SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Downloaden Sie, um offline zu lesen
Collecting quantitative CNV information using
           aCGH in a Cytogenetic laboratory
                                 Anton Petrov, Ph.D.
                                         infoQuant




December 2009
Overview
Copy  number  analysis  of  array  CGH  data
   Overview  of  an  array-­‐based  Cytogenetic  test
   Looking  for  clinically  relevant  aberrations

Samples  from  healthy  individuals  and  building  CNV  tracks
   Aberration  frequency  data
   HapMap project,  release  3:  Affymetrix SNP  6.0  data

Population-­‐specific  CNV  profiles
   HapMap data:  11  populations

Probe  coverage  issue
   CNV  profile  variation  from  one  array  platform  to  another
Array-based copy number tests: data analysis
Data  pre-­‐processing
   Raw  measurements  extracted  from  a  slide
   Data  normalized  between  two  channels  (experiment/reference)
   Log-­‐ratio  measurements  built  and  arranged  along  genome

Detection  of  copy  number  changes
   Detection  of  regions  where  log-­‐ratios  significantly  deviate  from  zero  (gains  and  losses)
   A  robust  binary  segmentation  approach  for  high-­‐res  data  in  infoQuant  software

Reporting  of  detected  anomalies
   In  a  Cytogenetic  test  need  to  determine  clinical  relevance  of  detected  aberrations
Looking for clinically relevant anomalies
Known  genes
  Look  for  genes  overlapping  with  detected  anomalies
  Find  genes,  associated  with  a  specific  class  of  disorders
Known  CNVs
  Publicly  available  CNV  databases:  Database  of  Genomic  Variants  (Toronto)
    Lack  of  control  over  source
    Different  array  platforms  used
  In-­‐house  CNV  tracks  using  chosen  platform  
Building CNV tracks in copy number software
In-­‐house  CNV  track  
   Perform  copy  number  analysis  on  aCGH data  from  individual  samples  (control  group)
   Collect  CNV  regions  for  a  cohort  of  control  samples  and  visualize  in  routine  Cyto tests
   Keep  updating  CNV  tracks  as  new  samples  get  analyzed  

CNV  frequency  profile
   Compute  frequency  of  CNVs  along  genome  based  on  accumulated  samples
   Use  quantitative  information  that  CNV  frequencies  provide  to  interpret  relevance  of  
   detected  chromosomal  anomalies  in  newly  acquired  samples  
Using CNV tracks in Cytogenetic tests
Visualize  accumulated  CNV  information  during  routine  tests  
   Visualize  regions  of  frequent  CNVs  when  reviewing  data  for  a  new  sample  
   to  determine  clinical  relevance  of  detected  anomalies
   Further  increase  insight  into  possible  clinical  relevance  of  a  detected  
   anomaly  using  quantitative  information  provided  by  CNV  frequencies
Cohorts of healthy individuals: the HapMap project
The  HapMap project
  The  International  HapMap Project  is  a  partnership  of  scientists  and  funding  agencies    
  from  various  countries  www.hapmap.org
  The  goal  of  the  International  HapMap Project  is  to  compare  the  genetic  sequences  of  
  different  individuals  to  identify  chromosomal  regions  where  genetic  variants  are  
  shared
  Genetic  data  are  being  gathered  from  different  human  populations  >1000  samples  in  
  the  latest  release
  aCGH and  SNP  data  were  obtained  using  different  array  platforms  from  medium  
  resolution  to  high  resolution  to  ultra-­‐high  resolution  over  the  years
Building CNV frequencies across HapMap samples
A  large,  powerful  pool  of  data
  High-­‐density  information  provided  by  Affymetrix SNP  6.0  arrays
  CNV  frequencies  across  HapMap samples  provide  a  useful  insight  into  how  
  frequently  a  certain  anomaly  may  be  observed  in  healthy  individuals
  Separate  gain  frequencies  and  loss  frequencies  
  Useful  addition  to  the  Database  of  Genomic  Variants  
Filtering HapMap CNV data
Control  group  may  produce  CNVs  that  are  clinically  relevant  
   HapMap sample  below  demonstrates  a  large  copy  number  loss  confirmed  by  
   both  sets  of  measurements
   The  region  includes  cancer-­‐related  gene  NRAS
   Such  anomalies  need  to  be  isolated  using  copy  number  analysis  software
Filter  CNVs  by  size
   When  computing  CNV  frequency  profiles  pre-­‐set  software  to  disregard  CNVs  
   larger  than  2Mbp,  for  instance    
CNV frequency profiles specific to sample attribute
Demographic  attributes  may  be  important  
  For  example:  11  different  populations  in  HapMap
  Individual  CNV  frequency  plots  may  be  built  for  the  populations  by  aCGH
  software  and  used  in  Cytogenetic  tests  for  more  targeted  reference  
Probe coverage issue
Different  array  platforms  may  produce  slightly  different  CNV  profiles  
                                         -­‐scale  and  complex  architecture  of  human  copy-­‐number  

   Affymetrix SNP  6.0  arrays  (HapMap release  3)
   Platforms  may  concentrate  their  probe  coverage  on  different  areas,  hence  different  CNV  
   profiles.  This  is  typical  for  performing  copy  number  analysis  across  array  platforms.
Other sources of high-quality CNV data
Other  studies
  CHOP:  High-­‐resolution  mapping  of  copy  number  variations  in  2,026  healthy  individuals  
  http://cnv.chop.edu/
  Wellcome Trust:  Ultra-­‐high  resolution  CNV  study.  42  M  probe  coverage,  custom  2.1  M  
  array  designs  based  on  Roche-­‐Nimblegen aCGH.  
  http://www.sanger.ac.uk/humgen/cnv/42mio/

Weitere ähnliche Inhalte

Ähnlich wie Large aCGH Datasets

VS-CNV Annotations from the User's Perspective
VS-CNV Annotations from the User's PerspectiveVS-CNV Annotations from the User's Perspective
VS-CNV Annotations from the User's PerspectiveGolden Helix
 
The server of the Spanish Population Variability
The server of the Spanish Population VariabilityThe server of the Spanish Population Variability
The server of the Spanish Population VariabilityJoaquin Dopazo
 
NGS Applications I (UEB-UAT Bioinformatics Course - Session 2.1.2 - VHIR, Bar...
NGS Applications I (UEB-UAT Bioinformatics Course - Session 2.1.2 - VHIR, Bar...NGS Applications I (UEB-UAT Bioinformatics Course - Session 2.1.2 - VHIR, Bar...
NGS Applications I (UEB-UAT Bioinformatics Course - Session 2.1.2 - VHIR, Bar...VHIR Vall d’Hebron Institut de Recerca
 
Next Generation Sequencing methods
Next Generation Sequencing methods Next Generation Sequencing methods
Next Generation Sequencing methods Zohaib HUSSAIN
 
Common copy number variation detection from multiple sequenced samples
Common copy number variation detection from multiple sequenced samplesCommon copy number variation detection from multiple sequenced samples
Common copy number variation detection from multiple sequenced samplesieeepondy
 
Forum on Personalized Medicine: Challenges for the next decade
Forum on Personalized Medicine: Challenges for the next decadeForum on Personalized Medicine: Challenges for the next decade
Forum on Personalized Medicine: Challenges for the next decadeJoaquin Dopazo
 
Building bioinformatics resources for the global community
Building bioinformatics resources for the global communityBuilding bioinformatics resources for the global community
Building bioinformatics resources for the global communityExternalEvents
 
Global Gene Expression Profiles from Bladder Tumor FFPE Samples
Global Gene Expression Profiles from Bladder Tumor FFPE SamplesGlobal Gene Expression Profiles from Bladder Tumor FFPE Samples
Global Gene Expression Profiles from Bladder Tumor FFPE SamplesThermo Fisher Scientific
 
2012 10-24 - ngs webinar
2012 10-24 - ngs webinar2012 10-24 - ngs webinar
2012 10-24 - ngs webinarElsa von Licy
 
20160219 - S. De Toffol - Dal Sanger al NGS nello studio delle mutazioni BRCA
20160219 - S. De Toffol -  Dal Sanger al NGS nello studio delle mutazioni BRCA �20160219 - S. De Toffol -  Dal Sanger al NGS nello studio delle mutazioni BRCA �
20160219 - S. De Toffol - Dal Sanger al NGS nello studio delle mutazioni BRCA Roberto Scarafia
 
FFPE Applications Solutions brochure
FFPE Applications Solutions brochureFFPE Applications Solutions brochure
FFPE Applications Solutions brochureAffymetrix
 
Cancer Workflows in VarSeq
Cancer Workflows in VarSeqCancer Workflows in VarSeq
Cancer Workflows in VarSeqGolden Helix Inc
 
Cancer Workflows in VarSeq
Cancer Workflows in VarSeqCancer Workflows in VarSeq
Cancer Workflows in VarSeqGolden Helix
 
GIAB update for GRC GIAB workshop 191015
GIAB update for GRC GIAB workshop 191015GIAB update for GRC GIAB workshop 191015
GIAB update for GRC GIAB workshop 191015GenomeInABottle
 
Bioinformatics as a tool for understanding carcinogenesis
Bioinformatics as a tool for understanding carcinogenesisBioinformatics as a tool for understanding carcinogenesis
Bioinformatics as a tool for understanding carcinogenesisDespoina Kalfakakou
 
Giab for jax long read 190917
Giab for jax long read 190917Giab for jax long read 190917
Giab for jax long read 190917GenomeInABottle
 
New Generation Sequencing Technologies: an overview
New Generation Sequencing Technologies: an overviewNew Generation Sequencing Technologies: an overview
New Generation Sequencing Technologies: an overviewPaolo Dametto
 
A rapid library preparation method with custom assay designs for detection of...
A rapid library preparation method with custom assay designs for detection of...A rapid library preparation method with custom assay designs for detection of...
A rapid library preparation method with custom assay designs for detection of...Thermo Fisher Scientific
 

Ähnlich wie Large aCGH Datasets (20)

VS-CNV Annotations from the User's Perspective
VS-CNV Annotations from the User's PerspectiveVS-CNV Annotations from the User's Perspective
VS-CNV Annotations from the User's Perspective
 
The server of the Spanish Population Variability
The server of the Spanish Population VariabilityThe server of the Spanish Population Variability
The server of the Spanish Population Variability
 
NGS Applications I (UEB-UAT Bioinformatics Course - Session 2.1.2 - VHIR, Bar...
NGS Applications I (UEB-UAT Bioinformatics Course - Session 2.1.2 - VHIR, Bar...NGS Applications I (UEB-UAT Bioinformatics Course - Session 2.1.2 - VHIR, Bar...
NGS Applications I (UEB-UAT Bioinformatics Course - Session 2.1.2 - VHIR, Bar...
 
Next Generation Sequencing methods
Next Generation Sequencing methods Next Generation Sequencing methods
Next Generation Sequencing methods
 
Common copy number variation detection from multiple sequenced samples
Common copy number variation detection from multiple sequenced samplesCommon copy number variation detection from multiple sequenced samples
Common copy number variation detection from multiple sequenced samples
 
Forum on Personalized Medicine: Challenges for the next decade
Forum on Personalized Medicine: Challenges for the next decadeForum on Personalized Medicine: Challenges for the next decade
Forum on Personalized Medicine: Challenges for the next decade
 
Building bioinformatics resources for the global community
Building bioinformatics resources for the global communityBuilding bioinformatics resources for the global community
Building bioinformatics resources for the global community
 
Global Gene Expression Profiles from Bladder Tumor FFPE Samples
Global Gene Expression Profiles from Bladder Tumor FFPE SamplesGlobal Gene Expression Profiles from Bladder Tumor FFPE Samples
Global Gene Expression Profiles from Bladder Tumor FFPE Samples
 
2012 10-24 - ngs webinar
2012 10-24 - ngs webinar2012 10-24 - ngs webinar
2012 10-24 - ngs webinar
 
20160219 - S. De Toffol - Dal Sanger al NGS nello studio delle mutazioni BRCA
20160219 - S. De Toffol -  Dal Sanger al NGS nello studio delle mutazioni BRCA �20160219 - S. De Toffol -  Dal Sanger al NGS nello studio delle mutazioni BRCA �
20160219 - S. De Toffol - Dal Sanger al NGS nello studio delle mutazioni BRCA
 
Cn presentation
Cn presentationCn presentation
Cn presentation
 
FFPE Applications Solutions brochure
FFPE Applications Solutions brochureFFPE Applications Solutions brochure
FFPE Applications Solutions brochure
 
ASHG_2014_AP
ASHG_2014_APASHG_2014_AP
ASHG_2014_AP
 
Cancer Workflows in VarSeq
Cancer Workflows in VarSeqCancer Workflows in VarSeq
Cancer Workflows in VarSeq
 
Cancer Workflows in VarSeq
Cancer Workflows in VarSeqCancer Workflows in VarSeq
Cancer Workflows in VarSeq
 
GIAB update for GRC GIAB workshop 191015
GIAB update for GRC GIAB workshop 191015GIAB update for GRC GIAB workshop 191015
GIAB update for GRC GIAB workshop 191015
 
Bioinformatics as a tool for understanding carcinogenesis
Bioinformatics as a tool for understanding carcinogenesisBioinformatics as a tool for understanding carcinogenesis
Bioinformatics as a tool for understanding carcinogenesis
 
Giab for jax long read 190917
Giab for jax long read 190917Giab for jax long read 190917
Giab for jax long read 190917
 
New Generation Sequencing Technologies: an overview
New Generation Sequencing Technologies: an overviewNew Generation Sequencing Technologies: an overview
New Generation Sequencing Technologies: an overview
 
A rapid library preparation method with custom assay designs for detection of...
A rapid library preparation method with custom assay designs for detection of...A rapid library preparation method with custom assay designs for detection of...
A rapid library preparation method with custom assay designs for detection of...
 

Large aCGH Datasets

  • 1. Collecting quantitative CNV information using aCGH in a Cytogenetic laboratory Anton Petrov, Ph.D. infoQuant December 2009
  • 2. Overview Copy  number  analysis  of  array  CGH  data Overview  of  an  array-­‐based  Cytogenetic  test Looking  for  clinically  relevant  aberrations Samples  from  healthy  individuals  and  building  CNV  tracks Aberration  frequency  data HapMap project,  release  3:  Affymetrix SNP  6.0  data Population-­‐specific  CNV  profiles HapMap data:  11  populations Probe  coverage  issue CNV  profile  variation  from  one  array  platform  to  another
  • 3. Array-based copy number tests: data analysis Data  pre-­‐processing Raw  measurements  extracted  from  a  slide Data  normalized  between  two  channels  (experiment/reference) Log-­‐ratio  measurements  built  and  arranged  along  genome Detection  of  copy  number  changes Detection  of  regions  where  log-­‐ratios  significantly  deviate  from  zero  (gains  and  losses) A  robust  binary  segmentation  approach  for  high-­‐res  data  in  infoQuant  software Reporting  of  detected  anomalies In  a  Cytogenetic  test  need  to  determine  clinical  relevance  of  detected  aberrations
  • 4. Looking for clinically relevant anomalies Known  genes Look  for  genes  overlapping  with  detected  anomalies Find  genes,  associated  with  a  specific  class  of  disorders Known  CNVs Publicly  available  CNV  databases:  Database  of  Genomic  Variants  (Toronto) Lack  of  control  over  source Different  array  platforms  used In-­‐house  CNV  tracks  using  chosen  platform  
  • 5. Building CNV tracks in copy number software In-­‐house  CNV  track   Perform  copy  number  analysis  on  aCGH data  from  individual  samples  (control  group) Collect  CNV  regions  for  a  cohort  of  control  samples  and  visualize  in  routine  Cyto tests Keep  updating  CNV  tracks  as  new  samples  get  analyzed   CNV  frequency  profile Compute  frequency  of  CNVs  along  genome  based  on  accumulated  samples Use  quantitative  information  that  CNV  frequencies  provide  to  interpret  relevance  of   detected  chromosomal  anomalies  in  newly  acquired  samples  
  • 6. Using CNV tracks in Cytogenetic tests Visualize  accumulated  CNV  information  during  routine  tests   Visualize  regions  of  frequent  CNVs  when  reviewing  data  for  a  new  sample   to  determine  clinical  relevance  of  detected  anomalies Further  increase  insight  into  possible  clinical  relevance  of  a  detected   anomaly  using  quantitative  information  provided  by  CNV  frequencies
  • 7. Cohorts of healthy individuals: the HapMap project The  HapMap project The  International  HapMap Project  is  a  partnership  of  scientists  and  funding  agencies     from  various  countries  www.hapmap.org The  goal  of  the  International  HapMap Project  is  to  compare  the  genetic  sequences  of   different  individuals  to  identify  chromosomal  regions  where  genetic  variants  are   shared Genetic  data  are  being  gathered  from  different  human  populations  >1000  samples  in   the  latest  release aCGH and  SNP  data  were  obtained  using  different  array  platforms  from  medium   resolution  to  high  resolution  to  ultra-­‐high  resolution  over  the  years
  • 8. Building CNV frequencies across HapMap samples A  large,  powerful  pool  of  data High-­‐density  information  provided  by  Affymetrix SNP  6.0  arrays CNV  frequencies  across  HapMap samples  provide  a  useful  insight  into  how   frequently  a  certain  anomaly  may  be  observed  in  healthy  individuals Separate  gain  frequencies  and  loss  frequencies   Useful  addition  to  the  Database  of  Genomic  Variants  
  • 9. Filtering HapMap CNV data Control  group  may  produce  CNVs  that  are  clinically  relevant   HapMap sample  below  demonstrates  a  large  copy  number  loss  confirmed  by   both  sets  of  measurements The  region  includes  cancer-­‐related  gene  NRAS Such  anomalies  need  to  be  isolated  using  copy  number  analysis  software Filter  CNVs  by  size When  computing  CNV  frequency  profiles  pre-­‐set  software  to  disregard  CNVs   larger  than  2Mbp,  for  instance    
  • 10. CNV frequency profiles specific to sample attribute Demographic  attributes  may  be  important   For  example:  11  different  populations  in  HapMap Individual  CNV  frequency  plots  may  be  built  for  the  populations  by  aCGH software  and  used  in  Cytogenetic  tests  for  more  targeted  reference  
  • 11. Probe coverage issue Different  array  platforms  may  produce  slightly  different  CNV  profiles   -­‐scale  and  complex  architecture  of  human  copy-­‐number   Affymetrix SNP  6.0  arrays  (HapMap release  3) Platforms  may  concentrate  their  probe  coverage  on  different  areas,  hence  different  CNV   profiles.  This  is  typical  for  performing  copy  number  analysis  across  array  platforms.
  • 12. Other sources of high-quality CNV data Other  studies CHOP:  High-­‐resolution  mapping  of  copy  number  variations  in  2,026  healthy  individuals   http://cnv.chop.edu/ Wellcome Trust:  Ultra-­‐high  resolution  CNV  study.  42  M  probe  coverage,  custom  2.1  M   array  designs  based  on  Roche-­‐Nimblegen aCGH.   http://www.sanger.ac.uk/humgen/cnv/42mio/