SlideShare ist ein Scribd-Unternehmen logo
1 von 58
Enteric bacteria promote human and
mouse norovirus infection of B cells
Melissa K. Jones,1* Makiko Wantanbe,1* Shu Zhu,1
Christina L. Graves,2,3 Lisa R. Keyes,1 Katrina R.
Grau,1 Mariam B. Gonzalez-Hernandez,4 Nicole M.
Iovine,5 Christina E. Wobus,4 Jan Vinjé,6 Scott A.
Tibbetts,1 Shannon M. Wallet,2,3 Stephanie M.
Karst1†
Presented by: Katherin Portwood
1
• Easily transmitted in vomit aerosols, person to person contact,
and fecal-oral contamination
• Small infection dose: 10-20 viral particles
• Cruise ship diarrhea
• Dehydration, vomiting, nausea, diarrhea
• Duration: 24-48 hours
• Most prevalent strain today is GII.4 Sydney
Norovirus is a lytic virus
• Attaches to host cell and inserts its genome
• Utilizes host machinery and one viral protein (RNA dependent
RNA polymerase) to replicate virons
• Host cells are destroyed to release virus descendants
Norovirus is an +ssRNA virus
• RNA dependent
RNA polymerase
(RdRp) replicates
the genome
– +ssRNA
– -ssRNA
– +ssRNA
Norovirus is a non-enveloped virus
• Norovirus binds to Histo-
Blood Group Antigens
(HBGAs)
• Every virus has capsid
proteins that protect the
genome
– VP1 is the major capsid
protein in norovirus.
– VP1 encodes for a P
domain capable of
binding to HBGAs
Histo-Blood Group Antigens
7
Norovirus genes
3
Mouse Norovirus (MuNoV)
• Acute
infection
• Protective
immunity
– short lived
• Persistent
infections
• Attenuated
Infect
macrophages and
Dendritic Cells of
the host immune
system
Time course of
infection
MNV-1 MNV-3
Measurement of Virus infectivity
• Cytopathic effects (CPE)
– Structural changes in the host cells that are caused by viral
invasion
– Evidence of cell lysis (plaques)
– Represents actively replicating norovirus
• Plaque forming units (PFU)
– Visual detections to determine the amount of virus particles from
dead host cells
• TCID-50
– Represents the viral concentration necessary to induce cell death/
pathological changes in 50% of inoculated cells
– Determined by a specific calculation
Figure 1A
• RAW246.7-
mouse
macrophage
• M12- Mature
mouse B cell
• WEHI.231-
immature
mouse B cell
• CMT-93-
intestinal
epithelial cells
MuNoVs infect B cells in culture
Determining cell viability
• Propidium Iodide
staining
– Red fluorescent stain
– Only permeates the
membranes of dead cells
– Binds to DNA
Figure 1B
MuNoVs infect B cells in culture
Immunofluorescence
4
Figure 1C
MuNoVs infect B cells in culture
Figure 1D
MuNoVs infect B cells in culture
Figure 2A
MuNoVs target Peyer’s patch B cells
Figure 2B
MuNoVs target Peyer’s patch B cellsWhy was there no significant difference in infection of the colon tissue?
Peyer’s Patches
• lymphatic follicles that sample the
contents of the small intestine
• “waiting room” for B cells who will
soon interact with their antigen
• Once the interaction is made, the B
cells travel to the mesenteric lymph
nodes to continue immune
responses
11
Peyer’s Patches
8
NoV
B
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Peyer’s Patches
8
Reverse Transcriptase-Polymerase
Chain Reaction
5
Figure 2C
• RT-PCR detected
the presence of
viral genome in
CD19 marked B
cells and bulk cells
collected from
Peyer’s Patches.
MuNoVs target Peyer’s patch B cells
Flow Cytometry
6
Figure 2D
• N-term is a non-
structural protein
that activates host
cell apoptosis
• CD19 and B220 are
B cell surface
markers
• Flow cytometry
detected the
presence of viral
replication in
diverse types of B
cells
MuNoVs target Peyer’s patch B cells
Figure 3A
• GII.4 Sydney is
the current
dominate HuNoV
strain
• Human Burrkits
lymphoma cells
(BJABs) were the
test B cells
• viral genome
growth in B cells
at 3 and 5 dpi
HuNoVs productively infect B cells in culture
Figure 3B
• UV light acts as a
mutagen -inactivates
the viral replication
process
HuNoVs productively infect B cells in culture
Figure 3C-D
HuNoVs productively infect B cells in culture
Figure 3E-F
HuNoVs productively infect B cells in culture
Figure 4 A
Intestinal bacteria facilitate NoV infections
Figure 4 B
Intestinal bacteria facilitate NoV infections
Figure 4 C
Intestinal bacterial facilitate NoV infections
Figure 4 D
Intestinal bacteria facilitate NoV infections
Conclusion
• Murine Norovirus infects B cells in culture
• MuNoVs target Peyer’s Patch B cells
• HuNoVs productively infect B cells in culture
• Intestinal bacteria facilitate NoV infections
Bibliography
1. Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., Stahl, D. A. (2015). Brock biology of
microorganisms fourteenth ed. Pearson Education Inc. 249; 266-267; 909.
2. Kaiser, G. E., (2007). Doc Kaiser’s Microbiology Home Page.
http://faculty.ccbcmd.edu/courses/bio141/lecguide/unit4/viruses/ssplusRNA_lc.html.
3. Hyde, J. L., Sosnovtsev, S. V., Green, K. Y., Wobus, C., Virgin, H. W., Mackenzie, J. M., (2009). Mouse Norovirus
Replication Is Associated with Virus-Induced Vesicle Clusters Originating from Membranes Derived from the
Secretory Pathway. Journal of Virology, 83, (19).9709-9719.
4. University of Queensland (2015). Immunofluorescence- Background.
http://www.di.uq.edu.au/sparqcbeifbackground.
5. Optimization.gene-quantificatio.info. http://www.gene-quantification.de/optimization.html.
6. Jahan-Tigh, R. R., Ryan, C., Obermoser, G., Schwarzenberger, K. (2012). Flow Cytometry. Journal of
Investigative Dermatology, 132, 1-6.
7. Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M, Nakagomi T, Nakagomi O, Okabe S. (2013). Histo-blood
group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses.
Journal of virology 87 (17).
8. Allan McI. Mowat (2003). Anatomical basis of tolerance and immunity to intestinal antigens Nature Reviews
Immunology 3, 331-341 http://www.nature.com/nri/journal/v3/n4/images/nri1057-f1.gif
9. Kang Rok Han,1 Yubin Choi,1 Byung Sup Min,1 Hyesook Jeong,2 Doosung Cheon,2 Jonghyun Kim,3 Youngmee
Jee,2 Sungho Shin1 and Jai Myung Yang1 (2010). Murine norovirus-1 3Dpol exhibits RNA-dependent RNA
polymerase activity and nucleotidylylates on Tyr of the VPg. Journal of General Virology (2010), 91, 1713–
1722
10. http://en.wikipedia.org/wiki/Peyer%27s_patch
11. http://www.ncbi.nlm.nih.gov/gv/rbc/xslcgi.fcgi?cmd=bgmut/systems_info&system=abo
Works cited1.1 Lin,X., Thorne, L., Jin, Z., Hammad, L. A., Li, S., Deval, J., Goodfellow. I. G., Kao, C. C.
(2014). Subgenomic promoter recognition by the norovirus RNA-dependent RNA polymerases Nucleic
Acids Res., 43(1), 1.
1.2 Croci, R., Pezzullo, M., Tarantino, D., Milani, M., Tsay, S.-C., Sureshbabu, R., Tsai, Y., Mastrangel, E.,
Rohayem, J.,Bolognesi, M., Hwu, J. R. (2014). Structural Bases of Norovirus RNA Dependent RNA
Polymerase Inhibition by Novel Suramin-Related Compounds. PLoS ONE, 9(3), 1.
1.3 Hyde, J. L., Gillespie, L. K., & Mackenzie, J. M. (2012). Mouse Norovirus 1 Utilizes the Cytoskeleton
Network To Establish Localization of the Replication Complex Proximal to the Microtubule Organizing
Center. Journal of Virology, 86(8), 4110.
1.4 Sosnovtsev, S. V., Belliot, G., Chang, K.-O., Prikhodko, V. G., Thackray, L. B., Wobus, C. E., Karst, S. M.,
Virgin, H. W., Green, K. Y. (2006). Cleavage Map and Proteolytic Processing of the Murine Norovirus
Nonstructural Polyprotein in Infected Cells . Journal of Virology, 80(16), 7816, 7826, 7828-7830.
1.5 Bok, K., Prikhodko, V. G., Green, K. Y., & Sosnovtsev, S. V. (2009). Apoptosis in Murine Norovirus-
Infected RAW264.7 Cells Is Associated with Downregulation of Survivin . Journal of Virology, 83(8),
3647, 3650, 3654.
1.6 Herod, M. R., Salim, O., Skilton, R. J., Prince, C. A., Ward, V. K., Lambden, P. R., & Clarke, I. N. (2014).
Expression of the Murine Norovirus (MNV) ORF1 Polyprotein Is Sufficient to Induce Apoptosis in a Virus-
Free Cell Model. PLoS ONE, 9(3), 1-2.
1.7 Caddy, S., Breiman, A., le Pendu, J., & Goodfellow, I. (2014). Genogroup IV and VI Canine Noroviruses
Interact with Histo-Blood Group Antigens. Journal of Virology,88(18), 10377–10378.
1.8 Shanker, S., Czako, R., Sankaran, B., Atmar, R. L., Estes, M. K., & Prasad, B. V. V. (2014). Structural
Analysis of Determinants of Histo-Blood Group Antigen Binding Specificity in Genogroup I
Noroviruses. Journal of Virology, 88(11), 6168–6176.
1.9 Reeck, A., Kavanagh, O., Estes, M. K., Opekun, A. R., Gilger, M. A., Graham, D. Y., & Atmar, R. L.
(2010). Serologic Correlate of Protection against Norovirus-Induced Gastroenteritis. The Journal of
Infectious Diseases, 202(8), 1212,1218.
1.10 Chachu, K. A., Strong, D. W., LoBue, A. D., Wobus, C. E., Baric, R. S., & Virgin, H. W. (2008). Antibody
Is Critical for the Clearance of Murine Norovirus Infection. Journal of Virology, 82(13), 6610, 6614, 6615.
1.11 Hirneisen, K. A, Kniel, K. E. (2013). Norovirus Attachment: Implications for Food Safety. Food
Protection Trends, 33 (5). 290-291.
2.1 Wobus, C. E., Karst, S. M., Thackray, L. B., Chang, K.-O., Sosnovtsev, S. V., Belliot, G., Krug, A.,
Mackenzie, J. M., Green, K. Y., Virgin, H. W. (2004). Replication of Norovirus in Cell Culture Reveals a
Tropism for Dendritic Cells and Macrophages. PLoS Biology, 2(12), 2076-2077, 2079, 2081.
2.2 Zhu, S., Regev, D., Watanabe, M., Hickman, D., Moussatche, N., Jesus, D. M., Kahan, S. M., Napthine,
S., Brierly, I., Hunter III, R. N., Devabhaktuni, D., Jones, M. K., Karst, S. M. (2013). Identification of
Immune and Viral Correlates of Norovirus Protective Immunity through Comparative Study of Intra-
Cluster Norovirus Strains.PLoS Pathogens, 9(9), 1, 7, 12.
2.3 Mumphrey, S. M., Changotra, H., Moore, T. N., Heimann-Nichols, E. R., Wobus, C. E., Reilly, M. J.,
Reilly, M. J., Moghadamfalahi, M., Shukla, D., Karst, S. M. (2007). Murine Norovirus 1 Infection Is
Associated with Histopathological Changes in Immunocompetent Hosts, but Clinical Disease Is
Prevented by STAT1-Dependent Interferon Responses . Journal of Virology, 81(7), 3251-3252, 3257,
3261.
2.4 Miura, T., Sano, D., Suenaga, A., Yoshimura, T., Fuzawa, M., Nakagomi, T.,Nakagomi, O., Okabe, S.
(2013). Histo-Blood Group Antigen-Like Substances of Human Enteric Bacteria as Specific Adsorbents for
Human Noroviruses. Journal of Virology, 87(17), 9441, 9444-9445,9448.
2.5 Herbst-Kralovetz, M. M., Radtke, A. L., Lay, M. K., Hjelm, B. E., Bolick, A. N., Sarker, S. S., Atmar, R. L.,
Kingsley, D. H., Arntzen, C. J., Estes, M. K., Nickerson, C. A. (2013). Lack of Norovirus Replication and
Histo-Blood Group Antigen Expression in 3-Dimensional Intestinal Epithelial Cells. Emerging Infectious
Disease journal, 19 (3), 431, 434.
2.6 Jones, M. K., Watanabe, M., Zhu, S., Graves, C. L., Keyes, L. R., Grau K. R., Gonzalez-Hernandez, M. B.,
Iovine, N. M., Wobus, C. E., Vinjé, J., Tibbetts, S. A., Wallet, S. M., Karst, S. M. (2014). Supplementary
Material for Enteric bacteria promote human and mouse norovirus infection of B cells. Sciencemag, 346
(755), 1-16.
2.7 J. May, B. Korba, A. Medvedev, P. Viswanathan, Enzyme kinetics of the human norovirus protease
control virus polyprotein processing order. Virology 444, 218–224 (2013).
3.1 H. L. Koo, N. Ajami, R. L. Atmar, H. L. DuPont. (2010). Norovirus: The Principal Cause of
Foodborne Disease Worldwide. Discov Med, 10(50), 61,64.
3.2 (2014).Murine Norovirus. Biomedical Diagonostics. 1-2.
3.3 Jahan-Tigh, R. R., Ryan, C., Obermoser, G., Schwarzenberger, K. (2012). Flow cytometry.
Journal of Investigative Dermatology, 132, 1-2.
3.4 Shirato, H. (2011). Norovirus and Histo-Blood Group Antigens. Department of Virology II, National
Institute of Infectious Disease, 65, 95,99.
3.5 Sestak, K. (2014). Role of histo-blood group antigens in primate enteric calcivirus infections. World
journal of Virology, 3(3), 18-19.
3.6 Prey, L., (2008). The Biotechnology Revolution: PCR and the Use or Reverse Transcriptase to Clone
Expressed Genes. Nature Education 1 (1), 1-2.
3.7 Odell, I. D., Cook, D. (2013). Immunofluorescence Techniques. Journal of Investigative Dermatology,
133(4), 1-2.
4.1 Cytospring. PBS( Phosphate-Buffered Saline).
http://www.researchgate.net/publictopics.PublicPostFileLoader.html?id=52f88bfacf57d727448b45de&
key=e0b4952f88bfa0e8d8
4.2 Washington State Department of Health. (2013). Norovirus.
http://www.doh.wa.gov/Portals/1/Documents/4400/332-083-Norovirus.pdf
4.3 Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., Stahl, D. A. (2015). Brock biology of
microorganisms fourteenth ed. Pearson Education Inc. 41-43,246-247, 248, 266-267, 909.
4.4 Encyclopedia Britannica. (2014). http://www.britannica.com/EBchecked/topic/148948/cytopathic-
effect-CPE
4.5 Life Technologies (2015). https://www.lifetechnologies.com/order/catalog/product/P1304MP
4.6 University of Queensland (2015). Immunofluorescence- Background.
http://www.di.uq.edu.au/sparqcbeifbackground
4.7 (2013). An Overview of virus quantification techniques. https://virocyt.com/wp-
content/uploads/2013/04/VirusQuantificationWhitePaper.pdf
4.8 Peyer patch. (2015). Encyclopædia Britannica. Retrieved
fromhttp://www.britannica.com/EBchecked/topic/454716/Peyer-patch
4.9 (2014). Western Blot. http://www.nature.com/scitable/definition/western-blot-288
4.10 (2010). Protocols Online- Phosphate Buffered
Saline.http://protocolsonline.comrecipes.phosphate-buffered-salin-pbs
4.11 Johnson, M. Loading Controls for Western Blots. (2014). Labome.
http://www.labome.com/method/Loading-Controls-for-Western-Blots.html
Questions?

Weitere ähnliche Inhalte

Was ist angesagt?

Membranoproliferative GN - Road to Diagnosis & Management - What is the evide...
Membranoproliferative GN - Road to Diagnosis & Management - What is the evide...Membranoproliferative GN - Road to Diagnosis & Management - What is the evide...
Membranoproliferative GN - Road to Diagnosis & Management - What is the evide...NephroTube - Dr.Gawad
 
Quorum sensing in luminescent bacteria
Quorum sensing  in luminescent bacteriaQuorum sensing  in luminescent bacteria
Quorum sensing in luminescent bacteriaSmruti Prabhudesai
 
Dr shashi bansal approch to bone marrow examination
Dr shashi bansal  approch to bone marrow examinationDr shashi bansal  approch to bone marrow examination
Dr shashi bansal approch to bone marrow examinationShashi Bansal
 
Multiplicity of infection
Multiplicity of infectionMultiplicity of infection
Multiplicity of infectionsiva ni
 
Microbiology Bio 127 Microbial Interactions with Humans (normal flora)
Microbiology Bio 127 Microbial Interactions with Humans (normal flora)Microbiology Bio 127 Microbial Interactions with Humans (normal flora)
Microbiology Bio 127 Microbial Interactions with Humans (normal flora)Shaina Mavreen Villaroza
 
Standardization of bone marrow specimen processing; immunohistochemistry and ...
Standardization of bone marrow specimen processing; immunohistochemistry and ...Standardization of bone marrow specimen processing; immunohistochemistry and ...
Standardization of bone marrow specimen processing; immunohistochemistry and ...Muneerah Saeed
 
( Journal Club ) Procalcitonin as a diagnostic biomarker of sepsis: A tertiar...
( Journal Club ) Procalcitonin as a diagnostic biomarker of sepsis: A tertiar...( Journal Club ) Procalcitonin as a diagnostic biomarker of sepsis: A tertiar...
( Journal Club ) Procalcitonin as a diagnostic biomarker of sepsis: A tertiar...Abdullatif Al-Rashed
 
Neutrophil extracellular trap
Neutrophil extracellular trapNeutrophil extracellular trap
Neutrophil extracellular trapNainshi Bhatt
 
метод_тема 08 амп прот студ
метод_тема 08 амп прот студметод_тема 08 амп прот студ
метод_тема 08 амп прот студkafedra_trauma
 
Clinical Application of Stem Cells in HIV
Clinical Application of Stem Cells in HIVClinical Application of Stem Cells in HIV
Clinical Application of Stem Cells in HIVahmedicine
 
PEMERIKSAAN AGREGASI TROMBOSIT
PEMERIKSAAN AGREGASI TROMBOSITPEMERIKSAAN AGREGASI TROMBOSIT
PEMERIKSAAN AGREGASI TROMBOSITBiokimiaFKUI
 
Focal Glomerulosclerosis
Focal GlomerulosclerosisFocal Glomerulosclerosis
Focal Glomerulosclerosisedwinchowyw
 
Systemic Capillary Leak Syndrome complicated by severe Rhabdomyolysis: A case...
Systemic Capillary Leak Syndrome complicated by severe Rhabdomyolysis: A case...Systemic Capillary Leak Syndrome complicated by severe Rhabdomyolysis: A case...
Systemic Capillary Leak Syndrome complicated by severe Rhabdomyolysis: A case...Apollo Hospitals
 
Pemeriksaan hemoglobin fetus (hb f)
Pemeriksaan hemoglobin fetus (hb f)Pemeriksaan hemoglobin fetus (hb f)
Pemeriksaan hemoglobin fetus (hb f)andreei
 
Tibaru17
Tibaru17Tibaru17
Tibaru17andreei
 

Was ist angesagt? (20)

HLA in Health & Disease
HLA in Health & DiseaseHLA in Health & Disease
HLA in Health & Disease
 
Membranoproliferative GN - Road to Diagnosis & Management - What is the evide...
Membranoproliferative GN - Road to Diagnosis & Management - What is the evide...Membranoproliferative GN - Road to Diagnosis & Management - What is the evide...
Membranoproliferative GN - Road to Diagnosis & Management - What is the evide...
 
Quorum sensing in luminescent bacteria
Quorum sensing  in luminescent bacteriaQuorum sensing  in luminescent bacteria
Quorum sensing in luminescent bacteria
 
Tkik4
Tkik4Tkik4
Tkik4
 
Dr shashi bansal approch to bone marrow examination
Dr shashi bansal  approch to bone marrow examinationDr shashi bansal  approch to bone marrow examination
Dr shashi bansal approch to bone marrow examination
 
Multiplicity of infection
Multiplicity of infectionMultiplicity of infection
Multiplicity of infection
 
Microbiology Bio 127 Microbial Interactions with Humans (normal flora)
Microbiology Bio 127 Microbial Interactions with Humans (normal flora)Microbiology Bio 127 Microbial Interactions with Humans (normal flora)
Microbiology Bio 127 Microbial Interactions with Humans (normal flora)
 
Standardization of bone marrow specimen processing; immunohistochemistry and ...
Standardization of bone marrow specimen processing; immunohistochemistry and ...Standardization of bone marrow specimen processing; immunohistochemistry and ...
Standardization of bone marrow specimen processing; immunohistochemistry and ...
 
Minimal Change Disease
Minimal Change DiseaseMinimal Change Disease
Minimal Change Disease
 
( Journal Club ) Procalcitonin as a diagnostic biomarker of sepsis: A tertiar...
( Journal Club ) Procalcitonin as a diagnostic biomarker of sepsis: A tertiar...( Journal Club ) Procalcitonin as a diagnostic biomarker of sepsis: A tertiar...
( Journal Club ) Procalcitonin as a diagnostic biomarker of sepsis: A tertiar...
 
Neutrophil extracellular trap
Neutrophil extracellular trapNeutrophil extracellular trap
Neutrophil extracellular trap
 
Leukemia
LeukemiaLeukemia
Leukemia
 
anti nuclear antibody
anti nuclear antibodyanti nuclear antibody
anti nuclear antibody
 
метод_тема 08 амп прот студ
метод_тема 08 амп прот студметод_тема 08 амп прот студ
метод_тема 08 амп прот студ
 
Clinical Application of Stem Cells in HIV
Clinical Application of Stem Cells in HIVClinical Application of Stem Cells in HIV
Clinical Application of Stem Cells in HIV
 
PEMERIKSAAN AGREGASI TROMBOSIT
PEMERIKSAAN AGREGASI TROMBOSITPEMERIKSAAN AGREGASI TROMBOSIT
PEMERIKSAAN AGREGASI TROMBOSIT
 
Focal Glomerulosclerosis
Focal GlomerulosclerosisFocal Glomerulosclerosis
Focal Glomerulosclerosis
 
Systemic Capillary Leak Syndrome complicated by severe Rhabdomyolysis: A case...
Systemic Capillary Leak Syndrome complicated by severe Rhabdomyolysis: A case...Systemic Capillary Leak Syndrome complicated by severe Rhabdomyolysis: A case...
Systemic Capillary Leak Syndrome complicated by severe Rhabdomyolysis: A case...
 
Pemeriksaan hemoglobin fetus (hb f)
Pemeriksaan hemoglobin fetus (hb f)Pemeriksaan hemoglobin fetus (hb f)
Pemeriksaan hemoglobin fetus (hb f)
 
Tibaru17
Tibaru17Tibaru17
Tibaru17
 

Ähnlich wie Enteric bacteria promote human and mouse norovirus infection

1. Rotavirus and Noravirus
1. Rotavirus and Noravirus1. Rotavirus and Noravirus
1. Rotavirus and NoravirusSimranjit Singh
 
ALEXANDER POLINKOVSKY CV 2015
ALEXANDER POLINKOVSKY CV 2015ALEXANDER POLINKOVSKY CV 2015
ALEXANDER POLINKOVSKY CV 2015Alex Polinkovsky
 
Crimson Publishers- New Hope for Cancer Immunotherapy: Viral Based Cancer Vac...
Crimson Publishers- New Hope for Cancer Immunotherapy: Viral Based Cancer Vac...Crimson Publishers- New Hope for Cancer Immunotherapy: Viral Based Cancer Vac...
Crimson Publishers- New Hope for Cancer Immunotherapy: Viral Based Cancer Vac...CrimsonPublishers-SBB
 
Role of virus in periodontal diseases
Role of virus in periodontal diseasesRole of virus in periodontal diseases
Role of virus in periodontal diseasesDr. sneha chavan
 
Adenovirus parvovirus polyomavirus
Adenovirus  parvovirus  polyomavirusAdenovirus  parvovirus  polyomavirus
Adenovirus parvovirus polyomavirusJulian Lopez Solarte
 
Zoulim chapitre fields virology 2013 lwbk1180-ch68 p2185-2221 copie
Zoulim chapitre  fields virology 2013 lwbk1180-ch68 p2185-2221 copieZoulim chapitre  fields virology 2013 lwbk1180-ch68 p2185-2221 copie
Zoulim chapitre fields virology 2013 lwbk1180-ch68 p2185-2221 copieodeckmyn
 
bacteriophage use in therapy
bacteriophage use in therapybacteriophage use in therapy
bacteriophage use in therapyMumtaz Ali
 
SARS-like cluster of circulating bat coronavirus pose threat for human emergence
SARS-like cluster of circulating bat coronavirus pose threat for human emergenceSARS-like cluster of circulating bat coronavirus pose threat for human emergence
SARS-like cluster of circulating bat coronavirus pose threat for human emergenceThierry Debels
 
Zoulim chapitre fields virology 2013 lwbk1180-ch68 p2185-2221
Zoulim  chapitre fields virology 2013 lwbk1180-ch68 p2185-2221Zoulim  chapitre fields virology 2013 lwbk1180-ch68 p2185-2221
Zoulim chapitre fields virology 2013 lwbk1180-ch68 p2185-2221odeckmyn
 
Introduction to Viruses of Medical Importance-1.ppt
Introduction to Viruses of Medical Importance-1.pptIntroduction to Viruses of Medical Importance-1.ppt
Introduction to Viruses of Medical Importance-1.pptAllanIbnSuma
 
Microbiology of periodontal diseases
Microbiology of periodontal diseasesMicrobiology of periodontal diseases
Microbiology of periodontal diseasesAishwarya Hajare
 
Step-Up Poster (4)
Step-Up Poster (4)Step-Up Poster (4)
Step-Up Poster (4)Ariel Munoz
 
molecular mechanism of viral diseases and biotechnological interventions for ...
molecular mechanism of viral diseases and biotechnological interventions for ...molecular mechanism of viral diseases and biotechnological interventions for ...
molecular mechanism of viral diseases and biotechnological interventions for ...wani amir
 
Extracellular vesicles as drug delivery systems.pptx
Extracellular vesicles as drug delivery systems.pptxExtracellular vesicles as drug delivery systems.pptx
Extracellular vesicles as drug delivery systems.pptxVishakha Deshmukh
 
Antimicrobials in Pancreatits.pptx
Antimicrobials in Pancreatits.pptxAntimicrobials in Pancreatits.pptx
Antimicrobials in Pancreatits.pptxDr. Gowtham Krishna
 
Campbell_Resume_011515
Campbell_Resume_011515Campbell_Resume_011515
Campbell_Resume_011515James Campbell
 

Ähnlich wie Enteric bacteria promote human and mouse norovirus infection (20)

CV
CVCV
CV
 
Romain Banchereau - Resume
Romain Banchereau - ResumeRomain Banchereau - Resume
Romain Banchereau - Resume
 
The effects of circumcision on the penis microbiome
The effects of circumcision on the penis microbiomeThe effects of circumcision on the penis microbiome
The effects of circumcision on the penis microbiome
 
1. Rotavirus and Noravirus
1. Rotavirus and Noravirus1. Rotavirus and Noravirus
1. Rotavirus and Noravirus
 
ALEXANDER POLINKOVSKY CV 2015
ALEXANDER POLINKOVSKY CV 2015ALEXANDER POLINKOVSKY CV 2015
ALEXANDER POLINKOVSKY CV 2015
 
Crimson Publishers- New Hope for Cancer Immunotherapy: Viral Based Cancer Vac...
Crimson Publishers- New Hope for Cancer Immunotherapy: Viral Based Cancer Vac...Crimson Publishers- New Hope for Cancer Immunotherapy: Viral Based Cancer Vac...
Crimson Publishers- New Hope for Cancer Immunotherapy: Viral Based Cancer Vac...
 
Role of virus in periodontal diseases
Role of virus in periodontal diseasesRole of virus in periodontal diseases
Role of virus in periodontal diseases
 
Adenovirus parvovirus polyomavirus
Adenovirus  parvovirus  polyomavirusAdenovirus  parvovirus  polyomavirus
Adenovirus parvovirus polyomavirus
 
Zoulim chapitre fields virology 2013 lwbk1180-ch68 p2185-2221 copie
Zoulim chapitre  fields virology 2013 lwbk1180-ch68 p2185-2221 copieZoulim chapitre  fields virology 2013 lwbk1180-ch68 p2185-2221 copie
Zoulim chapitre fields virology 2013 lwbk1180-ch68 p2185-2221 copie
 
bacteriophage use in therapy
bacteriophage use in therapybacteriophage use in therapy
bacteriophage use in therapy
 
SARS-like cluster of circulating bat coronavirus pose threat for human emergence
SARS-like cluster of circulating bat coronavirus pose threat for human emergenceSARS-like cluster of circulating bat coronavirus pose threat for human emergence
SARS-like cluster of circulating bat coronavirus pose threat for human emergence
 
Zoulim chapitre fields virology 2013 lwbk1180-ch68 p2185-2221
Zoulim  chapitre fields virology 2013 lwbk1180-ch68 p2185-2221Zoulim  chapitre fields virology 2013 lwbk1180-ch68 p2185-2221
Zoulim chapitre fields virology 2013 lwbk1180-ch68 p2185-2221
 
Introduction to Viruses of Medical Importance-1.ppt
Introduction to Viruses of Medical Importance-1.pptIntroduction to Viruses of Medical Importance-1.ppt
Introduction to Viruses of Medical Importance-1.ppt
 
Microbiology of periodontal diseases
Microbiology of periodontal diseasesMicrobiology of periodontal diseases
Microbiology of periodontal diseases
 
Step-Up Poster (4)
Step-Up Poster (4)Step-Up Poster (4)
Step-Up Poster (4)
 
molecular mechanism of viral diseases and biotechnological interventions for ...
molecular mechanism of viral diseases and biotechnological interventions for ...molecular mechanism of viral diseases and biotechnological interventions for ...
molecular mechanism of viral diseases and biotechnological interventions for ...
 
Hcv genotyping
Hcv genotyping Hcv genotyping
Hcv genotyping
 
Extracellular vesicles as drug delivery systems.pptx
Extracellular vesicles as drug delivery systems.pptxExtracellular vesicles as drug delivery systems.pptx
Extracellular vesicles as drug delivery systems.pptx
 
Antimicrobials in Pancreatits.pptx
Antimicrobials in Pancreatits.pptxAntimicrobials in Pancreatits.pptx
Antimicrobials in Pancreatits.pptx
 
Campbell_Resume_011515
Campbell_Resume_011515Campbell_Resume_011515
Campbell_Resume_011515
 

Enteric bacteria promote human and mouse norovirus infection

  • 1. Enteric bacteria promote human and mouse norovirus infection of B cells Melissa K. Jones,1* Makiko Wantanbe,1* Shu Zhu,1 Christina L. Graves,2,3 Lisa R. Keyes,1 Katrina R. Grau,1 Mariam B. Gonzalez-Hernandez,4 Nicole M. Iovine,5 Christina E. Wobus,4 Jan Vinjé,6 Scott A. Tibbetts,1 Shannon M. Wallet,2,3 Stephanie M. Karst1† Presented by: Katherin Portwood
  • 2. 1 • Easily transmitted in vomit aerosols, person to person contact, and fecal-oral contamination • Small infection dose: 10-20 viral particles • Cruise ship diarrhea • Dehydration, vomiting, nausea, diarrhea • Duration: 24-48 hours • Most prevalent strain today is GII.4 Sydney
  • 3. Norovirus is a lytic virus • Attaches to host cell and inserts its genome • Utilizes host machinery and one viral protein (RNA dependent RNA polymerase) to replicate virons • Host cells are destroyed to release virus descendants
  • 4. Norovirus is an +ssRNA virus • RNA dependent RNA polymerase (RdRp) replicates the genome – +ssRNA – -ssRNA – +ssRNA
  • 5. Norovirus is a non-enveloped virus • Norovirus binds to Histo- Blood Group Antigens (HBGAs) • Every virus has capsid proteins that protect the genome – VP1 is the major capsid protein in norovirus. – VP1 encodes for a P domain capable of binding to HBGAs
  • 8. Mouse Norovirus (MuNoV) • Acute infection • Protective immunity – short lived • Persistent infections • Attenuated Infect macrophages and Dendritic Cells of the host immune system Time course of infection MNV-1 MNV-3
  • 9. Measurement of Virus infectivity • Cytopathic effects (CPE) – Structural changes in the host cells that are caused by viral invasion – Evidence of cell lysis (plaques) – Represents actively replicating norovirus • Plaque forming units (PFU) – Visual detections to determine the amount of virus particles from dead host cells • TCID-50 – Represents the viral concentration necessary to induce cell death/ pathological changes in 50% of inoculated cells – Determined by a specific calculation
  • 10. Figure 1A • RAW246.7- mouse macrophage • M12- Mature mouse B cell • WEHI.231- immature mouse B cell • CMT-93- intestinal epithelial cells MuNoVs infect B cells in culture
  • 11. Determining cell viability • Propidium Iodide staining – Red fluorescent stain – Only permeates the membranes of dead cells – Binds to DNA
  • 12. Figure 1B MuNoVs infect B cells in culture
  • 14. Figure 1C MuNoVs infect B cells in culture
  • 15. Figure 1D MuNoVs infect B cells in culture
  • 16. Figure 2A MuNoVs target Peyer’s patch B cells
  • 17. Figure 2B MuNoVs target Peyer’s patch B cellsWhy was there no significant difference in infection of the colon tissue?
  • 18. Peyer’s Patches • lymphatic follicles that sample the contents of the small intestine • “waiting room” for B cells who will soon interact with their antigen • Once the interaction is made, the B cells travel to the mesenteric lymph nodes to continue immune responses 11
  • 42. Figure 2C • RT-PCR detected the presence of viral genome in CD19 marked B cells and bulk cells collected from Peyer’s Patches. MuNoVs target Peyer’s patch B cells
  • 44. Figure 2D • N-term is a non- structural protein that activates host cell apoptosis • CD19 and B220 are B cell surface markers • Flow cytometry detected the presence of viral replication in diverse types of B cells MuNoVs target Peyer’s patch B cells
  • 45. Figure 3A • GII.4 Sydney is the current dominate HuNoV strain • Human Burrkits lymphoma cells (BJABs) were the test B cells • viral genome growth in B cells at 3 and 5 dpi HuNoVs productively infect B cells in culture
  • 46. Figure 3B • UV light acts as a mutagen -inactivates the viral replication process HuNoVs productively infect B cells in culture
  • 47. Figure 3C-D HuNoVs productively infect B cells in culture
  • 48. Figure 3E-F HuNoVs productively infect B cells in culture
  • 49. Figure 4 A Intestinal bacteria facilitate NoV infections
  • 50. Figure 4 B Intestinal bacteria facilitate NoV infections
  • 51. Figure 4 C Intestinal bacterial facilitate NoV infections
  • 52. Figure 4 D Intestinal bacteria facilitate NoV infections
  • 53. Conclusion • Murine Norovirus infects B cells in culture • MuNoVs target Peyer’s Patch B cells • HuNoVs productively infect B cells in culture • Intestinal bacteria facilitate NoV infections
  • 54. Bibliography 1. Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., Stahl, D. A. (2015). Brock biology of microorganisms fourteenth ed. Pearson Education Inc. 249; 266-267; 909. 2. Kaiser, G. E., (2007). Doc Kaiser’s Microbiology Home Page. http://faculty.ccbcmd.edu/courses/bio141/lecguide/unit4/viruses/ssplusRNA_lc.html. 3. Hyde, J. L., Sosnovtsev, S. V., Green, K. Y., Wobus, C., Virgin, H. W., Mackenzie, J. M., (2009). Mouse Norovirus Replication Is Associated with Virus-Induced Vesicle Clusters Originating from Membranes Derived from the Secretory Pathway. Journal of Virology, 83, (19).9709-9719. 4. University of Queensland (2015). Immunofluorescence- Background. http://www.di.uq.edu.au/sparqcbeifbackground. 5. Optimization.gene-quantificatio.info. http://www.gene-quantification.de/optimization.html. 6. Jahan-Tigh, R. R., Ryan, C., Obermoser, G., Schwarzenberger, K. (2012). Flow Cytometry. Journal of Investigative Dermatology, 132, 1-6. 7. Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M, Nakagomi T, Nakagomi O, Okabe S. (2013). Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. Journal of virology 87 (17). 8. Allan McI. Mowat (2003). Anatomical basis of tolerance and immunity to intestinal antigens Nature Reviews Immunology 3, 331-341 http://www.nature.com/nri/journal/v3/n4/images/nri1057-f1.gif 9. Kang Rok Han,1 Yubin Choi,1 Byung Sup Min,1 Hyesook Jeong,2 Doosung Cheon,2 Jonghyun Kim,3 Youngmee Jee,2 Sungho Shin1 and Jai Myung Yang1 (2010). Murine norovirus-1 3Dpol exhibits RNA-dependent RNA polymerase activity and nucleotidylylates on Tyr of the VPg. Journal of General Virology (2010), 91, 1713– 1722 10. http://en.wikipedia.org/wiki/Peyer%27s_patch 11. http://www.ncbi.nlm.nih.gov/gv/rbc/xslcgi.fcgi?cmd=bgmut/systems_info&system=abo
  • 55. Works cited1.1 Lin,X., Thorne, L., Jin, Z., Hammad, L. A., Li, S., Deval, J., Goodfellow. I. G., Kao, C. C. (2014). Subgenomic promoter recognition by the norovirus RNA-dependent RNA polymerases Nucleic Acids Res., 43(1), 1. 1.2 Croci, R., Pezzullo, M., Tarantino, D., Milani, M., Tsay, S.-C., Sureshbabu, R., Tsai, Y., Mastrangel, E., Rohayem, J.,Bolognesi, M., Hwu, J. R. (2014). Structural Bases of Norovirus RNA Dependent RNA Polymerase Inhibition by Novel Suramin-Related Compounds. PLoS ONE, 9(3), 1. 1.3 Hyde, J. L., Gillespie, L. K., & Mackenzie, J. M. (2012). Mouse Norovirus 1 Utilizes the Cytoskeleton Network To Establish Localization of the Replication Complex Proximal to the Microtubule Organizing Center. Journal of Virology, 86(8), 4110. 1.4 Sosnovtsev, S. V., Belliot, G., Chang, K.-O., Prikhodko, V. G., Thackray, L. B., Wobus, C. E., Karst, S. M., Virgin, H. W., Green, K. Y. (2006). Cleavage Map and Proteolytic Processing of the Murine Norovirus Nonstructural Polyprotein in Infected Cells . Journal of Virology, 80(16), 7816, 7826, 7828-7830. 1.5 Bok, K., Prikhodko, V. G., Green, K. Y., & Sosnovtsev, S. V. (2009). Apoptosis in Murine Norovirus- Infected RAW264.7 Cells Is Associated with Downregulation of Survivin . Journal of Virology, 83(8), 3647, 3650, 3654. 1.6 Herod, M. R., Salim, O., Skilton, R. J., Prince, C. A., Ward, V. K., Lambden, P. R., & Clarke, I. N. (2014). Expression of the Murine Norovirus (MNV) ORF1 Polyprotein Is Sufficient to Induce Apoptosis in a Virus- Free Cell Model. PLoS ONE, 9(3), 1-2. 1.7 Caddy, S., Breiman, A., le Pendu, J., & Goodfellow, I. (2014). Genogroup IV and VI Canine Noroviruses Interact with Histo-Blood Group Antigens. Journal of Virology,88(18), 10377–10378. 1.8 Shanker, S., Czako, R., Sankaran, B., Atmar, R. L., Estes, M. K., & Prasad, B. V. V. (2014). Structural Analysis of Determinants of Histo-Blood Group Antigen Binding Specificity in Genogroup I Noroviruses. Journal of Virology, 88(11), 6168–6176. 1.9 Reeck, A., Kavanagh, O., Estes, M. K., Opekun, A. R., Gilger, M. A., Graham, D. Y., & Atmar, R. L. (2010). Serologic Correlate of Protection against Norovirus-Induced Gastroenteritis. The Journal of Infectious Diseases, 202(8), 1212,1218. 1.10 Chachu, K. A., Strong, D. W., LoBue, A. D., Wobus, C. E., Baric, R. S., & Virgin, H. W. (2008). Antibody Is Critical for the Clearance of Murine Norovirus Infection. Journal of Virology, 82(13), 6610, 6614, 6615. 1.11 Hirneisen, K. A, Kniel, K. E. (2013). Norovirus Attachment: Implications for Food Safety. Food Protection Trends, 33 (5). 290-291.
  • 56. 2.1 Wobus, C. E., Karst, S. M., Thackray, L. B., Chang, K.-O., Sosnovtsev, S. V., Belliot, G., Krug, A., Mackenzie, J. M., Green, K. Y., Virgin, H. W. (2004). Replication of Norovirus in Cell Culture Reveals a Tropism for Dendritic Cells and Macrophages. PLoS Biology, 2(12), 2076-2077, 2079, 2081. 2.2 Zhu, S., Regev, D., Watanabe, M., Hickman, D., Moussatche, N., Jesus, D. M., Kahan, S. M., Napthine, S., Brierly, I., Hunter III, R. N., Devabhaktuni, D., Jones, M. K., Karst, S. M. (2013). Identification of Immune and Viral Correlates of Norovirus Protective Immunity through Comparative Study of Intra- Cluster Norovirus Strains.PLoS Pathogens, 9(9), 1, 7, 12. 2.3 Mumphrey, S. M., Changotra, H., Moore, T. N., Heimann-Nichols, E. R., Wobus, C. E., Reilly, M. J., Reilly, M. J., Moghadamfalahi, M., Shukla, D., Karst, S. M. (2007). Murine Norovirus 1 Infection Is Associated with Histopathological Changes in Immunocompetent Hosts, but Clinical Disease Is Prevented by STAT1-Dependent Interferon Responses . Journal of Virology, 81(7), 3251-3252, 3257, 3261. 2.4 Miura, T., Sano, D., Suenaga, A., Yoshimura, T., Fuzawa, M., Nakagomi, T.,Nakagomi, O., Okabe, S. (2013). Histo-Blood Group Antigen-Like Substances of Human Enteric Bacteria as Specific Adsorbents for Human Noroviruses. Journal of Virology, 87(17), 9441, 9444-9445,9448. 2.5 Herbst-Kralovetz, M. M., Radtke, A. L., Lay, M. K., Hjelm, B. E., Bolick, A. N., Sarker, S. S., Atmar, R. L., Kingsley, D. H., Arntzen, C. J., Estes, M. K., Nickerson, C. A. (2013). Lack of Norovirus Replication and Histo-Blood Group Antigen Expression in 3-Dimensional Intestinal Epithelial Cells. Emerging Infectious Disease journal, 19 (3), 431, 434. 2.6 Jones, M. K., Watanabe, M., Zhu, S., Graves, C. L., Keyes, L. R., Grau K. R., Gonzalez-Hernandez, M. B., Iovine, N. M., Wobus, C. E., Vinjé, J., Tibbetts, S. A., Wallet, S. M., Karst, S. M. (2014). Supplementary Material for Enteric bacteria promote human and mouse norovirus infection of B cells. Sciencemag, 346 (755), 1-16. 2.7 J. May, B. Korba, A. Medvedev, P. Viswanathan, Enzyme kinetics of the human norovirus protease control virus polyprotein processing order. Virology 444, 218–224 (2013). 3.1 H. L. Koo, N. Ajami, R. L. Atmar, H. L. DuPont. (2010). Norovirus: The Principal Cause of Foodborne Disease Worldwide. Discov Med, 10(50), 61,64. 3.2 (2014).Murine Norovirus. Biomedical Diagonostics. 1-2. 3.3 Jahan-Tigh, R. R., Ryan, C., Obermoser, G., Schwarzenberger, K. (2012). Flow cytometry. Journal of Investigative Dermatology, 132, 1-2.
  • 57. 3.4 Shirato, H. (2011). Norovirus and Histo-Blood Group Antigens. Department of Virology II, National Institute of Infectious Disease, 65, 95,99. 3.5 Sestak, K. (2014). Role of histo-blood group antigens in primate enteric calcivirus infections. World journal of Virology, 3(3), 18-19. 3.6 Prey, L., (2008). The Biotechnology Revolution: PCR and the Use or Reverse Transcriptase to Clone Expressed Genes. Nature Education 1 (1), 1-2. 3.7 Odell, I. D., Cook, D. (2013). Immunofluorescence Techniques. Journal of Investigative Dermatology, 133(4), 1-2. 4.1 Cytospring. PBS( Phosphate-Buffered Saline). http://www.researchgate.net/publictopics.PublicPostFileLoader.html?id=52f88bfacf57d727448b45de& key=e0b4952f88bfa0e8d8 4.2 Washington State Department of Health. (2013). Norovirus. http://www.doh.wa.gov/Portals/1/Documents/4400/332-083-Norovirus.pdf 4.3 Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., Stahl, D. A. (2015). Brock biology of microorganisms fourteenth ed. Pearson Education Inc. 41-43,246-247, 248, 266-267, 909. 4.4 Encyclopedia Britannica. (2014). http://www.britannica.com/EBchecked/topic/148948/cytopathic- effect-CPE 4.5 Life Technologies (2015). https://www.lifetechnologies.com/order/catalog/product/P1304MP 4.6 University of Queensland (2015). Immunofluorescence- Background. http://www.di.uq.edu.au/sparqcbeifbackground 4.7 (2013). An Overview of virus quantification techniques. https://virocyt.com/wp- content/uploads/2013/04/VirusQuantificationWhitePaper.pdf 4.8 Peyer patch. (2015). Encyclopædia Britannica. Retrieved fromhttp://www.britannica.com/EBchecked/topic/454716/Peyer-patch 4.9 (2014). Western Blot. http://www.nature.com/scitable/definition/western-blot-288 4.10 (2010). Protocols Online- Phosphate Buffered Saline.http://protocolsonline.comrecipes.phosphate-buffered-salin-pbs 4.11 Johnson, M. Loading Controls for Western Blots. (2014). Labome. http://www.labome.com/method/Loading-Controls-for-Western-Blots.html

Hinweis der Redaktion

  1. Colored Electomicrogram of norovirus About 30nm
  2. VP2 acts as an immunity suppressor by, regulating the maturation of antigen presenting cells and protective immunity induction. This is how MNV-1 prevents the stimulation of memory immune responses.
  3. TCID-50 was used here instead of PFUs, because not much lysis was occuring in the persistantly infected B cells, but the B cells housed the virus.
  4. B6 mice incoulated with MuNoV. At 1dpi peyer’s patches and CD19+ B cells were harvested and tested for viral genome presence.
  5. B cell are filtered through a membrane. The purification of B cells in the sample was 97% so prephaps a B220 macrophage was infected and diplayed Nterm by the mock inoculum.
  6. RT-PCR
  7. [colony-forming unit (CFU) is a rough estimate of the number of viable bacteria or fungal cells in a sample. Viable is defined as the ability to multiply via binary fission under the controlled conditions. ]