It is the result of the mesial inclination of most teeth and
the summation of intercuspal planes.When cusps are selectively ground, the direction of
occlusal force can be enhanced or reversed


               When opposing teeth were removed, thereby eliminating the biting force, the
mesial migration of the teeth was slowed but not halted.
B. Contraction of the Transseptal Ligament between Teeth
               The Peridontal ligament plays an important role in maintaining tooth position.
Transseptial fibers draw neighboring teeth together and mainten them in contact; there are also
capable of adaptation.For example, relapse of orthodontically removed teeth is reduced if a
gingivectomy removing the transseptal ligament is performed.


*Grinding away of proximal contacts provides room for a tooth to move, after which teeth move
to reestablish contact.


           C. Soft Tissue Pressures
               The pressures generated by the cheeks and tongue may push teeth mesially.Soft
tissue pressure does influence tooth position even if it does not cause tooth movement. It does
not play a major role in creating mesial drift.


CAUSES OF TOOTH ERUPTION (THEORIES)
   1. Growth of Root
       Root formation undoubtfully causes an overall increase in the length of the tooth that
must be accommodated by the growth of the root into the bone of the jaw, by an increase in jaw
height or by the occlusal movement of the crown.         Root growth produces a force that is
sufficient to produce bone resorption. Pressure applied to bone normally result in the removal
of osteoclasts. Though root formation can produce a force, it cannot translate into eruptive
tooth movement unless some structure exists at the base of the tooth capable of withstanding
this force. Since this structure does not exist, some other mechanisms must move the tooth to
accommodate root growth.


       The Root Growth theory supposes the proliferating root impinges on a fixed case thus
converting an apically directed force into occlusal movement. Some facts proving this statement
include the fact that rootless teeth erupt, that some teeth erupt a greater distance than the total
length of their roots and the teeth still will erupt after the completion of root formation or when
the tissue forming the root are removed surgically.


       Root growth is not required but it may accelerate tooth eruption. Depending on the rte at
which the root elongates, the basal bone will resorb or form to maintain a proper relationship
between the root and bone.
2. Vascular Pressure
       Vascular Pressure and blood vessel thrust. It is known that the teeth move in their
sockets in synchrony with the arterial pulse, so local volume changes can produce limited tooth
movement. Furthermore, spontaneous changes in blood pressure have been shown to influence
eruptive behavior. Ground substance can swell from 30% to 50% by retaining additional water,
so this to could create pressure. But since surgical excision of the growing root and associated
tissues eliminates the periapical vasculature without stopping eruption, this means that the local
vessels are not absolutely necessary for tooth eruption.


       The Vascular Pressure theory supposes that a local increase of in tissue fluid pressure
in the periapical region is sufficient to move the tooth.


   3. Bone Remodeling (Apposition and Resorption of bone)
       Bone Remodeling is important to permit tooth movmement. If the tooth germ is removed
and the dental follicle left intact, an eruptive pathway forms in the overlying bone. If Silicone
Replica is substituted for the tooth germ, it also erupts. But, if the dental follicle is removed, no
eruptive pathway will form.


       The follicle provides the source for new bone-forming cells and the conduit for
osteoclasts derived from monocytes through the vascular supply. Control may reside with the
bone-lining cells, the osteoblasts. These cells secrete collagenase and other proteolytic
enzymes to remove the osteoid layer. In so doing these cells round up and expose the newly
denuded mineralized bone surface, providing the stimulus to attract osteoclasts to the site.


   4. Periodontal Ligament Traction
       Periodontal Ligament Traction. Eruptive force resides in the dental follicle-periodontal
ligament complex. Formation and renewal of the PDL has been considered a factor in tooth
eruption because of the traction power that fibroblasts have and because of the experimental
results using the continuously erupting rat incisor.


       Periodontal Ligament Traction. Eruptive force resides in the dental follicle-periodontal
ligament complex. Formation and renewal of the PDL has been considered a factor in tooth
eruption because of the traction power that fibroblasts have and because of the experimental
results using the continuously erupting rat incisor.
5. Control of Endocrine Glands
   6. Pressure from muscular action
   7. Effect of Nutrition
   8. Inherent tendency of teeth to erupt


SEQUENCE AND CHRONOLOGY OF TOOTH ERUPTION
       Humans have two sets of teeth in their lifetime. The first set of teeth to be seen in the
mouth is the primary or deciduous dentition which will remain intact until the child is about 6
years of age. At about that time the first permanent or succedaneous teeth begin to emerge into
the mouth. The emergence of these teeth begins the transition or mixed dentition period in
which there is a mixture of deciduous and succedaneous teeth present. The transition period
lasts from about 6 to 12 years of age and ends when all deciduous teeth have been shed. At
that time, the permanent dentition period begins.


       Usually at birth, no teeth are visible in the mouth; however, occasionally, infants are born
with erupted mandibular incisors. The development of both primary and permanent teeth
continues in this period and jaw growth follows for the needed additional space for posterior
teeth. Alveolar bone height also increases, accommodating the increasing length of the teeth.


       Primary teeth emerge in children between the ages of 6 moths and 2 years. They play a
role in “reserving” space for the permanent teeth. At about 6 months of age, the mandibular
central incisors emerge through the alveolar gingival followed by other anterior teeth. By about
13 to 16 months, all the eight primary incisors have erupted. The first primary molars emerge by
about 16 months of age. By about 19 months the primary maxillary canines erupt while the
primary mandibular canines erupt at 20 months. The primary second mandibular molar erupts at
a mean of age 27 months and primary maxillary second molar follows at a mean age of 29
months. The primary dentition is considered to be completed by about 30 months when the
second primary molars are in occlusion.
TABLE 1.1 Chronology of Primary Teeth
                              FIRST EVIDENCE
                                    OF              CROWN                                         ROOT
                                                                   ERUPTION      ERUPTION
DENTITION      TOOTH          CALCIFICATION       COMPLETED                                     COMPLETED
                                                                   (MONTHS)      SEQUENCE
                                 (WEEKS IN         (MONTHS)                                      (YEARS)
                                  UTERO)
 Primary       Central
                                    14                 1.5            7.5             3              1.5
 (upper)        incisor
            Lateral Incisor         16                 2.5             9               4              2
               Canine               17                  9              18              8             3.25
             First Molar        12.5 - 15.5             6              14              6             2.5
            Second Molar         12.5 - 19             11              24             10              3
 Primary       Central
                                    18                 2.5             6              1              1.5
 (lower)        incisor
            Lateral Incisor         18                  3              7              2              1.5
               Canine               20                  9              16             7              3.25
             First Molar         12 - 15.5             5.5             12             5              2.25
            Second Molar         12.5 - 18             10              20             9               3


            The transition or mixed dentition period begins with the emergence and eruption of the
     mandibular first permanent molar and ends with the loss of the last primary tooth which usually
     occurs at 11 to 12 years of age. The initial phase of transition period lasts about 2 years, during
     which time the permanent first molars erupt, the primary incisors are shed, and the permanent
     incisors emerge and erupt into position.


            Permanent dentition consists of 32 teeth and is completed 18 to 25 years of age. At 6
     years of age, the first molars emerge in the oral cavity followed by the central incisor at 6 to 8
     years of age. Mandibular lateral incisor erupts at about 1 year later or soon after the central
     incisors. When the child is about 10 years old, the first premolars and the mandibular canines
     erupt. Second premolars follow during the next year then the maxillary canines. Usually second
     molars come in when the individual is 12 years of age. Third molars do not come until the age of
     17 or later. Considerable posterior jaw growth is required after the age of 12 to allow room for
     these teeth.
TABLE 1.2 Chronology of Permanent Teeth
                                     FIRST
                                 EVIDENCE OF       CROWN                                         ROOT
                                                                  ERUPTION ERUPTION
DENTITION       TOOTH           CALCIFICATION    COMPLETED                                     COMPLETED
                                                                   (YEARS) SEQUENCE
                                  (WEEKS IN       (MONTHS)                                      (YEARS)
                                    UTERO)
Permanent
             Central incisor         3-4              4-5             7-8             5                 10
 (upper)
             Lateral Incisor        10 - 12           4-5            8-9              6              11
                 Canine              4-5              6-7           11 - 12           8            13 - 15
             First Premolar        1.5 - 1.75         5-6           10 - 11           9            12 - 13
                 Second
                                   2 - 2.25           6-7           10 - 12          11            12 - 14
                Premolar
               First Molar          At birth         2.5 - 3         6-7              3            9 - 10
             Second Molar           2.5 - 3           7 -8          12 - 13          13            14 - 16
              Third Molar            7-9             12 - 16        17 - 21          16            18 - 25
Permanent
             Central incisor         3-4              4-5             6-7             1                 9
 (lower)
             Lateral Incisor         3-4              4-5            7-8              4              10
                 Canine              4-5              6-7            9 - 10           7            12 - 14
             First Premolar        1.75 - 2           5-6           10 - 12          10            12 - 13
                 Second
                                   2.25 - 2.5         6-7           11 - 12          12            13 - 14
                Premolar
               First Molar          At birth         2.5 - 3         6-7              2            9 - 10
             Second Molar           2.5 - 3           7-8           11 - 13          14            14 - 15
              Third Molar           8 - 10           12 - 16        17 - 21          15            18 - 25


    SHEDDING OR EXFOLIATION
            Shedding or Exfoliation is the physiologic process resulting in the elimination of the
    deciduous dentition. It is the result of the gradual resorption of their roots and the consequent
    loss of periodontal ligament attached. Resorptions and shedding occurs to enable eruption of
    permanent tooth (excluding the permanent molars


            To understand the process of shedding or exfoliation of deciduous teeth, we must first
    remember that we have two sets of dentition. Mammals are described as being diphydont, with
    two successive sets of teeth, first the "deciduous" set and later the "permanent" set. Our
    deciduous teeth, or our primary teeth consist of 20 teeth, and is later replaced by our 32
    permanent teeth.


       The fewer deciduous teeth have importance by:
        Help provide nutrition
 Help make speech possible
    Aid in the normal development of the jaw bones and facial muscles
    Add to an attractive appearance
    Reserve space for the permanent teeth and help guide them into position


       Because the jaw is smaller in younger people, the 20 deciduous teeth accommodate the
space, but as the person grows, so does the jaw, allowing for the additional 12 teeth in the
permanent set. Teeth in the permanent dentition are also larger to accommodate the larger jaw.


       The replacement of the deciduous teeth with its permanent successor is known as
shedding or exfoliation. Shedding is the physiological process that permanent teeth influence
resorption until elimination of deciduous teeth. Resorption of the tooth is the breakdown of hard
tissue and its release of its minerals.   This resorption is achieved by cells with a histologic
nature similar to osteoclasts called odontoclasts. Odontoclasts derive from the monocyte and
migrate from blood vessels to the resorption site, where they fuse to form the characteristic
multinucleated odontoclast with a clear attachment zone and ruffled border.




       Less is known about the resorption of the soft tissues of the tooth as it sheds. Although
active root resorption is taking place, coronal pulp appears normal and odontoblasts still line the
surface of the predentin.     When root resorption is almost complete, these odontoblasts
degenerate, and mononuclear cells emerge from the pulpal vessels and migrate to the
predentin surface, where they fuse with other mononuclear cells to form odontoclast actively
engaged in the removal of predentin and dentin. Just before exfoliation, the resorption process
stops. Tooth then sheds with pulpal tissue intact.




       There are at least two ways of the resorption of cells or “cell death”. Through studies
and observations show that its abrupt and yet no inflammation occurs. The two forms are as
follows:


       1.      Fibroblast is a type of cell that synthesizes the extracellular matrix and collagen,
the structural framework (stroma) for tissues. The main function of fibroblasts is to maintain the
structural integrity of connective tissues by continuously secreting precursors of the extracellular
matrix. Fibroblasts secrete the precursors of all the components of the extracellular matrix,
primarily the ground substance and a variety of fibers. But the fibroblasts are interrupted and
their normal cellular processes such as secreting the precursors and cytotoxic alterations that
eventually lead to cell death.


       2.      Apoptosis, form of cell death in which a programmed sequence of events leads
to the elimination of cells without releasing harmful substances into the surrounding area.
Apoptosis plays a crucial role in developing and maintaining health by eliminating old cells,
unnecessary cells, and unhealthy cells. Ligament fibroblasts have the same features of apoptic
cell death. Apoptosis produces cell fragments called apoptotic bodies that phagocytic cells are
able to engulf and quickly remove.
With further reading, pressure can also play a factor in exfoliation. Reason may
be because if a successional tooth is missing, the normal time period for exfoliation is delayed.
Some say that the force applied to a deciduous tooth can initiate resorption. Pressure from an
erupting permanent tooth results in some root loss, which in turn means a loss of supporting
tissue structures. So if the structures are lost, then its inevitable that the process of shedding is
accelerated.


Mechanism Of Shedding
   A. Resorption Period
       In the case of Bone resorption, it is thought that the osteoblast must must first degrade
the osteoid, exposing the mineralized bone to which osteoclast can attach. Osteoblast may also
resorbs the dentin .Hard tissues resorption occurs in two phases: the extracellular during which
the matrix fragments and dissolution begins and intracellular during which complete digestion of
the products of resorption occurs . Resorption of intraradicular dentin takes place in some
resorption of the pulp chamber, coronal dentin and sometimes enamel. Resorption of the
periodontal ligament involves apoptopic cell. This form of cell death involves shrinkage of the
cells so that they can be phagocytosed be neighboring cells. Apoptotic cell death is
programmed so that cells die at a specific tmes to permit orderly development . Occurrence of
the apoptotic cell death together with periodontal ligament resorption and with the observation
that in monozygotic twins the eruption pattern is largely (80%) determined by genetic factor
suggest that shedding is a programmed developmental event influenced by local factors




        Whatever the preliminary steps in hard tissue resorption , it is clear that the odontoclast
attaches to the hard tissue surface peripherally through the clear zone creating a sealed space
is created lined with ruffled border of the cell, that acts like a proton pump adding hydrogen ions
to the extracellular environment and acidifying it so that dissolution occurs and primary
lysozymes are secreted to degrade the organic matrix .


        Factors that may Initiate or affect tooth resorption :
            1. Pressure
                Pressure from erupting permanent tooth may cause some root loss that will
decrease tooth support therefoe the tooth is less able to withstand the increasing masticatory
forces thereby the process of exfoliation is accelerated. As resoption of the roots initiated by
pressure of the underlying tooth occurs , there is a progressive loss of surface area for
attachment of the periodontal ligament fiber bundles. This weakening of the tooth support
occurs because it has to withstand increasingly greater occlusal forces generated by the
growing muscles of mastication


                Mesial Drift is the lateral bodily movement of the teeth on both sides of the mouth
toward the midline of the arch.One condition that leads to mesial drift is when the teeth is in
function producing a rubbing of cotact areas making the transseptal fibers of the periodontal
ligament to maintain a tooth contact. Pressure on the periodontal ligament fibers results in
resorption of bone , whereas pull on fibers results in bone apposition(formation) .As the contact
areas of the crowns wear, the teeth tend to move mesially to maintain contact . The slight
pressure on the mesial side of the socket results in the slow resorption of the lamina dura while
the accompanying tension on the distal side induces appositional lamina dura bone in this area.


            2. When Succesional tooth germ is missing
                It will delayed the shedding of deciduous teeth


            3. Forces of masticatory applied to deciduous teeth
                As an individual grows the mastication increases in size and exert effort on tooth
more than the periodontal ligament can stand that leads to trauma to the ligament and the
initiation of resoption.


     B. Rest Period and Repair Period
        Resorption of deciduous teeth is not continuous process, During rest periods, reparative
tissue may be formed , leading to reattachment of the periodontal ligament. The areas of early
resorption are repaired by the deposition of the cementum like tissue which lay down a
collagenous ns showing small foci of mineralization which helps in repair


       As the tooth continue to resorbs, the tooth loosens. Eventually, all the periodontal
ligament attachment is lost and the rootless crown of the primary tooth literally falls off the jaw


       If the repair process prevail over the resoption , the tooth may become anykylose to the
surrounding bone, with the loss of the periodontal ligament.




            Resorption occurs on the lingual aspect of the
            deciduous canine , and the tooth often shed with
            much of its lingual root intact




Pattern of Shedding
       Pressure generated by the growing and erupting permanent tooth dictates the pattern of
deciduous tooth resorption. Because of the developmental position of the permanent incisors
and canine tooth germs their subsequent movement in an occlusal and vestibular direction ,
resorption of the incisors and canines begins on their lingual surfaces and later occupy directly
apical to the primary tooth .In mandibular incisors the apical positioning of the tooth germ does
not occur and permanent tooth erupt lingually
For deciduous molar, root resorption commences on the inner surfaces where the
permanent premolars initially develop . Premolars later lie beneath the roots of the deciduous
molars. However, as a result of continuous growth of the jaws and occlusal movement of the
deciduous molars, the successional tooth germs come to lie apical to the deciduous teeth. This
change in position provides the growing bi-cuspids with adequate space for their continued
development.


       Sequence of Shedding in the mandible follows an anterior to posterior order of the in the
jaw while for the maxilla the first molar exfoliate before the canine disrupts this sequence.
CLINICAL CONSIDERATIONS
       1. Enamel hypoplasia is caused by the disturbance in the development of the enamel
during matrix formation. This results to deficiency in the quantity of enamel. The matrix formed
is defective but calcification is normal The enamel is irregular, often pitted or thin fissures or
grooves but otherwise it has normal hardness and translucency.




       2. Eruption of tooth is frequently accompanied by pain and fever. This is due to trauma
initiating an inflammatory response. Adding up to the inflammation is the attack of microbial
infections.
       3. Retained deciduous teeth are usually caused by failure of the succedaneous tooth to
form or the corresponding succedaneous tooth is impacted. Retained deciduous teeth are most
often are the upper lateral incisor, less frequently to the second permanent premolar. If the
permanent tooth is ankylosed or impacted, its deciduous predecessor may also be retained.
This is most frequently seen with the deciduous and permanent canine teeth.
4. Premature loss of primary teeth can cause early eruption of its permanent successor.
It can also cause a loss of arch length with a consequent tendency for crowding of the
permanent dentition. Increase chances for the adjacent teeth to mesial migrate resulting to
blockage of the path of eruption of the succedaneous tooth.




        5. Delayed eruption of teeth are common and may be caused by congenital, systemic,
or local factors
                   Congenital absence most commonly occurs with the permanent third molars.
                   Systemic factors may be caused by endocrine deficiencies, nutritional
                   deficiencies, systemic lesion, and some genetic factors.
                   Local factors: early loss of deciduous teeth, with consequent drifting of the
                   adjacent teeth to block the eruptive pathway, eruption cysts
6. Remnants of deciduous teeth consist of dentin and cementum. They may remain
embedded in the jaw for a considerable amount of time. This are most frequently found
associated with lower second premolars. Root remnants are also may be found deep in the
bone, completely surrounded by and ankylosed to the bone.
       7.     Submerged deciduous teeth are due to trauma resulting to the damage of either
the dental follicle or the developing periodontal ligament. If this happens, the eruption of the
tooth ceases, and it becomes ankylosed to the bone of the jaw. Due to the continued eruption of
the adjacent teeth and increased in height of the alveolar bone, the ankylosed tooth may be
shortened or submerged in the alveolar bone it prevents eruption of their permanent successors
due to crowding or tipping of the adjacent teeth onto the space created by missing tooth.
SOURCES


Berkovitz, Bary K: Master Dentistry: Oral Biology . Elsevier Ltd.2011 p 113-121


Melfi, Rudy C: Permar’s Oral Embroyology and Microscopic Anatomy. Lippincott Williams &
       Wilkins                    .2000                      p                     265-279


Ten Cate A. R: Oral Histology –Development , Structure, and Function , 6th Edition , Mosby.
       2008


Bhaskar , S.N : Orban’s Oral Histology and Embryology , 11 edition , Mosby Inc. 1991


Osborn, J.W : Advance Dental Histology p 135-140

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

DENTIN
DENTINDENTIN
DENTIN
 
Tooth eruption theories
Tooth eruption theoriesTooth eruption theories
Tooth eruption theories
 
Shedding
SheddingShedding
Shedding
 
Eruption & shedding
Eruption & sheddingEruption & shedding
Eruption & shedding
 
Theories of tooth eruption
Theories of tooth eruptionTheories of tooth eruption
Theories of tooth eruption
 
Cementum
CementumCementum
Cementum
 
Alveolar bone
Alveolar bone Alveolar bone
Alveolar bone
 
Erruption 2017
Erruption 2017Erruption 2017
Erruption 2017
 
Growth & development of maxilla and mandible
Growth & development of maxilla and mandibleGrowth & development of maxilla and mandible
Growth & development of maxilla and mandible
 
Compensating Curves.pptx
Compensating Curves.pptxCompensating Curves.pptx
Compensating Curves.pptx
 
Shedding of deciduous teeth
Shedding of deciduous teeth Shedding of deciduous teeth
Shedding of deciduous teeth
 
Occlusion
OcclusionOcclusion
Occlusion
 
Development of occlusion.
Development of  occlusion.Development of  occlusion.
Development of occlusion.
 
Dentin hypersesitivity
Dentin hypersesitivity Dentin hypersesitivity
Dentin hypersesitivity
 
Development of tooth
Development of toothDevelopment of tooth
Development of tooth
 
Development of Occlusion
Development of OcclusionDevelopment of Occlusion
Development of Occlusion
 
Periodontal ligament
Periodontal ligamentPeriodontal ligament
Periodontal ligament
 
Dentinal hypersensitivity
Dentinal  hypersensitivityDentinal  hypersensitivity
Dentinal hypersensitivity
 
Mechanisms of Tooth Eruption
Mechanisms of Tooth EruptionMechanisms of Tooth Eruption
Mechanisms of Tooth Eruption
 
Tooth development
Tooth developmentTooth development
Tooth development
 

Andere mochten auch

Theories Of Eruption Of Teeth
Theories Of Eruption Of TeethTheories Of Eruption Of Teeth
Theories Of Eruption Of TeethAmin Abusallamah
 
Eruption of teeth ( Hesham Dameer )
Eruption of teeth ( Hesham Dameer )Eruption of teeth ( Hesham Dameer )
Eruption of teeth ( Hesham Dameer )Hesham Dameer
 
486 theories of tooth eruption
486 theories of tooth eruption486 theories of tooth eruption
486 theories of tooth eruptionNabin Chaudhary
 
Tooth eruption and shedding
Tooth eruption and sheddingTooth eruption and shedding
Tooth eruption and sheddingAditya Shinde
 
Deciduous and permanent teeth Eruption time and shedding
Deciduous and permanent teeth Eruption time and sheddingDeciduous and permanent teeth Eruption time and shedding
Deciduous and permanent teeth Eruption time and sheddingAkram bhuiyan
 
Pedia eruption
Pedia eruption Pedia eruption
Pedia eruption IAU Dent
 
Tooth development 08 opt
Tooth development 08 optTooth development 08 opt
Tooth development 08 optMpdodz
 
Anomalies of tooth formation & eruption
Anomalies of tooth formation & eruptionAnomalies of tooth formation & eruption
Anomalies of tooth formation & eruptionTariq Hameed
 
Orthodontic tooth movement ppt.
Orthodontic tooth movement ppt. Orthodontic tooth movement ppt.
Orthodontic tooth movement ppt. Abdelrahman Mosaad
 
root formation tooth development
root formation tooth developmentroot formation tooth development
root formation tooth developmentddert
 
Biology of tooth movement
Biology of tooth movementBiology of tooth movement
Biology of tooth movementDentist Yemen
 
developement of dentition
developement of dentitiondevelopement of dentition
developement of dentitionlakshmi ravi
 
Development of occlusion_kritika
Development of occlusion_kritikaDevelopment of occlusion_kritika
Development of occlusion_kritikaKritika Sarkar
 
Primary Dentition and Eruption
Primary Dentition and EruptionPrimary Dentition and Eruption
Primary Dentition and Eruptionhchidmd
 
Oral Histology "tooth development"
Oral Histology "tooth development"Oral Histology "tooth development"
Oral Histology "tooth development"Ŵĕssam Osama
 

Andere mochten auch (20)

Tooth eruption
Tooth eruptionTooth eruption
Tooth eruption
 
Tooth eruption
Tooth eruptionTooth eruption
Tooth eruption
 
Theories Of Eruption Of Teeth
Theories Of Eruption Of TeethTheories Of Eruption Of Teeth
Theories Of Eruption Of Teeth
 
Eruption of teeth ( Hesham Dameer )
Eruption of teeth ( Hesham Dameer )Eruption of teeth ( Hesham Dameer )
Eruption of teeth ( Hesham Dameer )
 
486 theories of tooth eruption
486 theories of tooth eruption486 theories of tooth eruption
486 theories of tooth eruption
 
Eruption & Shedding of Deciduous TEETH
Eruption & Shedding of Deciduous TEETHEruption & Shedding of Deciduous TEETH
Eruption & Shedding of Deciduous TEETH
 
Tooth eruption and shedding
Tooth eruption and sheddingTooth eruption and shedding
Tooth eruption and shedding
 
Deciduous and permanent teeth Eruption time and shedding
Deciduous and permanent teeth Eruption time and sheddingDeciduous and permanent teeth Eruption time and shedding
Deciduous and permanent teeth Eruption time and shedding
 
Pedia eruption
Pedia eruption Pedia eruption
Pedia eruption
 
Tooth development 08 opt
Tooth development 08 optTooth development 08 opt
Tooth development 08 opt
 
Anomalies of tooth formation & eruption
Anomalies of tooth formation & eruptionAnomalies of tooth formation & eruption
Anomalies of tooth formation & eruption
 
Orthodontic tooth movement ppt.
Orthodontic tooth movement ppt. Orthodontic tooth movement ppt.
Orthodontic tooth movement ppt.
 
Eruption of Teeth
Eruption of TeethEruption of Teeth
Eruption of Teeth
 
root formation tooth development
root formation tooth developmentroot formation tooth development
root formation tooth development
 
Biology of tooth movement
Biology of tooth movementBiology of tooth movement
Biology of tooth movement
 
3. tooth movement
3. tooth movement3. tooth movement
3. tooth movement
 
developement of dentition
developement of dentitiondevelopement of dentition
developement of dentition
 
Development of occlusion_kritika
Development of occlusion_kritikaDevelopment of occlusion_kritika
Development of occlusion_kritika
 
Primary Dentition and Eruption
Primary Dentition and EruptionPrimary Dentition and Eruption
Primary Dentition and Eruption
 
Oral Histology "tooth development"
Oral Histology "tooth development"Oral Histology "tooth development"
Oral Histology "tooth development"
 

Ähnlich wie Physiology of tooth eruption

Mechanisms of Tooth Eruption & Mammalian Teeth 3 Categories on the Basis of E...
Mechanisms of Tooth Eruption & Mammalian Teeth 3 Categories on the Basis of E...Mechanisms of Tooth Eruption & Mammalian Teeth 3 Categories on the Basis of E...
Mechanisms of Tooth Eruption & Mammalian Teeth 3 Categories on the Basis of E...Jansen Calibo
 
ERUPTION AND SHEDDING
ERUPTION AND SHEDDINGERUPTION AND SHEDDING
ERUPTION AND SHEDDINGDR DHANYA K B
 
Tooth calcification and eruption.pptx
Tooth calcification and eruption.pptxTooth calcification and eruption.pptx
Tooth calcification and eruption.pptxTolulaseYemitan1
 
New rich text document (3)
New rich text document (3)New rich text document (3)
New rich text document (3)Roger Kimo
 
ERUPTION AND SHEDDING.pptx
ERUPTION AND SHEDDING.pptxERUPTION AND SHEDDING.pptx
ERUPTION AND SHEDDING.pptxzainabkhan399647
 
delayed eruption in dentistry.pdf
delayed eruption in dentistry.pdfdelayed eruption in dentistry.pdf
delayed eruption in dentistry.pdfsafabasiouny1
 
Tootheruption 131215104412-phpapp01
Tootheruption 131215104412-phpapp01Tootheruption 131215104412-phpapp01
Tootheruption 131215104412-phpapp01AMOORA moora
 
Eruption.pptx Eruption.pptx Eruption.pptx
Eruption.pptx Eruption.pptx Eruption.pptxEruption.pptx Eruption.pptx Eruption.pptx
Eruption.pptx Eruption.pptx Eruption.pptxRavi Seth
 
Eruption & shedding
Eruption & sheddingEruption & shedding
Eruption & sheddingPiyush Verma
 
Functional development of dental arches and occlusion /certified fixed orth...
Functional development of dental arches and occlusion   /certified fixed orth...Functional development of dental arches and occlusion   /certified fixed orth...
Functional development of dental arches and occlusion /certified fixed orth...Indian dental academy
 
Development of dentiton and occlusion dr ajay srinivas
Development of dentiton and occlusion   dr ajay srinivasDevelopment of dentiton and occlusion   dr ajay srinivas
Development of dentiton and occlusion dr ajay srinivasDr. AJAY SRINIVAS
 
eruption and shedding of teeth.pptx
eruption and shedding of teeth.pptxeruption and shedding of teeth.pptx
eruption and shedding of teeth.pptxRoshnaTalibMustafa
 
Development of dentition. /certified fixed orthodontic courses by Indian dent...
Development of dentition. /certified fixed orthodontic courses by Indian dent...Development of dentition. /certified fixed orthodontic courses by Indian dent...
Development of dentition. /certified fixed orthodontic courses by Indian dent...Indian dental academy
 
Development of normal occlision.pptx
Development of normal occlision.pptxDevelopment of normal occlision.pptx
Development of normal occlision.pptxchandrashekarpatil15
 
Growth and Development of Craniofacial Structure, Dentition and Occlusion
Growth and Development of Craniofacial Structure, Dentition and OcclusionGrowth and Development of Craniofacial Structure, Dentition and Occlusion
Growth and Development of Craniofacial Structure, Dentition and OcclusionHermie Culeen Flores
 
Eruption, shedding & teething problems
  Eruption, shedding & teething problems  Eruption, shedding & teething problems
Eruption, shedding & teething problemsDr Nikita panpaliya
 

Ähnlich wie Physiology of tooth eruption (20)

shedding of the teeth.PPT
shedding of the teeth.PPTshedding of the teeth.PPT
shedding of the teeth.PPT
 
Mechanisms of Tooth Eruption & Mammalian Teeth 3 Categories on the Basis of E...
Mechanisms of Tooth Eruption & Mammalian Teeth 3 Categories on the Basis of E...Mechanisms of Tooth Eruption & Mammalian Teeth 3 Categories on the Basis of E...
Mechanisms of Tooth Eruption & Mammalian Teeth 3 Categories on the Basis of E...
 
ERUPTION AND SHEDDING
ERUPTION AND SHEDDINGERUPTION AND SHEDDING
ERUPTION AND SHEDDING
 
Tooth calcification and eruption.pptx
Tooth calcification and eruption.pptxTooth calcification and eruption.pptx
Tooth calcification and eruption.pptx
 
New rich text document (3)
New rich text document (3)New rich text document (3)
New rich text document (3)
 
ERUPTION AND SHEDDING.pptx
ERUPTION AND SHEDDING.pptxERUPTION AND SHEDDING.pptx
ERUPTION AND SHEDDING.pptx
 
eruption & shedding part 1.pptx
eruption & shedding part 1.pptxeruption & shedding part 1.pptx
eruption & shedding part 1.pptx
 
delayed eruption in dentistry.pdf
delayed eruption in dentistry.pdfdelayed eruption in dentistry.pdf
delayed eruption in dentistry.pdf
 
Tootheruption 131215104412-phpapp01
Tootheruption 131215104412-phpapp01Tootheruption 131215104412-phpapp01
Tootheruption 131215104412-phpapp01
 
Eruption.pptx Eruption.pptx Eruption.pptx
Eruption.pptx Eruption.pptx Eruption.pptxEruption.pptx Eruption.pptx Eruption.pptx
Eruption.pptx Eruption.pptx Eruption.pptx
 
Eruption & shedding
Eruption & sheddingEruption & shedding
Eruption & shedding
 
Functional development of dental arches and occlusion /certified fixed orth...
Functional development of dental arches and occlusion   /certified fixed orth...Functional development of dental arches and occlusion   /certified fixed orth...
Functional development of dental arches and occlusion /certified fixed orth...
 
Development of dentiton and occlusion dr ajay srinivas
Development of dentiton and occlusion   dr ajay srinivasDevelopment of dentiton and occlusion   dr ajay srinivas
Development of dentiton and occlusion dr ajay srinivas
 
tooth eruption
tooth eruptiontooth eruption
tooth eruption
 
eruption and shedding of teeth.pptx
eruption and shedding of teeth.pptxeruption and shedding of teeth.pptx
eruption and shedding of teeth.pptx
 
Development of dentition. /certified fixed orthodontic courses by Indian dent...
Development of dentition. /certified fixed orthodontic courses by Indian dent...Development of dentition. /certified fixed orthodontic courses by Indian dent...
Development of dentition. /certified fixed orthodontic courses by Indian dent...
 
Tooth eruption ppt
Tooth  eruption pptTooth  eruption ppt
Tooth eruption ppt
 
Development of normal occlision.pptx
Development of normal occlision.pptxDevelopment of normal occlision.pptx
Development of normal occlision.pptx
 
Growth and Development of Craniofacial Structure, Dentition and Occlusion
Growth and Development of Craniofacial Structure, Dentition and OcclusionGrowth and Development of Craniofacial Structure, Dentition and Occlusion
Growth and Development of Craniofacial Structure, Dentition and Occlusion
 
Eruption, shedding & teething problems
  Eruption, shedding & teething problems  Eruption, shedding & teething problems
Eruption, shedding & teething problems
 

Mehr von Lara Patricia Catibog (19)

Community medicine endorsements
Community medicine endorsementsCommunity medicine endorsements
Community medicine endorsements
 
Community medicine endorsements
Community medicine endorsementsCommunity medicine endorsements
Community medicine endorsements
 
Vision summary
Vision summaryVision summary
Vision summary
 
Fluoride and their role in dental caries prevention
Fluoride and their role in dental caries preventionFluoride and their role in dental caries prevention
Fluoride and their role in dental caries prevention
 
Endocrine system
Endocrine systemEndocrine system
Endocrine system
 
Endocrine system summary
Endocrine system summaryEndocrine system summary
Endocrine system summary
 
Pterygoid muscles
Pterygoid musclesPterygoid muscles
Pterygoid muscles
 
Pterygoid muscles
Pterygoid musclesPterygoid muscles
Pterygoid muscles
 
Hormones
HormonesHormones
Hormones
 
Adrenal glands
Adrenal glandsAdrenal glands
Adrenal glands
 
Pituitary
PituitaryPituitary
Pituitary
 
Thyroid gland (edited v.)
Thyroid gland (edited v.)Thyroid gland (edited v.)
Thyroid gland (edited v.)
 
Parathyroid
ParathyroidParathyroid
Parathyroid
 
Reproductiveeditedv 110923093801-phpapp02 (1)
Reproductiveeditedv 110923093801-phpapp02 (1)Reproductiveeditedv 110923093801-phpapp02 (1)
Reproductiveeditedv 110923093801-phpapp02 (1)
 
Male reproductive gland
Male reproductive glandMale reproductive gland
Male reproductive gland
 
Pineal gland
Pineal glandPineal gland
Pineal gland
 
Alimentary system
Alimentary systemAlimentary system
Alimentary system
 
Hypothalamus
HypothalamusHypothalamus
Hypothalamus
 
Reproductive (edited v.)
Reproductive (edited v.)Reproductive (edited v.)
Reproductive (edited v.)
 

Kürzlich hochgeladen

(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...narwatsonia7
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableNehru place Escorts
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...narwatsonia7
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...narwatsonia7
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...narwatsonia7
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...Neha Kaur
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 

Kürzlich hochgeladen (20)

(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
 
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
 

Physiology of tooth eruption

  • 1. Physiologic Tooth Movement: Eruption and Shedding TOOTH ERUPTION The jaws of an infant can only accommodate a few small teeth. Since teeth, once formed cannot increase in size, the larger jaws of an adult require not only more but bigger teeth. This accommodation is accomplished in humans by having two dentitions. The first is known as the deciduous teeth (primary teeth), and the second is the permanent teeth (secondary teeth). The early development of teeth develops within the tissues of the jaw thus for teeth to become functional, considerable movement is required to bring them into the occlusal plane. The movements teeth make are complex and may be described as: 1. Preeruptive tooth movement. Made by deciduous and permanent tooth germs within tissues of the jaw before they begin to erupt 2. Eruptive tooth movement. Made by a tooth to move from its position within the bone of the jaw to its functional position in the occlusion 3. Posteruptive tooth movement. Maintaining the osition of the erupted tooth in occlusion while the jaw continues to grow and compensate for occlusal and proximal tooth wear. TOOTH MOVEMENT I. Preeruptive Tooth Movement When the deciduous tooth germs first differentiate, they are extremely small and there is a good deal of space for them in the developing jaw. Because they grow rapidly, however, they become crowded together. The crowding Is gradually alleviated by a lengthening of the jaws which permits the deciduous second molar tooth germs to move backward and anterior germs to move forward. At the same time the tooth germs are moving bodily outward and upward with the increasing length as well as width and height of the jaws. The origin of the successional permanent teeth develops on the lingual aspect of their deciduoud predecessors, in the same bony crypt. From this position they shift considerably as the jaws develop. The successional anterior teeth eventually come to occupy on the lingual of the roots of their deciduous teeth and the posterior premolar tooth gers are finally positioned between the divergent roots of the deciduous molars.
  • 2. The permanent molar tooth germs without predecessors develop from the backward extension of the dental lamina. At first there is a litter room in the jaws to accommodate these tooth germs so that in the upper jaw the molar tooth germs develop first with their oclusal surfaces facing distally and swinginto position only when the maxilla has grown sufficiently to provide room for such movement. It is almost the same with the permanent molars in the mandible but instead of a distal inclination, there is a mesial inclination prior to the development of the jaw. Analysis has shown that these preeruptive movement of teeth are a combination of two factors: total bodily movement and growth in which one part of the tooth germ remains fixed while the rest continues to grow. II. Eruptive Tooth Movement During the phase of eruptive tooth movement the tooth moves from its position within the bone of the jaw to its functional position in occlusion, and the principal direction of movement is occlusal or axial.The mechanisms of eruption for deciduous and permanent teeth are similar, resulting in axial or occlusal movement of the tooth from its developmental position within the jaw to its final functional position in the occlusal plane. A. Eruptive Phase (Prefunctional Phase) Begins when the root starts to form and ends when the tooth reaches the occlusal plane. The PDL develops only after root formation has been initiated; once established, the PDL must be remodeled to accommodate continued eruptive tooth movement. Tooth germ undergoes intraosseous stage and supraosseous stage.During the intraosseous stage, the tooth moves out of its bony crypt to pierce the gingival. During the supraosseous stage, the tooth moves into its final occlusal plane.
  • 3. A specialized feature associated with the erupting permanent tooth is the presence of a gubernacular canal. This canal occurs where the roof of the alveolar crypt of the permanent tooth is not complete. The canal enables the dental follicle of the tooth germ to communicate with, and be attached to, the overlying oral mucosa. The gubernacular canal contains the gubernacular cord, composed of a central strand of epithelium derived from dental lamina. As the successional tooth erupts, its gubernacular canal is widened rapidly by local osteoclastic activity, delineating the eruptive pathway for the tooth.
  • 4. Reduced enamel epithelium unites with the oral epithelium. It will migrate occlusally or incisally until surface is reached, preventing the gingiva to bleed during the crown eruption. The crown breaks the double layer epithelium overlying it and enters the oral cavity. The rate of eruption depends on the phase of movement.When the erupting tooth appears in the oral cavity, it is subjected to environmental factors that help determine its final position in the dental arch. Muscle forces from the tongue, cheeks and lips play on the tooth, as do the forces of contact of the erupting tooth with other erupted teeth. A sustained muscular
  • 5. force of only 4 to 5 grams is sufficient to move a tooth. The childhood habit of thumb-sucking is an obvious example of environmental destruction of tooth position. B. Functional Phase - Begins when the tooth reaches the occlusal plane and continues its functions as long as the tooth remains in the oral cavity. As the teeth meet their antagonists, the bone is stimulated and the periodontal ligament strengthens. There is a continuous vertical eruption mesially and occlusally but the process may decrease because it is supposed by their antagonist teeth. - Mechanisms of Tooth Movement Currently Favored These mechanisms are still debatable and are likely to be a combination of a number of factors. Eruptive mechanisms are not understood fully yet, and most reviews on this subject have concluded that eruption is a multifactorial process in which cause and effect are difficult to separate. 1. Root Formation The root growth theory supposes that the proliferating root impinges on a fixed case, thus converting an apically directed force of the tooth into occlusal movement. Root formation should be an obvious cause of tooth eruption because it causes an overall increase in the length of the tooth. But it produces enough forces that lead to the resorption of the bone.
  • 6. Rootless tooth still erupts. Some teeth erupt more than the total length of the roots. And the teeth still erupt after the complete formation of the root. Therefore root formation is accommodated during tooth eruption and is a consequence, not a cause, of the eruption process. Hammock Ligament Theory According to Sicher, a band of fibrous tissue exists below the root apex spanning from one side of alveolar wall to another. This fibrous tissue appears to form a network below the developing root and is rich in fluid droplets. The developing root forces itself against this band of tissue, which in turn applies an oclusally directed force on tooth. 2. Bone Remodeling Bone remodeling theory supposes that selective formation and resorption of bone brings about eruption.The bone at the base of the socket cannot act as a fixed base because pressure on bone results in its resorption. 3. Periodontal Ligament The ligament traction theory supposes that cells and fibers of the ligament push the tooth into occlusion.PDL is rich in fibroblasts that contain contractile tissue. The contraction of these PDL fibers mainly the oblique group of fibers result in axial movement of the teeth. 4. Vascular Pressure The vascular pressure theory supposes that a local increase in tissue fluid pressure in the periapical region is sufficient to move the tooth.The tissue around the developing end of the root is highly vascular. This vascular pressure is believed to cause the axial movement of the teeth.It is known that teeth move in synchrony with the arterial pulse, so local volume changes can produce limited tooth movement. III. Post Eruptive phase Posteruptive tooth movements are those made by the tooth after it ahs reached its functional position in the occlusal plane. It includes three categories: (1) movements to accommodate the growing jaws, (2) those to compensate for continued occlusal wear, (3) those to accommodate interproximal wear.
  • 7. 1. Accommodation of Growth Accommodating the growth of the jaws are completed toward the end of the second decade, when jaw growth ceases. Readjustment of the position of the tooth socket is achieved by the formation of new bone at the alveolar crest and on the socket floor to keep pace with the increasing height of the jaws. This readjustment usually occurs between the ages 14 to 18 years, when active movement of the tooth takes place. The apices of the teeth move 2 to 3 mm away from the inferior dental canal. This occurs earlier in girls than in boys and is related to the bust of the condylar growth that separates the jaws and the teeth. 2. Compensation for Occlusal Wear This is achieved by the continued cementum deposition around the apex of the tooth; however, the deposition of cementum in this location occurs only after the tooth has moved. This emphasizes the role of the periodontal ligament. Axial movement that a tooth makes in most likely achieved by the same mechanism as eruptive tooth movement. 3. Accomodation for Interproximal Wear Wear also occurs at the contact points between teeth, on their proximal surfaces and its extent can be considerable (more than 7 mm in the mandible). Mesial or approximal drifting compensates for the interproximal wear. This is important in the practice of Orthodontics because the maintenance of tooth position after treatment depends on the extent of such drift. Mesial drift is multifactorial and include: (A) anterior component of occlusal force, (B) contraction of the transseptal ligament between teeth and (C) soft tissue pressure. A. Anterior component of occlusal force When teeth are brought into contact, like during clenching of the jaws, and anteriorly directed force is generated.It is the result of the mesial inclination of most teeth and the summation of intercuspal planes.When cusps are selectively ground, the direction of occlusal force can be enhanced or reversed When opposing teeth were removed, thereby eliminating the biting force, the mesial migration of the teeth was slowed but not halted.
  • 8. B. Contraction of the Transseptal Ligament between Teeth The Peridontal ligament plays an important role in maintaining tooth position. Transseptial fibers draw neighboring teeth together and mainten them in contact; there are also capable of adaptation.For example, relapse of orthodontically removed teeth is reduced if a gingivectomy removing the transseptal ligament is performed. *Grinding away of proximal contacts provides room for a tooth to move, after which teeth move to reestablish contact. C. Soft Tissue Pressures The pressures generated by the cheeks and tongue may push teeth mesially.Soft tissue pressure does influence tooth position even if it does not cause tooth movement. It does not play a major role in creating mesial drift. CAUSES OF TOOTH ERUPTION (THEORIES) 1. Growth of Root Root formation undoubtfully causes an overall increase in the length of the tooth that must be accommodated by the growth of the root into the bone of the jaw, by an increase in jaw height or by the occlusal movement of the crown. Root growth produces a force that is sufficient to produce bone resorption. Pressure applied to bone normally result in the removal of osteoclasts. Though root formation can produce a force, it cannot translate into eruptive tooth movement unless some structure exists at the base of the tooth capable of withstanding this force. Since this structure does not exist, some other mechanisms must move the tooth to accommodate root growth. The Root Growth theory supposes the proliferating root impinges on a fixed case thus converting an apically directed force into occlusal movement. Some facts proving this statement include the fact that rootless teeth erupt, that some teeth erupt a greater distance than the total length of their roots and the teeth still will erupt after the completion of root formation or when the tissue forming the root are removed surgically. Root growth is not required but it may accelerate tooth eruption. Depending on the rte at which the root elongates, the basal bone will resorb or form to maintain a proper relationship between the root and bone.
  • 9. 2. Vascular Pressure Vascular Pressure and blood vessel thrust. It is known that the teeth move in their sockets in synchrony with the arterial pulse, so local volume changes can produce limited tooth movement. Furthermore, spontaneous changes in blood pressure have been shown to influence eruptive behavior. Ground substance can swell from 30% to 50% by retaining additional water, so this to could create pressure. But since surgical excision of the growing root and associated tissues eliminates the periapical vasculature without stopping eruption, this means that the local vessels are not absolutely necessary for tooth eruption. The Vascular Pressure theory supposes that a local increase of in tissue fluid pressure in the periapical region is sufficient to move the tooth. 3. Bone Remodeling (Apposition and Resorption of bone) Bone Remodeling is important to permit tooth movmement. If the tooth germ is removed and the dental follicle left intact, an eruptive pathway forms in the overlying bone. If Silicone Replica is substituted for the tooth germ, it also erupts. But, if the dental follicle is removed, no eruptive pathway will form. The follicle provides the source for new bone-forming cells and the conduit for osteoclasts derived from monocytes through the vascular supply. Control may reside with the bone-lining cells, the osteoblasts. These cells secrete collagenase and other proteolytic enzymes to remove the osteoid layer. In so doing these cells round up and expose the newly denuded mineralized bone surface, providing the stimulus to attract osteoclasts to the site. 4. Periodontal Ligament Traction Periodontal Ligament Traction. Eruptive force resides in the dental follicle-periodontal ligament complex. Formation and renewal of the PDL has been considered a factor in tooth eruption because of the traction power that fibroblasts have and because of the experimental results using the continuously erupting rat incisor. Periodontal Ligament Traction. Eruptive force resides in the dental follicle-periodontal ligament complex. Formation and renewal of the PDL has been considered a factor in tooth eruption because of the traction power that fibroblasts have and because of the experimental results using the continuously erupting rat incisor.
  • 10. 5. Control of Endocrine Glands 6. Pressure from muscular action 7. Effect of Nutrition 8. Inherent tendency of teeth to erupt SEQUENCE AND CHRONOLOGY OF TOOTH ERUPTION Humans have two sets of teeth in their lifetime. The first set of teeth to be seen in the mouth is the primary or deciduous dentition which will remain intact until the child is about 6 years of age. At about that time the first permanent or succedaneous teeth begin to emerge into the mouth. The emergence of these teeth begins the transition or mixed dentition period in which there is a mixture of deciduous and succedaneous teeth present. The transition period lasts from about 6 to 12 years of age and ends when all deciduous teeth have been shed. At that time, the permanent dentition period begins. Usually at birth, no teeth are visible in the mouth; however, occasionally, infants are born with erupted mandibular incisors. The development of both primary and permanent teeth continues in this period and jaw growth follows for the needed additional space for posterior teeth. Alveolar bone height also increases, accommodating the increasing length of the teeth. Primary teeth emerge in children between the ages of 6 moths and 2 years. They play a role in “reserving” space for the permanent teeth. At about 6 months of age, the mandibular central incisors emerge through the alveolar gingival followed by other anterior teeth. By about 13 to 16 months, all the eight primary incisors have erupted. The first primary molars emerge by about 16 months of age. By about 19 months the primary maxillary canines erupt while the primary mandibular canines erupt at 20 months. The primary second mandibular molar erupts at a mean of age 27 months and primary maxillary second molar follows at a mean age of 29 months. The primary dentition is considered to be completed by about 30 months when the second primary molars are in occlusion.
  • 11. TABLE 1.1 Chronology of Primary Teeth FIRST EVIDENCE OF CROWN ROOT ERUPTION ERUPTION DENTITION TOOTH CALCIFICATION COMPLETED COMPLETED (MONTHS) SEQUENCE (WEEKS IN (MONTHS) (YEARS) UTERO) Primary Central 14 1.5 7.5 3 1.5 (upper) incisor Lateral Incisor 16 2.5 9 4 2 Canine 17 9 18 8 3.25 First Molar 12.5 - 15.5 6 14 6 2.5 Second Molar 12.5 - 19 11 24 10 3 Primary Central 18 2.5 6 1 1.5 (lower) incisor Lateral Incisor 18 3 7 2 1.5 Canine 20 9 16 7 3.25 First Molar 12 - 15.5 5.5 12 5 2.25 Second Molar 12.5 - 18 10 20 9 3 The transition or mixed dentition period begins with the emergence and eruption of the mandibular first permanent molar and ends with the loss of the last primary tooth which usually occurs at 11 to 12 years of age. The initial phase of transition period lasts about 2 years, during which time the permanent first molars erupt, the primary incisors are shed, and the permanent incisors emerge and erupt into position. Permanent dentition consists of 32 teeth and is completed 18 to 25 years of age. At 6 years of age, the first molars emerge in the oral cavity followed by the central incisor at 6 to 8 years of age. Mandibular lateral incisor erupts at about 1 year later or soon after the central incisors. When the child is about 10 years old, the first premolars and the mandibular canines erupt. Second premolars follow during the next year then the maxillary canines. Usually second molars come in when the individual is 12 years of age. Third molars do not come until the age of 17 or later. Considerable posterior jaw growth is required after the age of 12 to allow room for these teeth.
  • 12. TABLE 1.2 Chronology of Permanent Teeth FIRST EVIDENCE OF CROWN ROOT ERUPTION ERUPTION DENTITION TOOTH CALCIFICATION COMPLETED COMPLETED (YEARS) SEQUENCE (WEEKS IN (MONTHS) (YEARS) UTERO) Permanent Central incisor 3-4 4-5 7-8 5 10 (upper) Lateral Incisor 10 - 12 4-5 8-9 6 11 Canine 4-5 6-7 11 - 12 8 13 - 15 First Premolar 1.5 - 1.75 5-6 10 - 11 9 12 - 13 Second 2 - 2.25 6-7 10 - 12 11 12 - 14 Premolar First Molar At birth 2.5 - 3 6-7 3 9 - 10 Second Molar 2.5 - 3 7 -8 12 - 13 13 14 - 16 Third Molar 7-9 12 - 16 17 - 21 16 18 - 25 Permanent Central incisor 3-4 4-5 6-7 1 9 (lower) Lateral Incisor 3-4 4-5 7-8 4 10 Canine 4-5 6-7 9 - 10 7 12 - 14 First Premolar 1.75 - 2 5-6 10 - 12 10 12 - 13 Second 2.25 - 2.5 6-7 11 - 12 12 13 - 14 Premolar First Molar At birth 2.5 - 3 6-7 2 9 - 10 Second Molar 2.5 - 3 7-8 11 - 13 14 14 - 15 Third Molar 8 - 10 12 - 16 17 - 21 15 18 - 25 SHEDDING OR EXFOLIATION Shedding or Exfoliation is the physiologic process resulting in the elimination of the deciduous dentition. It is the result of the gradual resorption of their roots and the consequent loss of periodontal ligament attached. Resorptions and shedding occurs to enable eruption of permanent tooth (excluding the permanent molars To understand the process of shedding or exfoliation of deciduous teeth, we must first remember that we have two sets of dentition. Mammals are described as being diphydont, with two successive sets of teeth, first the "deciduous" set and later the "permanent" set. Our deciduous teeth, or our primary teeth consist of 20 teeth, and is later replaced by our 32 permanent teeth. The fewer deciduous teeth have importance by:  Help provide nutrition
  • 13.  Help make speech possible  Aid in the normal development of the jaw bones and facial muscles  Add to an attractive appearance  Reserve space for the permanent teeth and help guide them into position Because the jaw is smaller in younger people, the 20 deciduous teeth accommodate the space, but as the person grows, so does the jaw, allowing for the additional 12 teeth in the permanent set. Teeth in the permanent dentition are also larger to accommodate the larger jaw. The replacement of the deciduous teeth with its permanent successor is known as shedding or exfoliation. Shedding is the physiological process that permanent teeth influence resorption until elimination of deciduous teeth. Resorption of the tooth is the breakdown of hard tissue and its release of its minerals. This resorption is achieved by cells with a histologic nature similar to osteoclasts called odontoclasts. Odontoclasts derive from the monocyte and migrate from blood vessels to the resorption site, where they fuse to form the characteristic multinucleated odontoclast with a clear attachment zone and ruffled border. Less is known about the resorption of the soft tissues of the tooth as it sheds. Although active root resorption is taking place, coronal pulp appears normal and odontoblasts still line the surface of the predentin. When root resorption is almost complete, these odontoblasts degenerate, and mononuclear cells emerge from the pulpal vessels and migrate to the predentin surface, where they fuse with other mononuclear cells to form odontoclast actively
  • 14. engaged in the removal of predentin and dentin. Just before exfoliation, the resorption process stops. Tooth then sheds with pulpal tissue intact. There are at least two ways of the resorption of cells or “cell death”. Through studies and observations show that its abrupt and yet no inflammation occurs. The two forms are as follows: 1. Fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework (stroma) for tissues. The main function of fibroblasts is to maintain the structural integrity of connective tissues by continuously secreting precursors of the extracellular matrix. Fibroblasts secrete the precursors of all the components of the extracellular matrix, primarily the ground substance and a variety of fibers. But the fibroblasts are interrupted and their normal cellular processes such as secreting the precursors and cytotoxic alterations that eventually lead to cell death. 2. Apoptosis, form of cell death in which a programmed sequence of events leads to the elimination of cells without releasing harmful substances into the surrounding area. Apoptosis plays a crucial role in developing and maintaining health by eliminating old cells, unnecessary cells, and unhealthy cells. Ligament fibroblasts have the same features of apoptic cell death. Apoptosis produces cell fragments called apoptotic bodies that phagocytic cells are able to engulf and quickly remove.
  • 15. With further reading, pressure can also play a factor in exfoliation. Reason may be because if a successional tooth is missing, the normal time period for exfoliation is delayed. Some say that the force applied to a deciduous tooth can initiate resorption. Pressure from an erupting permanent tooth results in some root loss, which in turn means a loss of supporting tissue structures. So if the structures are lost, then its inevitable that the process of shedding is accelerated. Mechanism Of Shedding A. Resorption Period In the case of Bone resorption, it is thought that the osteoblast must must first degrade the osteoid, exposing the mineralized bone to which osteoclast can attach. Osteoblast may also resorbs the dentin .Hard tissues resorption occurs in two phases: the extracellular during which the matrix fragments and dissolution begins and intracellular during which complete digestion of the products of resorption occurs . Resorption of intraradicular dentin takes place in some resorption of the pulp chamber, coronal dentin and sometimes enamel. Resorption of the periodontal ligament involves apoptopic cell. This form of cell death involves shrinkage of the cells so that they can be phagocytosed be neighboring cells. Apoptotic cell death is programmed so that cells die at a specific tmes to permit orderly development . Occurrence of the apoptotic cell death together with periodontal ligament resorption and with the observation that in monozygotic twins the eruption pattern is largely (80%) determined by genetic factor suggest that shedding is a programmed developmental event influenced by local factors Whatever the preliminary steps in hard tissue resorption , it is clear that the odontoclast attaches to the hard tissue surface peripherally through the clear zone creating a sealed space
  • 16. is created lined with ruffled border of the cell, that acts like a proton pump adding hydrogen ions to the extracellular environment and acidifying it so that dissolution occurs and primary lysozymes are secreted to degrade the organic matrix . Factors that may Initiate or affect tooth resorption : 1. Pressure Pressure from erupting permanent tooth may cause some root loss that will decrease tooth support therefoe the tooth is less able to withstand the increasing masticatory forces thereby the process of exfoliation is accelerated. As resoption of the roots initiated by pressure of the underlying tooth occurs , there is a progressive loss of surface area for attachment of the periodontal ligament fiber bundles. This weakening of the tooth support occurs because it has to withstand increasingly greater occlusal forces generated by the growing muscles of mastication Mesial Drift is the lateral bodily movement of the teeth on both sides of the mouth toward the midline of the arch.One condition that leads to mesial drift is when the teeth is in function producing a rubbing of cotact areas making the transseptal fibers of the periodontal ligament to maintain a tooth contact. Pressure on the periodontal ligament fibers results in resorption of bone , whereas pull on fibers results in bone apposition(formation) .As the contact areas of the crowns wear, the teeth tend to move mesially to maintain contact . The slight pressure on the mesial side of the socket results in the slow resorption of the lamina dura while the accompanying tension on the distal side induces appositional lamina dura bone in this area. 2. When Succesional tooth germ is missing It will delayed the shedding of deciduous teeth 3. Forces of masticatory applied to deciduous teeth As an individual grows the mastication increases in size and exert effort on tooth more than the periodontal ligament can stand that leads to trauma to the ligament and the initiation of resoption. B. Rest Period and Repair Period Resorption of deciduous teeth is not continuous process, During rest periods, reparative tissue may be formed , leading to reattachment of the periodontal ligament. The areas of early
  • 17. resorption are repaired by the deposition of the cementum like tissue which lay down a collagenous ns showing small foci of mineralization which helps in repair As the tooth continue to resorbs, the tooth loosens. Eventually, all the periodontal ligament attachment is lost and the rootless crown of the primary tooth literally falls off the jaw If the repair process prevail over the resoption , the tooth may become anykylose to the surrounding bone, with the loss of the periodontal ligament. Resorption occurs on the lingual aspect of the deciduous canine , and the tooth often shed with much of its lingual root intact Pattern of Shedding Pressure generated by the growing and erupting permanent tooth dictates the pattern of deciduous tooth resorption. Because of the developmental position of the permanent incisors and canine tooth germs their subsequent movement in an occlusal and vestibular direction , resorption of the incisors and canines begins on their lingual surfaces and later occupy directly apical to the primary tooth .In mandibular incisors the apical positioning of the tooth germ does not occur and permanent tooth erupt lingually
  • 18. For deciduous molar, root resorption commences on the inner surfaces where the permanent premolars initially develop . Premolars later lie beneath the roots of the deciduous molars. However, as a result of continuous growth of the jaws and occlusal movement of the deciduous molars, the successional tooth germs come to lie apical to the deciduous teeth. This change in position provides the growing bi-cuspids with adequate space for their continued development. Sequence of Shedding in the mandible follows an anterior to posterior order of the in the jaw while for the maxilla the first molar exfoliate before the canine disrupts this sequence.
  • 19. CLINICAL CONSIDERATIONS 1. Enamel hypoplasia is caused by the disturbance in the development of the enamel during matrix formation. This results to deficiency in the quantity of enamel. The matrix formed is defective but calcification is normal The enamel is irregular, often pitted or thin fissures or grooves but otherwise it has normal hardness and translucency. 2. Eruption of tooth is frequently accompanied by pain and fever. This is due to trauma initiating an inflammatory response. Adding up to the inflammation is the attack of microbial infections. 3. Retained deciduous teeth are usually caused by failure of the succedaneous tooth to form or the corresponding succedaneous tooth is impacted. Retained deciduous teeth are most often are the upper lateral incisor, less frequently to the second permanent premolar. If the permanent tooth is ankylosed or impacted, its deciduous predecessor may also be retained. This is most frequently seen with the deciduous and permanent canine teeth.
  • 20. 4. Premature loss of primary teeth can cause early eruption of its permanent successor. It can also cause a loss of arch length with a consequent tendency for crowding of the permanent dentition. Increase chances for the adjacent teeth to mesial migrate resulting to blockage of the path of eruption of the succedaneous tooth. 5. Delayed eruption of teeth are common and may be caused by congenital, systemic, or local factors Congenital absence most commonly occurs with the permanent third molars. Systemic factors may be caused by endocrine deficiencies, nutritional deficiencies, systemic lesion, and some genetic factors. Local factors: early loss of deciduous teeth, with consequent drifting of the adjacent teeth to block the eruptive pathway, eruption cysts
  • 21. 6. Remnants of deciduous teeth consist of dentin and cementum. They may remain embedded in the jaw for a considerable amount of time. This are most frequently found associated with lower second premolars. Root remnants are also may be found deep in the bone, completely surrounded by and ankylosed to the bone. 7. Submerged deciduous teeth are due to trauma resulting to the damage of either the dental follicle or the developing periodontal ligament. If this happens, the eruption of the tooth ceases, and it becomes ankylosed to the bone of the jaw. Due to the continued eruption of the adjacent teeth and increased in height of the alveolar bone, the ankylosed tooth may be shortened or submerged in the alveolar bone it prevents eruption of their permanent successors due to crowding or tipping of the adjacent teeth onto the space created by missing tooth.
  • 22. SOURCES Berkovitz, Bary K: Master Dentistry: Oral Biology . Elsevier Ltd.2011 p 113-121 Melfi, Rudy C: Permar’s Oral Embroyology and Microscopic Anatomy. Lippincott Williams & Wilkins .2000 p 265-279 Ten Cate A. R: Oral Histology –Development , Structure, and Function , 6th Edition , Mosby. 2008 Bhaskar , S.N : Orban’s Oral Histology and Embryology , 11 edition , Mosby Inc. 1991 Osborn, J.W : Advance Dental Histology p 135-140