SlideShare ist ein Scribd-Unternehmen logo
1 von 24
Solución de una ecuación diferencial 
 En una función desconocida y la variable 
independiente X definida en un intervalo y es una 
función que satisface la ecuación diferencial para 
todos los valores de X en el intervalo dado. 
Y¹¹= Y biprimaría
1°-Ejemplo: 
 Y= sen2x + cos2x Y¹¹ + 4y =0 
Y¹= 2cos2x – 4cos (2x) 
Y¹¹= – 4sen2x – 4 cos (2x) 
 Comprobación: 
– 4sen2x – 4cos2x + 4(sen2x + cos2x)=0 
– 4sen2x – 4cos2x + 4sen2x + 4cos2x =0 
esto es una solución general
2° ejemplo: 
 Y= 5sen2x + 3cos2x Y¹¹+4y= 0 
 5 (cos) (2x) + 3 (sen) 2x) 
 Y¹= – 6sen2x + 10cos2x 
 Y¹¹= – 20sen2x – 12cos2x 
 Comprobación: 
–20sen2x – 12cos2x + 4 (5sen2x + 3cos2x) = 0 
– 20sen2x – 12cos2x + 20sen2x + 12cos2x= 0 
esto es una Solución particular
3° ejemplo: 
 Comprobar que: 
 Y= X² – 1 es solución de (Y¹) +Y² = – 1 
 Y¹ = 2x 
 2x + (x² – 1 ) ²= 1
4° ejemplo: 
 Y= 
1 
푥 
Y¹ + Y = 0 
 Y¹= – 
1 
푋² 
 Y¹¹= 
2 
푋³ 
– 
1 
푋² 
+ – ( 
1 
푋 
)² = 0 
– 
1 
푋² 
+ – 
1 
푋² 
= 0
5° ejemplo 
Y = 푒2푥 Y¹¹ + Y¹ – 6 Y = 0 
Y¹=2푒2푥 
Y¹¹= 4 푒2푥 
4 푒2푥 + 2 푒2푥 – 6 (푒2푥) = 0 
6 푒2푥 – 6 푒2푥 = 0
6° ejemplo 
 Y= 푒−2푥 + 푒3푥 Y¹¹ + Y ¹ - 6Y = 0 
 Y ¹ = - 2 푒−2푥 + 3 푒3푥 
 Y¹¹ = - 4 푒−2푥 + 9푒3푥 
 - 4 푒−2푥+ 9 푒3푥 - 2 푒−2푥+ 3푒3푥 - 6 (푒−2푥 + 푒3푥) =0
7° ejemplo 
 Y= x² + 푒푥 + 푒−2푥 Y¹¹ + Y¹ - 6Y =0 
 Y¹ = 2x² + 푒푥+ 푒−2푥 
 Y¹¹ = 2 + 푒푥+ 4푒−2푥 
 2+ 푒푥+ 4 푒−2푥+ 2x + 푒푥 - 2 푒−2푥-2 (x² + 푒푥+ 푒−2푥)= 0 
 2 + 푒푥 + 4 푒−2푥 + 2x + 푒푥 - 2 푒−2푥- 2 x²- 2 푒−2푥 = 
 2( 1+ X - x² ) 
 2( 1+ X - x² ) = 2( 1+ X - x² )
8°- ejemplo 
 Y= C1 푒2푥+ C2 푒2푥 Y¹¹-4 Y¹+ 4Y =0 
 Y¹= 2 C1 푒2푥+ 2C 2푥푒2푥+ C 2푒2푥 
 Y¹¹= 4 C1 푒2푥 + 4C 2푥푒2푥 + 2C 2푒2푥 + 2 C2 푒2푥 
 =4 C1 푒2푥 + 4C 2 푥푒2푥 + 2C 2 푒2푥 + 2 C2 푒2푥- 4(2 C1 푒2푥 
+ 2C 2 푥푒2푥 + C 2 푒2푥) + 4 (C1 푒2푥 + C2 푒2푥) =0 
 4 C1 푒2푥 + 4C 2 푥푒2푥 + 2C 2 푒2푥 + 2 C2 푒2푥 - 8C1 푒2푥 - 8C 
2 푥푒2푥- 4 C 2 푒2푥 + 4C1 푒2푥+ 4 C2 푒2푥= 0 
 8C1 푒2푥+ 8C 2 푥푒2푥+ 4 C 2 푒2푥 -12C2푒2푥- 8 C1푒2푥 = 0 
 Y= 0
9° ejemplo: 
 
푑푦 
푑푥 
= 
푦 
푥 
푑푦 
푦 
 ∫ 
= ∫ 
푑푥 
푥 
 lny= lnx + ln C1 
 lny = lnC1x 
 Aplicado antilogaritmos 
 Y= C1x 
 Comprobacion 
 Y= C1x 
 
푑푦 
푑푥 
= C1
 Sustituyendo: 
 
푑푦 
푑푥 
= 
푦 
푥 
 C1= 
퐶1푥 
푥 
C1= C1 
 
푑푦 
푑푥 
= 
푥 
푦 
 ∫y dy = ∫x dx 
 [= 
푦² 
2 
= 
푥² 
2 
+ 
퐶¹ 
2 
]² 
 y² = x² + C1
Ecuaciones diferenciales exactas 
 (x² + 2xy + x) dx + Y² dy =0 
 X²dx + 2xy dx + x dx + Y² dyno se puede separar 
 M= x² + 2xg + x 
 
푀 
푑푦 
= 2x no se puede con los exactos 
 N= y² 
푁 
푑푋 
= 0
2° ejemplo: 
 (X² + Y² + X ) dx + xydy =0 
 M (x,y) dx + N (x,y) dy =0 │ 
휕푀 
휕푦 
= 
휕푁 
휕푥 
 M= X² + Y² + X * 
휕푀 
휕푦 
= 2Y 
 N= XY * 
휕푁 
휕푥 
= Y 
 No es exacta porque: 
휕푀 
휕푦 
+ 
휕푁 
휕푥
3° ejemplo: 
 (5x + 4y) dx + (4x – 8y³) dy =0 
(5x + 4y) + (4x+8y) 
푑푥 
20푥³ 
− 
푑푦 
32푦5 
5x dx – 4y dx + 4x dy - 8y³ dy =0 
M= 5x + 4y 
푑푚 
= 4 
푑푦 
N= 4x – 8y³ 
푑푛 
= 4 
푑푥
4° ejemplo: 
 a veces es posible encontrar un factor (que llamamos 
factor integrante) el cual al multiplicarse por la 
ecuación diferencial la convierte en exacta para 
encontrar este factor integrante se utiliza la sig. 
Formula: 
휕푀 
휕푦 
= 
휕푁 
휕푥 
__________ 
N
 Ahora utilizamos este resultado para obtener el 
factor integrante por medio de la siguiente 
expresión. 
M (x)= e∫푔 푥 푑푥 = e∫ 
1 
푥 
푑푥 
푥 = 푒푙푛푥 = x 
푑푥 = e∫
 A continuación simplemente aplicamos 
 Integramos: 
 (x³+ xy² + x² ) dx 
 (x³+ xy² + x² )dx =∫ x³dx + y² ∫ x dx + ∫ x² dx 
 
푥4 
4 
+ y² 
푥2 
2 
+ 
푥3 
3 
+ g (y)
 Solo nos falta encontrar el valor de g (y) para determinar 
el valor g (y) derivamos la función ƒ encontrada con 
respecto a Y 
휕푓 
푥2 
= 2y 
+ g (y)* 
휕푦 
2 
휕푓 
휕푦 
= x²y + g¹(y) 
Este resultado se iguala con N (x²y) 
X²y + g¹ (y) = X²y 
 Simplificado: 
 +g¹ (y)= X²y - X²y g¹ (y) = 0
 Si g¹ (y) = 0 entonces g(y) = C1 es una constante cualquiera 
 Por lo tanto la función buscada es: 
ƒ = 
푥4 
4 
+ y² 
푥2 
2 
+ 
푥3 
3 
+ C1 
 Y la solucion se obtiene igualando esta función a una constante (C2) 
 
푥4 
4 
+ y² 
푥2 
2 
+ 
푥3 
3 
+ C1 = C2 
 Simplificando: 
 
푥4 
4 
+ 
푥2푦2 
2 
+ 
푥3 
3 
= C
5° ejemplo
 Integramos: 
 Ƒ (3 + 
푦² 
푥² 
) dx 
 ∫(3 + 
푦² 
푥² 
)dx = 3∫dx + y² ∫ 
푑푥 
푥² 
= 3xy² ∫ x-² 
 Ƒ= 3x+y² 
푥−¹ 
−1 
+ g (y) 
 Ƒ= 3x- 
푦² 
푥 
+ g (y)
 Derivar función f 
휕푓 
2푦 
= 
+ g¹(y) 
휕푦 
푥 
g¹(y) =0 
 sustitución: 
F= 3x 
−푦² 
푥 
+ C1 
 Reduciendo 
3x 
−푦² 
푥 
= C 
Multiplicado por X 
[3x 
−푦² 
푥 
= C] 3x³- y² = cx 
Solución : 
3x 
푥푦² 
푥 
+ c1= c2

Weitere ähnliche Inhalte

Was ist angesagt?

Ejemplos
EjemplosEjemplos
Ejemplos
CETI
 
Optimizacion presentacion 2
Optimizacion presentacion 2Optimizacion presentacion 2
Optimizacion presentacion 2
Manuel Teran
 
Ecuaciones diferenciales de primer orden
Ecuaciones diferenciales de primer ordenEcuaciones diferenciales de primer orden
Ecuaciones diferenciales de primer orden
Nyckyiret Florez
 
Ejercicios14 ciii 110-integrales_triples
Ejercicios14 ciii 110-integrales_triplesEjercicios14 ciii 110-integrales_triples
Ejercicios14 ciii 110-integrales_triples
Sebastián Hernán
 

Was ist angesagt? (20)

Ejercicios de aplicación de inecuaciones
Ejercicios de aplicación de inecuacionesEjercicios de aplicación de inecuaciones
Ejercicios de aplicación de inecuaciones
 
Trabajo colaborativ oalge
Trabajo colaborativ oalgeTrabajo colaborativ oalge
Trabajo colaborativ oalge
 
Foro solucion de_ecuaciones_diferenciales_de _primer_y_segundo_orden
Foro solucion de_ecuaciones_diferenciales_de _primer_y_segundo_ordenForo solucion de_ecuaciones_diferenciales_de _primer_y_segundo_orden
Foro solucion de_ecuaciones_diferenciales_de _primer_y_segundo_orden
 
Ejemplos
EjemplosEjemplos
Ejemplos
 
Mate4 guia3
Mate4 guia3Mate4 guia3
Mate4 guia3
 
Materia i.o
Materia i.oMateria i.o
Materia i.o
 
Ec difer
Ec diferEc difer
Ec difer
 
Ecuaciones Diferenciales Ordinarias de Primer Orden
Ecuaciones Diferenciales Ordinarias de Primer OrdenEcuaciones Diferenciales Ordinarias de Primer Orden
Ecuaciones Diferenciales Ordinarias de Primer Orden
 
Optimizacion presentacion 2
Optimizacion presentacion 2Optimizacion presentacion 2
Optimizacion presentacion 2
 
Metodo simplex
Metodo simplexMetodo simplex
Metodo simplex
 
5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares
 
Unidad 3...
Unidad 3...Unidad 3...
Unidad 3...
 
Ecuaciones diferenciales de primer orden
Ecuaciones diferenciales de primer ordenEcuaciones diferenciales de primer orden
Ecuaciones diferenciales de primer orden
 
Ps1
Ps1Ps1
Ps1
 
Ejercicios14 ciii 110-integrales_triples
Ejercicios14 ciii 110-integrales_triplesEjercicios14 ciii 110-integrales_triples
Ejercicios14 ciii 110-integrales_triples
 
Ecuaciones diferenciales
Ecuaciones diferenciales Ecuaciones diferenciales
Ecuaciones diferenciales
 
Parcial Cálculo
Parcial Cálculo Parcial Cálculo
Parcial Cálculo
 
Problemas de Ecuaciones Diferenciales
Problemas de Ecuaciones Diferenciales Problemas de Ecuaciones Diferenciales
Problemas de Ecuaciones Diferenciales
 
F c3-2012-2
F c3-2012-2F c3-2012-2
F c3-2012-2
 
Metodo Simplex
Metodo SimplexMetodo Simplex
Metodo Simplex
 

Andere mochten auch (9)

Documentos eproinfoslade
Documentos eproinfosladeDocumentos eproinfoslade
Documentos eproinfoslade
 
13 praes frau_bar05_0311 ppt
13 praes frau_bar05_0311 ppt13 praes frau_bar05_0311 ppt
13 praes frau_bar05_0311 ppt
 
Presentaciones SAFI
Presentaciones SAFIPresentaciones SAFI
Presentaciones SAFI
 
INTEGRACION DE LAS TIC
INTEGRACION DE LAS TICINTEGRACION DE LAS TIC
INTEGRACION DE LAS TIC
 
Norma Regulamentadora 01
Norma Regulamentadora 01Norma Regulamentadora 01
Norma Regulamentadora 01
 
Ativ 3 4Nivair, Eloir, Vilani
Ativ 3 4Nivair, Eloir, VilaniAtiv 3 4Nivair, Eloir, Vilani
Ativ 3 4Nivair, Eloir, Vilani
 
Vertebradosnntt
VertebradosnnttVertebradosnntt
Vertebradosnntt
 
An Dochtúir Sa Teach - Ceacht 33
An Dochtúir Sa Teach - Ceacht 33An Dochtúir Sa Teach - Ceacht 33
An Dochtúir Sa Teach - Ceacht 33
 
La Increible Y Triste Historia De Nextel Y Su Abuela Desalmada
La Increible Y Triste Historia De Nextel Y Su Abuela DesalmadaLa Increible Y Triste Historia De Nextel Y Su Abuela Desalmada
La Increible Y Triste Historia De Nextel Y Su Abuela Desalmada
 

Ähnlich wie Matematica avanzada luis enrique martinez ramirez

Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferenciales
Rubens Diaz Pulli
 
Solucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesSolucionario ecuaciones diferenciales
Solucionario ecuaciones diferenciales
Daniel Mg
 

Ähnlich wie Matematica avanzada luis enrique martinez ramirez (20)

Matematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirezMatematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirez
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferenciales
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferenciales
 
Solucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesSolucionario ecuaciones diferenciales
Solucionario ecuaciones diferenciales
 
Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)
Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)
Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)
 
Calculo IV
Calculo IVCalculo IV
Calculo IV
 
Calculo 4
Calculo 4Calculo 4
Calculo 4
 
Taller edo
Taller edoTaller edo
Taller edo
 
04 derivadas definicion
04 derivadas definicion04 derivadas definicion
04 derivadas definicion
 
Ecuaciones diferenciales yaz
Ecuaciones diferenciales  yazEcuaciones diferenciales  yaz
Ecuaciones diferenciales yaz
 
Trabajo grupal 1
Trabajo grupal 1Trabajo grupal 1
Trabajo grupal 1
 
Matemaricas
Matemaricas Matemaricas
Matemaricas
 
Ecuaciones diferenciales
Ecuaciones diferenciales Ecuaciones diferenciales
Ecuaciones diferenciales
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Ecuaciones diferenciales matematicas avanzadas
Ecuaciones diferenciales matematicas avanzadasEcuaciones diferenciales matematicas avanzadas
Ecuaciones diferenciales matematicas avanzadas
 
Examen 2
Examen 2Examen 2
Examen 2
 
Examen 2
Examen 2Examen 2
Examen 2
 
ejercicios-resueltos-interpolacion-polinomial
ejercicios-resueltos-interpolacion-polinomialejercicios-resueltos-interpolacion-polinomial
ejercicios-resueltos-interpolacion-polinomial
 
Integracion por partes
Integracion por partesIntegracion por partes
Integracion por partes
 
Matemática ii ecuaciones diferenciales
Matemática ii   ecuaciones diferenciales Matemática ii   ecuaciones diferenciales
Matemática ii ecuaciones diferenciales
 

Kürzlich hochgeladen

Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 

Kürzlich hochgeladen (20)

PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
Desarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por ValoresDesarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por Valores
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
 
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.pptFUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADOTIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 

Matematica avanzada luis enrique martinez ramirez

  • 1. Solución de una ecuación diferencial  En una función desconocida y la variable independiente X definida en un intervalo y es una función que satisface la ecuación diferencial para todos los valores de X en el intervalo dado. Y¹¹= Y biprimaría
  • 2. 1°-Ejemplo:  Y= sen2x + cos2x Y¹¹ + 4y =0 Y¹= 2cos2x – 4cos (2x) Y¹¹= – 4sen2x – 4 cos (2x)  Comprobación: – 4sen2x – 4cos2x + 4(sen2x + cos2x)=0 – 4sen2x – 4cos2x + 4sen2x + 4cos2x =0 esto es una solución general
  • 3. 2° ejemplo:  Y= 5sen2x + 3cos2x Y¹¹+4y= 0  5 (cos) (2x) + 3 (sen) 2x)  Y¹= – 6sen2x + 10cos2x  Y¹¹= – 20sen2x – 12cos2x  Comprobación: –20sen2x – 12cos2x + 4 (5sen2x + 3cos2x) = 0 – 20sen2x – 12cos2x + 20sen2x + 12cos2x= 0 esto es una Solución particular
  • 4. 3° ejemplo:  Comprobar que:  Y= X² – 1 es solución de (Y¹) +Y² = – 1  Y¹ = 2x  2x + (x² – 1 ) ²= 1
  • 5. 4° ejemplo:  Y= 1 푥 Y¹ + Y = 0  Y¹= – 1 푋²  Y¹¹= 2 푋³ – 1 푋² + – ( 1 푋 )² = 0 – 1 푋² + – 1 푋² = 0
  • 6. 5° ejemplo Y = 푒2푥 Y¹¹ + Y¹ – 6 Y = 0 Y¹=2푒2푥 Y¹¹= 4 푒2푥 4 푒2푥 + 2 푒2푥 – 6 (푒2푥) = 0 6 푒2푥 – 6 푒2푥 = 0
  • 7. 6° ejemplo  Y= 푒−2푥 + 푒3푥 Y¹¹ + Y ¹ - 6Y = 0  Y ¹ = - 2 푒−2푥 + 3 푒3푥  Y¹¹ = - 4 푒−2푥 + 9푒3푥  - 4 푒−2푥+ 9 푒3푥 - 2 푒−2푥+ 3푒3푥 - 6 (푒−2푥 + 푒3푥) =0
  • 8. 7° ejemplo  Y= x² + 푒푥 + 푒−2푥 Y¹¹ + Y¹ - 6Y =0  Y¹ = 2x² + 푒푥+ 푒−2푥  Y¹¹ = 2 + 푒푥+ 4푒−2푥  2+ 푒푥+ 4 푒−2푥+ 2x + 푒푥 - 2 푒−2푥-2 (x² + 푒푥+ 푒−2푥)= 0  2 + 푒푥 + 4 푒−2푥 + 2x + 푒푥 - 2 푒−2푥- 2 x²- 2 푒−2푥 =  2( 1+ X - x² )  2( 1+ X - x² ) = 2( 1+ X - x² )
  • 9. 8°- ejemplo  Y= C1 푒2푥+ C2 푒2푥 Y¹¹-4 Y¹+ 4Y =0  Y¹= 2 C1 푒2푥+ 2C 2푥푒2푥+ C 2푒2푥  Y¹¹= 4 C1 푒2푥 + 4C 2푥푒2푥 + 2C 2푒2푥 + 2 C2 푒2푥  =4 C1 푒2푥 + 4C 2 푥푒2푥 + 2C 2 푒2푥 + 2 C2 푒2푥- 4(2 C1 푒2푥 + 2C 2 푥푒2푥 + C 2 푒2푥) + 4 (C1 푒2푥 + C2 푒2푥) =0  4 C1 푒2푥 + 4C 2 푥푒2푥 + 2C 2 푒2푥 + 2 C2 푒2푥 - 8C1 푒2푥 - 8C 2 푥푒2푥- 4 C 2 푒2푥 + 4C1 푒2푥+ 4 C2 푒2푥= 0  8C1 푒2푥+ 8C 2 푥푒2푥+ 4 C 2 푒2푥 -12C2푒2푥- 8 C1푒2푥 = 0  Y= 0
  • 10. 9° ejemplo:  푑푦 푑푥 = 푦 푥 푑푦 푦  ∫ = ∫ 푑푥 푥  lny= lnx + ln C1  lny = lnC1x  Aplicado antilogaritmos  Y= C1x  Comprobacion  Y= C1x  푑푦 푑푥 = C1
  • 11.  Sustituyendo:  푑푦 푑푥 = 푦 푥  C1= 퐶1푥 푥 C1= C1  푑푦 푑푥 = 푥 푦  ∫y dy = ∫x dx  [= 푦² 2 = 푥² 2 + 퐶¹ 2 ]²  y² = x² + C1
  • 12. Ecuaciones diferenciales exactas  (x² + 2xy + x) dx + Y² dy =0  X²dx + 2xy dx + x dx + Y² dyno se puede separar  M= x² + 2xg + x  푀 푑푦 = 2x no se puede con los exactos  N= y² 푁 푑푋 = 0
  • 13. 2° ejemplo:  (X² + Y² + X ) dx + xydy =0  M (x,y) dx + N (x,y) dy =0 │ 휕푀 휕푦 = 휕푁 휕푥  M= X² + Y² + X * 휕푀 휕푦 = 2Y  N= XY * 휕푁 휕푥 = Y  No es exacta porque: 휕푀 휕푦 + 휕푁 휕푥
  • 14. 3° ejemplo:  (5x + 4y) dx + (4x – 8y³) dy =0 (5x + 4y) + (4x+8y) 푑푥 20푥³ − 푑푦 32푦5 5x dx – 4y dx + 4x dy - 8y³ dy =0 M= 5x + 4y 푑푚 = 4 푑푦 N= 4x – 8y³ 푑푛 = 4 푑푥
  • 15. 4° ejemplo:  a veces es posible encontrar un factor (que llamamos factor integrante) el cual al multiplicarse por la ecuación diferencial la convierte en exacta para encontrar este factor integrante se utiliza la sig. Formula: 휕푀 휕푦 = 휕푁 휕푥 __________ N
  • 16.  Ahora utilizamos este resultado para obtener el factor integrante por medio de la siguiente expresión. M (x)= e∫푔 푥 푑푥 = e∫ 1 푥 푑푥 푥 = 푒푙푛푥 = x 푑푥 = e∫
  • 17.
  • 18.  A continuación simplemente aplicamos  Integramos:  (x³+ xy² + x² ) dx  (x³+ xy² + x² )dx =∫ x³dx + y² ∫ x dx + ∫ x² dx  푥4 4 + y² 푥2 2 + 푥3 3 + g (y)
  • 19.  Solo nos falta encontrar el valor de g (y) para determinar el valor g (y) derivamos la función ƒ encontrada con respecto a Y 휕푓 푥2 = 2y + g (y)* 휕푦 2 휕푓 휕푦 = x²y + g¹(y) Este resultado se iguala con N (x²y) X²y + g¹ (y) = X²y  Simplificado:  +g¹ (y)= X²y - X²y g¹ (y) = 0
  • 20.  Si g¹ (y) = 0 entonces g(y) = C1 es una constante cualquiera  Por lo tanto la función buscada es: ƒ = 푥4 4 + y² 푥2 2 + 푥3 3 + C1  Y la solucion se obtiene igualando esta función a una constante (C2)  푥4 4 + y² 푥2 2 + 푥3 3 + C1 = C2  Simplificando:  푥4 4 + 푥2푦2 2 + 푥3 3 = C
  • 21.
  • 23.  Integramos:  Ƒ (3 + 푦² 푥² ) dx  ∫(3 + 푦² 푥² )dx = 3∫dx + y² ∫ 푑푥 푥² = 3xy² ∫ x-²  Ƒ= 3x+y² 푥−¹ −1 + g (y)  Ƒ= 3x- 푦² 푥 + g (y)
  • 24.  Derivar función f 휕푓 2푦 = + g¹(y) 휕푦 푥 g¹(y) =0  sustitución: F= 3x −푦² 푥 + C1  Reduciendo 3x −푦² 푥 = C Multiplicado por X [3x −푦² 푥 = C] 3x³- y² = cx Solución : 3x 푥푦² 푥 + c1= c2