SlideShare ist ein Scribd-Unternehmen logo
1 von 82
Downloaden Sie, um offline zu lesen
SCHOOL OF ARCHITECTURE, BUILDING &
DESIGN
Bachelor of Science (Honours) (Architecture)
Building Structures (ARC 2522/2523)
Project 2: Structural Analysis of a Bungalow
Tutor:
Mr Azim Sulaiman
Team Members:
EVELIN DEVINA 0322176
LIM JOE ONN 0318679
ONG SENG PENG 0319016
1
TABLE OF CONTENTS
Introduction to Bungalow
Floor Plans
• Ground Floor
• First Floor
Structural Plans
• Foundation Plan
• Ground Floor Plan
• First Floor Plan
• Roof Plan
Structural 3D model
Design Brief
• Assumed Material Weight
• Assumed Live Load
Beam Analysis Report
• Load Distribution Plans
• Load Diagram
• Bending Moment Diagram
• Shear Force Diagram
Column Analysis Report
• Load Distribution Plans for Column Design
• Estimation of Column Load
• Suggested Column Size
Conclusion
2
The proposed bungalow is built to accommodate the needs of a family. With an
estimated total built up area of 450 square meters, its interior spaces include a
living hall, a dining area, two kitchens, a guest room, three bathrooms, a master
bedroom, two bedrooms and a storage space.
Typical to modern day residential houses, its structure consists of basic key
components of columns and beams which functions to support its own weight.
Basic procedures of building structure design are recognized, executed and
implemented. A structural proposal is produced to ensure the bungalow’s
structural integrity, guaranteeing the safety of its inhabitants.
INTRODUCTION TO BUNGALOW
3
ARCHITECTURAL PLANS
4
STRUCTURAL PLANS
5
STRUCTURAL PLANS
6
LOAD DISTRIBUTION PLANS
7
LIVE LOAD PLANS
8
STRUCTURAL 3D MODEL
9
STRUCTURAL 3D MODEL
10
Dead Loads of Structure (Constant)
Density of concrete = 24 kN/m3
Density of brick = 19 kN/m3
Dead load of roof = 1.0 kN/m2
(According to UBBL)
Dead load factor = 1.4
Structure Self-weight Calculation
Concrete beam
self-weight
Cross-sectional area = width x height of the beam
= 0.2m x 0.3m = 0.06m2
Beam self-weight per meter length
= cross-sectional area x density of concrete
= 0.06m2 x 24 kN/m3 = 1.44 kN/m
Brick wall self-
weight
Wall self-weight per meter length
= thickness x height x density of brick wall
= 0.15m x 3.0m x 19 kN/m2
= 8.55 kN/m
Floor slab self-
weight
Floor slab self-weight per meter square
= slab thickness x density of concrete
= 0.15m x 24 kN/m3 = 3.6kN/m2
Live Loads of Rooms according to its function (Constant)
Live load factor = 1.6
Room Live Load per meter square
area (kN/m2)
Bedroom 1.5
Dining Area 2.0
Living Area 2.0
Bathroom 2.0
Corridor 1.5
Kitchen 2.0
Roof 0.5
Design Brief:
11
SCHOOL OF ARCHITECTURE, BUILDING &
DESIGN
Bachelor of Science (Honours) (Architecture)
Building Structures (ARC 2522/2523)
Project 2: Structural Analysis of a Bungalow
Individual Work:
EVELIN DEVINA 0322176
12
Slab A-B/1-2A
Ly/Lx = 4200/3000
= 1.4 < 2
(Two way slab)
Determine one way or two way slab:
Slab A-B/2A-3
Ly/Lx = 4600/3000
= 1.53 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m)
= 8.55 kN/m
3. Load from Slab A-B/1-2A (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (3/2)m = 5.4 kN/m
4. Load from Slab A-B/2A-3 (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (3/2)m = 5.4 kN/m
Total Dead Load on Beam A/2-2A
= (1.44 + 8.55 + 5.4) kN/m
= 15.39 kN/m
Total Dead Load on Beam A/2A-3
= (1.44 + 8.55 + 5.4) kN/m
= 15.39 kN/m
1) First Floor Beam A/2-3
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
2 3
8.55 kN/m
5.4kN/m
1.44kN/m
4.6m
5.4kN/m
2A
1.2m
15.39kN/m
15.39
Live Load
1. Load from Slab A-B/1-2A (two-way slab)
= Live load intensity x (Lx/2)
= 2 kN/m2 x (3/2)m = 3 kN/m
2. Load from Slab A-B/2A-3 (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (3/2)m = 2.25 kN/m
Ultimate Load
 Ultimate Load on Beam A/2-2A
= Ultimate Dead Load + Ultimate Live Load
= (15.39 kN/m x 1.4) + (3 kN/m x 1.6)
= 21.55 KN/m + 4.8 kN/m = 26.35 kN/m
 Ultimate Load on Beam A/2A-3
= Ultimate Dead Load + Ultimate Live Load
= (15.39 kN/m x 1.4) + (2.25 kN/m x 1.6)
= 21.55 KN/m + 3.6 kN/m = 25.15 kN/m
Point Load at point A/2A from beam A-B/2A
1. Concrete Beam Self-weight = 1.44 kN/m
2. Brick Wall Load = 8.55 kN/m
3. Dead Load from Slab A-B/1-2A (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
4. Dead Load from Slab A-B/2A-3 (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
Total Dead Load on Beam A-B/2A
= (1.44 + 8.55 + 3.6 + 3.6)kN/m = 17.19 kN/m
5. Live Load from Slab A-B/1-2A (two-way slab)
= Live Load Intensity x (Lx/2) x 2/3
= 2 kN/m2 x (3/2)m x 2/3 = 2 kN/m
6. Live Load from Slab A-B/2A-3 (two-way slab)
= Live Load Intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
Total Live Load on Beam A-B/2A
= (2 + 1.5)kN/m = 3.5 kN/m
2 3
4.6m
2A
1.2m
3kN/m
2.25kN/m
25.15kN/m
26.35kN/m
Ultimate Load on Beam A-B/2A
= (17.19 kN/m x 1.4) + (3.5 kN/m x 1.6)
= 29.67 kN/m
Total Load on Beam A-B/2A
= Uniform Distributed Load x Beam Length
= 29.67 kN/m x 3m
= 89.01 kN
 Point Load at Point A/2A
Total Load is distributed equally to 2 points
= 89.01 kN / 2 = 44.51 kN
Reaction Force
1. Beam A/2-2A UDL to Point Load
= 26.35 kN/m x 1.2m = 31.62 kN
2. Beam A/2A-3 UDL to Point Load
= 25.15 kN/m x 4.6m = 115.69 kN
0 = ∑M2
0 = (31.62kN x 0.6m) + (44.51kN x 1.2m) +
(115.69kN x 3.5m) – (R3 x 5.8m)
R3 = 477.3kNm / 5.8m = 82.30 kN
∑Fy = (31.62 + 44.51 + 115.69) - (R2 + 82.30) = 0
R2 = 191.82 – 82.30 = 109.52 kN
Shear Force Diagram
33.39 : X = 82.30 : (4.6 - X)
82.3 X = 33.39 (4.6 – X)
X = 153.59/115.69 = 1.33m
Bending Moment Diagram
1. (109.52m + 77.9m)/2 x 1.2m = 112.45m2
2. (33.39m x1.33m)/2 = 21.70m2
3. (82.30m x 3.27m)/2 = 134.56m2
2 3
4.6m
2A
1.2m
25.15kN/m
26.35kN/m
44.51kN
R3=82.30kN
31.62kN
44.51kN
R2=109.52kN
115.69kN
x
(4.6 – x)
82.30
33.39
4.6m1.2m
109.52kN
134.65kNm
(109.52-31.62= 77.9kN)
(77.9-44.51= 33.39kN)
0
(33.39-115.69= -82.30kN)
112.45kNm
(134.65-134.56= +0.9)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Load from Slab B-C/2-2B (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m
3. Load from Slab B-C/2B-3 (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (3/2)m = 5.4 kN/m
Total Dead Load on Beam B-C/2B
= (1.44 + 5.04 + 5.4) kN/m
= 11.88 kN/m
Slab B-C/2-2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Determine one way or two way slab:
Slab B-C/2B-3
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
2) First Floor Beam B-C/2B
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
Live Load
1. Load from Slab B-C/2-2B (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (2.8/2)m = 2.1 kN/m
2. Load from Slab B-C/2B-3 (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (3/2)m = 2.25 kN/m
Total Live Load on Beam B-C/2B
= (2.1 + 2.25) kN/m
= 4.35 kN/m
B C
5.04 kN/m
1.44kN/m
3.9m
5.4 kN/m
11.88 kN/m
2.1 kN/m
2.25 kN/m
4.35 kN/m
Ultimate Load
 Ultimate Load on Beam B-C/2B
= Ultimate Dead Load + Ultimate Live Load
= (11.88 kN/m x 1.4) + (4.35 kN/m x 1.6)
= 16.63 KN/m + 6.96 kN/m = 23.59 kN/m
Reaction Force
Beam B-C/2B UDL to Point Load
= 23.59 kN/m x 3.9m = 92 kN
RB = RC
∑Fy = 92 - (RB + RC) = 0
RB = 46 kN
RC = 46 kN
Shear Force Diagram
Bending Moment Diagram
(46m x 1.95m)/2 = 89.7 m2
B C
3.9m
RC=46 kN
92 kN
23.59kN/m
RB=46 kN
46kN
1.95 m 1.95 m
0
- 46kN
89.7 kNm
0
(89.7-89.7 = 0)
Slab B-C/2-2B = C-D/2/2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Determine one way or two way slab:
Slab B-C/2-2B = C-D/2B-3
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m)
= 8.55 kN/m
3. Load from Slab B-C/2-2B (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m
= Load from Slab C-D/2-2B
4. Load from Slab B-C/2B-3 (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
= Load from Slab C-D/2B-3
Total Dead Load on Beam C/2-2B
= (1.44 + 8.55 + 3.36 + 3.36) kN/m
= 16.71 kN/m
Total Dead Load on Beam C/2B-3
= (1.44 + 8.55 + 3.6 + 3.6) kN/m
= 17.19 kN/m
3) First Floor Beam C/2-3
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
2 3
8.55 kN/m
3.36kN/m
1.44kN/m
3m
3.6kN/m
17.19kN/m
16.71kN/m
2B
2.8m
Live Load
1. Load from Slab B-C/2-2B (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (2.8/2)m x 2/3 = 1.4 kN/m
= Load from Slab C-D/2-2B
2. Load from Slab B-C/2B-3 (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
= Load from Slab C-D/2B-3
Total Live Load on Beam C/2-2B
= (1.4 + 1.4) kN/m
= 2.8 kN/m
Total Dead Load on Beam C/2B-3
= (1.5 + 1.5) kN/m
= 3 kN/m
Ultimate Load
 Ultimate Load on Beam C/2-2B
= Ultimate Dead Load + Ultimate Live Load
= (16.71 kN/m x 1.4) + (2.8 kN/m x 1.6)
= 23.39 KN/m + 4.48 kN/m = 27.87 kN/m
 Ultimate Load on Beam C/2B-3
= Ultimate Dead Load + Ultimate Live Load
= (17.19 kN/m x 1.4) + (3 kN/m x 1.6)
= 24.07 KN/m + 4.8 kN/m = 28.87 kN/m
Point Load at point C/2B from beam B-C/2B
and beam C-D/2B
From calculation no.2;
1. Point Load from beam B-C/2B = 46kN
2. Point Load from beam C-D/2B = 46kN
 Point Load at Point C/2B = 92kN
2 3
1.4kN/m
3m
1.5kN/m
3kN/m2.8kN/m
2B
2.8m
28.87kN/m27.87kN/m
92kN/m
28.87kN/m27.87kN/m
Reaction Force
1. Beam C/2-2B UDL to Point Load
= 27.87 kN/m x 2.8m = 78.04 kN
2. Beam C/2B-3 UDL to Point Load
= 28.87 kN/m x 3m = 86.6 kN
0 = ∑M2
0 = (78.04kN x 1.4m) + (92kN x 2.8m) +
(86.6kN x 4.3m) – (R3 x 5.8m)
R3 = 739.24kNm / 5.8m = 127.45 kN
∑Fy = (78.04 + 92 + 86.6) - (R2 + 127.45) = 0
R2 = 256.64 –127.45 = 129.19 kN
Shear Force Diagram
Bending Moment Diagram
1. (129.19m + 51.15m)/2 x 2.8m = 252.48m2
2. (40.85m + 127.45m)/2 x 3m = 252.45m2
R3=127.45kN
92kN
86.6kN
2 3
3m
2B
2.8m
R2=129.19kN
78.04kN
20
129.19kN
252.48kNm
(129.19-78.04= 51.15kN)
0
(-40.85-86.6= -127.45kN)
(252.48-252.45= +0.03)
(51.15-92= -40.85kN)
0
Slab B-C/2-2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Determine one way or two way slab:
Slab C-D/2/2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m)
= 8.55 kN/m
3. Load from Slab B-C/2-2B (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m
= Load from Slab C-D/2-2B
Total Dead Load on Beam B-C/2
= (1.44 + 8.55 + 5.04) kN/m
= 15.03 kN/m
Total Dead Load on Beam C-D/2
= (1.44 + 5.04) kN/m
= 6.48 kN/m
4) First Floor Beam B-D/2
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
Live Load
Load from Slab B-C/2-2B (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (2.8/2)m = 2.1 kN/m
= Load from Slab C-D/2-2B
B D
8.55 kN/m
1.44kN/m
3.9m
C
3.9m
6.48kN/m
15.03kN/m
5.04 kN/m
2.1 kN/m
Ultimate Load
 Ultimate Load on Beam B-C/2
= Ultimate Dead Load + Ultimate Live Load
= (15.03 kN/m x 1.4) + (2.1 kN/m x 1.6)
= 21.04 KN/m + 3.36 kN/m = 24.40 kN/m
 Ultimate Load on Beam C-D/2
= Ultimate Dead Load + Ultimate Live Load
= (6.48 kN/m x 1.4) + (2.1 kN/m x 1.6)
= 9.07KN/m + 3.36 kN/m = 12.43 kN/m
Point Load at point C/2 from beam C/2-3
From calculation no.3;
 Point Load at Point C/2B = 129.19kN
Reaction Force
1. Beam B-C/2 UDL to Point Load
= 24.40 kN/m x 3.9m = 95.16 kN
2. Beam C-D/2 UDL to Point Load
=12.43 kN/m x 3.9m = 48.47 kN
0 = ∑MB
0 = (95.16kN x 1.95m) + (129.19kN x 3.9m) +
(48.47kN x 5.85m) – (RD x 7.8m)
RD = 972.95kNm / 7.8m = 124.74 kN
∑Fy = (95.16 + 129.19 + 48.47) - (R2 + 124.74) = 0
RB = 272.82 –124.74 = 148.08 kN
Shear Force Diagram
Bending Moment Diagram
1. (148.08m + 52.92m)/2 x 3.9m = 391.95m2
2. (76.27m + 124.74m)/2 x 3.9m = 391.97m2
B D
3.9m
C
3.9m
12.43kN/m
24.40kN/m
RD=124.74kN
129.19kN
48.47kN
RB=148.08kN
95.16kN
12.43kN/m
24.40kN/m
129.19kN
22
148.08kN
391.95Nm
(148.08-95.16= 52.92kN)
0
(-76.27-48.47= -124.74)
(391.95-391.97= -0.02)
(52.92-129.19= -76.27)
0
Slab A-B/1-2A
Ly/Lx = 4200/3000
= 1.4 < 2
(Two way slab)
Determine one way or two way slab:
Slab A-B/2A-3
Ly/Lx = 4600/3000
= 1.53 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m)
= 8.55 kN/m
3. Load from Slab A-B/1-2A (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (3/2)m = 5.4 kN/m
= Load from Slab A-B/2A-3
4. Load from Slab B-C/2-2B (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m
5. Load from Slab B-C/2B-3 (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
Total Dead Load on Beam B/2-2A
= (1.44 + 8.55 + 5.4 + 3.36) kN/m
= 18.75 kN/m
Total Dead Load on Beam B/2A-2B
= (1.44 + 5.4 + 3.36) kN/m = 10.2 kN/m
Total Dead Load on Beam B/2B-3
= (1.44 + 5.4 + 3.6) kN/m = 10.44 kN/m
5) First Floor Beam B/2-3
Slab self-weight
= Slab thickness x concrete density
= 0.15m x 24 kN/m3
= 3.6 kN/m2
Slab B-C/2-2B
Ly/Lx = 3900/2800
= 1.39 < 2
(Two way slab)
Slab B-C/2B-3
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
2 3
8.55 kN/m
1.44kN/m
3m
18.75kN/m
2A
1.2m
3.6kN/m
2B
1.6m
5.4 kN/m
10.44kN/m
10.2kN/m
3.36kN/m
Live Load
1. Load from Slab A-B/1-2A (two-way slab)
= Live load intensity x (Lx/2)
= 2 kN/m2 x (3/2)m = 3 kN/m
2. Load from Slab A-B/2A-3 (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (3/2)m = 2.25 kN/m
3. Load from Slab B-C/2-2B (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (2.8/2)m x 2/3 = 1.4 kN/m
4. Load from Slab B-C/2B-3 (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
Total Live Load on Beam B/2-2A
= (3 + 1.4) kN/m = 4.4 kN/m
Total Live Load on Beam B/2A-2B
= (2.25 + 1.4) kN/m = 3.65 kN/m
Total Live Load on Beam B/2B-3
= (2.25 + 1.5) kN/m = 3.75 kN/m
Ultimate Load
 Ultimate Load on Beam B/2-2A
= Ultimate Dead Load + Ultimate Live Load
= (18.75 kN/m x 1.4) + (4.4 kN/m x 1.6)
= 26.25 KN/m + 7.04 kN/m = 33.29 kN/m
 Ultimate Load on Beam B/2A-2B
= Ultimate Dead Load + Ultimate Live Load
= (10.2 kN/m x 1.4) + (3.65 kN/m x 1.6)
= 14.28 KN/m + 5.84 kN/m = 20.12 kN/m
 Ultimate Load on Beam B/2B-3
= Ultimate Dead Load + Ultimate Live Load
= (10.44 kN/m x 1.4) + (3.75 kN/m x 1.6)
= 14.62 KN/m + 6 kN/m = 20.62 kN/m
3
2.25 kN/m
3kN/m
3m
2A
1.2m
4.4kN/m
2B
1.6m
1.4kN/m
3.75kN/m
3.65kN/m
1.5kN/m
2
33.29kN/m
20.62kN/m
20.12kN/m
Point Load at point B/2A from beam A-B/2A
and point B/2B from beam B-C/2B
From calculation no.1;
 Point Load at Point B/2A = 44.51 kN
From calculation no. 2;
 Point Load at point B/2B = 46 kN
Reaction Force
1. Beam B/2-2A UDL to Point Load
= 33.29 kN/m x 1.2m = 39.95 kN
2. Beam B/2A-2B UDL to Point Load
= 20.12 kN/m x 1.6m = 32.19 kN
3. Beam B/2B-3 UDL to Point Load
= 20.62 kN/m x 3m = 61.86 kN
0 = ∑M2
0 = (39.95kN x 0.6m) + (44.51kN x 1.2m) +
(32.19kN x 2m) + (46kN x 2.8m) + (61.86kN x
4.3m) – (R3 x 5.8m)
R3 = 536.56kNm / 5.8m = 92.51 kN
∑Fy = (39.95 + 44.51 + 32.19 + 46 + 61.86) - (R2 +
92.51) = 0
R2 = 218.51 – 92.51 = 132 kN
Shear Force Diagram
Bending Moment Diagram
1. (132m + 92.05m)/2 x 1.2m = 134.43m2
2. (47.54m + 15.35m)/2 x 1.6m = 50.31m2
3. (30.65m + 92.51m)/2 x 3m = 184.70m2
2 3
3m
2A
1.2m
R3=92.51kN
44.51kN
61.86kN
20.62kN/m
20.12kN/m
2B
1.6m
44.51kN
46kN
R2=126.62kN
46kN
33.29kN/m
32.19kN39.95kN
132kN
184.74kNm
(92.05-44.51=47.54kN)
(-30.65-61.86= -92.51kN)
(184.74-184.70= +0.04)
(15.35-46= -30.65kN)
(132-39.95=92.05kN)
(47.54-32.19=15.35kN)
0
134.43 kNm
Slab D-F/1-2A
Ly/Lx = 4200/4000
= 1.05 < 2
(Two way slab)
Determine one way or two way slab:
Slab D-F/2A-3
Ly/Lx = 4600/4000
= 1.15 < 2
(Two way slab)
Dead Load
1. Concrete Beam Self-weight
= Density x Beam size
= 24 kN/m3 x (0.2m x 0.3m)
= 1.44 kN/m
2. Brick Wall Load
= Wall density x (thickness x height)
= 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m
3. Load from Slab D-F/1-2A (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (4/2)m = 7.2 kN/m
= Load from Slab D-F/2A-3
4. Load from Slab F-G/2-2B (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m
5. Load from Slab F-G/2B-3 (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
Total Dead Load on Beam F/2-2A
= (1.44 + 8.55 + 7.2 + 3.36) kN/m
= 20.55 kN/m
Total Dead Load on Beam F/2A-2B
= (1.44 + 8.55 + 7.2 + 3.36) kN/m
= 20.55 kN/m
Total Dead Load on Beam F/2B-3
= (1.44 + 7.2 + 3.6) kN/m = 12.2 kN/m
6) First Floor Beam F/2-3
Slab F-G/2-2B
Ly/Lx = 3000/2800
= 1.07 < 2
(Two way slab)
Slab F-G/2B-3
Ly/Lx = 3000/3000
= 1 < 2
(Two way slab)
2 3
8.55 kN/m
1.44kN/m
3m
20.55kN/m
2A
1.2m
3.6kN/m
2B
1.6m
7.2 kN/m
12.2kN/m
20.55kN/m
3.36kN/m
Live Load
1. Load from Slab D-F/1-2A (two-way slab)
= Live load intensity x (Lx/2)
= 1.5 kN/m2 x (4/2)m = 3 kN/m
= Load from Slab D-F/2A-3
2. Load from Slab F-G/2-2B (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 2 kN/m2 x (2.8/2)m x 2/3 = 1.87 kN/m
3. Load from Slab F-G/2B-3 (two-way slab)
= Live load intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
Total Live Load on Beam B/2-2A
= (3 + 1.87) kN/m = 4.87 kN/m
Total Live Load on Beam B/2A-2B
= (3 + 1.87) kN/m = 4.87 kN/m
Total Live Load on Beam B/2B-3
= (3 + 1.5) kN/m = 4.5 kN/m
Ultimate Load
 Ultimate Load on Beam B/2-2A
= Ultimate Dead Load + Ultimate Live Load
= (20.55 kN/m x 1.4) + (4.87 kN/m x 1.6)
= 28.77 KN/m + 7.79 kN/m = 36.56 kN/m
 Ultimate Load on Beam B/2A-2B
= Ultimate Dead Load + Ultimate Live Load
= (20.55 kN/m x 1.4) + (4.87 kN/m x 1.6)
= 28.77 KN/m + 7.79 kN/m = 36.56 kN/m
 Ultimate Load on Beam B/2B-3
= Ultimate Dead Load + Ultimate Live Load
= (12.2 kN/m x 1.4) + (4.5 kN/m x 1.6)
= 17.08 KN/m + 7.2 kN/m = 24.28 kN/m
3
3m
2A
1.2m
4.87kN/m
2B
1.6m
1.87kN/m
4.5kN/m
4.87kN/m
1.5kN/m
2
36.56kN/m
24.28kN/m
36.56kN/m
3 kN/m
Point Load at point F/2A from beam D-F/2A
1. Concrete Beam Self-weight = 1.44 kN/m
2. Dead Load from Slab D-F/1-2A (two-way slab)
= Slab self-weight x (Lx/2) x 2/3
= 3.6 kN/m2 x (4/2)m x 2/3 = 4.8 kN/m
=Load from slab D-F/2A-3
Total Dead Load on Beam D-F/2A
= (1.44 + 4.8 + 4.8)kN/m = 11.04 kN/m
3. Live Load from Slab D-F/1-2A (two-way slab)
= Live Load Intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (4/2)m x 2/3 = 2 kN/m
=Load from slab D-F/2A-3
Total Live Load on Beam D-F/2A
= (2 + 2)kN/m = 4 kN/m
Ultimate Load on Beam D-F/2A
= (11.04 kN/m x 1.4) + (4 kN/m x 1.6)
= 15.46 kN/m + 6.4kN/m = 21.86kN/m
Total Load on Beam D-F/2A
= Uniform Distributed Load x Beam Length
= 21.86 kN/m x 4m
= 87.44 kN
 Point Load at Point A/2A
Total Load is distributed equally to 2 points
= 87.44 kN / 2 = 43.72 kN
2 3
3m
2A
1.2m
36.56kN/m
36.56kN/m
2B
1.6m
43.71kN
36.56kN/m
Point Load at point F/2B from beam F-G/2B
1. Concrete Beam Self-weight = 1.44 kN/m
2. Brick Wall Load = 8.55 kN/m
3. Dead Load from Slab F-G/2-2B (two-way slab)
= Slab self-weight x (Lx/2)
= 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m
4. Dead Load from Slab F-G/2B-3 (two-way slab)
= Slab self-weight x (Lx/2) x2/3
= 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m
Total Dead Load on Beam F-G/2B
= (1.44 + 8.55 + 5.04 + 3.6)kN/m = 18.63 kN/m
5. Live Load from Slab F-G/2-2B (two-way slab)
= Live Load Intensity x (Lx/2)
= 2 kN/m2 x (2.8/2)m = 2.8 kN/m
6. Live Load from Slab F-G/2B-3 (two-way slab)
= Live Load Intensity x (Lx/2) x 2/3
= 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m
Total Live Load on Beam F-G/2B
= (2.8 + 1.5)kN/m = 4.3 kN/m
Ultimate Load on Beam F-G/2B
= (18.63 kN/m x 1.4) + (4.3 kN/m x 1.6)
= 26.08 kN/m + 6.88kN/m = 32.96kN/m
Total Load on Beam F-G/2B
= Uniform Distributed Load x Beam Length
= 32.96 kN/m x 3m
= 98.89 kN
 Point Load at Point A/2A
Total Load is distributed equally to 2 points
= 98.89 kN / 2 = 49.44 kN
2 3
3m
2A
1.2m
36.56kN/m
36.56kN/m
2B
1.6m
43.71kN
36.56kN/m
49.44kN
Reaction Force
1. Beam F/2-2A UDL to Point Load
= 36.56 kN/m x 1.2m = 43.87 kN
2. Beam F/2A-2B UDL to Point Load
= 36.56 kN/m x 1.6m = 58.5 kN
3. Beam F/2B-3 UDL to Point Load
= 24.28 kN/m x 3m = 72.84 kN
0 = ∑M2
0 = (43.87kN x 0.6m) + (43.71kN x 1.2m) +
(58.5kN x 2m) + (49.44kNx2.8m) + (72.84kN x
4.3m) – (R3 x 5.8m)
R3 = 647.42kNm / 5.8m = 111.62 kN
R2 = 218.51 – 92.51 = 156.74 kN
Shear Force Diagram
Bending Moment Diagram
1. (156.74m + 112.87m)/2 x 1.2m = 161.77m2
2. (69.16+10.66)/2 x 1.6m = 63.86m2
3. (38.78+111.62)/2 x 3m = 225.6m2
2 3
3m
2A
1.2m
R3=111.62kN
43.71kN
72.84kN
36.56kN/m
36.56kN/m
2B
1.6m
43.71kN
49.44kN
R2=156.74kN
49.44kN
36.56kN/m
58.5kN43.87kN
156.74kN
225.63kNm
(112.87-43.71=69.16kN)
(-38.78-72.84= -111.62kN)
(225.63-225.6= +0.03)
(10.66-49.44= -38.78kN)
(156.74-43.87=112.87kN)
(69.16-58.5=10.66kN)
0
161.77kNm
Roof Level
1. Dead Load from slab
= (5.9m x 4.4m) x 1.0 kN/m2
= 25.96kN
2. Dead Load from beam
= (4.4 + 4.4 + 3.9 + 3.9 + 1.5)m x
1.44 kN/m
= 26.78kN
Total dead load on roof level
= (25.96 + 26.78)kN = 52.74kN
3. Live Load from slab
= 25.96m2 x 0.5 kN/m2 = 12.98kN
7) Column D2
Capacity of the column:
Given, FCU= 30N/mm2
Fy = 460 N/mm2
Ac = 200mm x 200mm = 40000mm2
Assuming 2% steel reinforcement in concrete
Asc = 2% x 40000mm2 = 800mm2
N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc)
= (0.4 x 30 x 40000) + (0.8 x 460 x 800)
= 774400N = 774.4kN
First Level
1. Dead Load from slab
= {(3.9m x 2.9m)+(2m x 4.4m)} x 3.6 kN/m2
= 72.40kN
2. Dead Load from beam
= 18.6m x 1.44 kN/m = 26.78kN
3. Dead load from wall
= (1.5 + 1.7 + 1.2 + 2 + 2.9)m x 8.55 kN/m
= 79.52kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (72.40 + 26.78 + 79.52 + 2.88)kN
= 181.58kN
5. Live Load from slab (Bedroom + Corridor)
= 20.11m2 x 1.5 kN/m2 = 30.15kN
*Marked in red are walls
Ground Level
1. Dead Load from slab
= 25.96m2 x 3.6 kN/m2
= 93.46kN
2. Dead Load from beam
= (2.9 + 4.4 + 3.9 + 2)m x 1.44 kN/m
= 19kN
3. Dead load from wall
= (2.9 + 2 + 2.9)m x 8.55 kN/m = 66.69kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Ultimate Dead Load = Total dead load x 1.4 = (52.74kN + 181.58kN + 182.03kN) x 1.4
= 582.89kN
Ultimate Live Load = Total live load x 1.6 = (12.98kN + 30.15kN + 44.6kN) x 1.6
= 140.37kN
 Total Load acting on Column D2 = 723.26kN
*Marked in red are walls
Total dead load on ground level
= (93.46 + 19 + 66.69 + 2.88)kN
= 182.03kN
5. Live Load from slab (Dining)
= (3.9 x 2.9)m2 x 2 kN/m2 = 22.62kN
6. Live Load from slab (Garden + Bedroom)
= {(3.9 x 1.5) + (2 x 4.4)}m2 x 1.5 kN/m2
= 21.98kN
Total live load on ground level
= (22.62 + 21.98)kN
= 44.6kN
Roof Level
1. Dead Load from slab
= (5.4m x 4.4m) x 1.0 kN/m2 = 23.76kN
2. Dead Load from beam
= (5.4 + 4.4 + 3.9 + 4.4)m x 1.44 kN/m
= 26.06kN
Total dead load on roof level
= (23.76 + 26.06)kN = 49.82kN
3. Live Load from slab
= 23.76m2 x 0.5 kN/m2 = 11.88kN
8) Column B2
First Level
1. Dead Load from slab
= {(1.5m x 4.4m)+(3.9m x 2.9m)} x 3.6 kN/m2
= 64.48kN
2. Dead Load from beam
= 16.6m x 1.44 kN/m = 23.9kN
3. Dead load from wall
= (2.7 + 1.5 + 3.9 + 2.9)m x 8.55 kN/m
= 94.05kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (64.48 + 23.9 + 94.05 + 2.88)kN
= 172.41kN
5. Live Load from slab (Bath)
= (1.5 x 2.7)m2 x 2 kN/m2 = 8.1kN
6. Live Load from slab (Bedroom)
= 13.86m2 x 1.5 kN/m2 = 20.79kN
Total live load on first level
= (8.1 + 20.79)kN
= 28.89kN
*Marked in red are walls
Ground Level
1. Dead Load from slab
= 23.76m2 x 3.6 kN/m2
= 85.54kN
2. Dead Load from beam
= (4.4 + 1.5 + 3.9 + 2.9)m x 1.44 kN/m
= 18.29kN
3. Dead load from wall
= (4.4 + 1.5)m x 8.55 kN/m = 50.45kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (85.54 + 18.29 + 50.45 + 2.88)kN
= 157.16kN
5. Live Load from slab (Kitchen)
= (5.4 x 2.9)m2 x 2 kN/m2 = 31.32kN
6. Live Load from slab (Storage + Garden)
= (5.4 x 1.5)m2 x 1.5 kN/m2
= 12.15kN
Total live load on first level
= (31.32 + 12.15)kN
= 43.47kN
Ultimate Dead Load = Total dead load x 1.4 = (49.82kN + 172.41kN + 157.16kN) x 1.4
= 531.15kN
Ultimate Live Load = Total live load x 1.6 = (11.88kN + 28.89kN + 43.47kN) x 1.6
= 134.78kN
 Total Load acting on Column B2 = 665.93kN
*Marked in red are walls
Roof Level
1. Dead Load from slab
= (1.5m x 4.4m) x 1.0 kN/m2 = 6.6kN
2. Dead Load from beam
= (1.5 + 2.9 + 1.5)m x 1.44 kN/m
= 8.5kN
Total dead load on roof level
= (6.6 + 8.5)kN = 15.1kN
3. Live Load from slab
= 6.6m2 x 0.5 kN/m2 = 3.3kN
9) Column A2
First Level
1. Dead Load from slab
= 6.6m2 x 3.6 kN/m2
= 23.76kN
2. Dead Load from beam
= 5.9m x 1.44 kN/m = 8.5kN
3. Dead load from wall
= 5.9m x 8.55 kN/m
= 50.45kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (23.76 + 8.5 + 50.45 + 2.88)kN
= 85.59kN
5. Live Load from slab (Bath)
= (1.5 x 2.7)m2 x 2 kN/m2 = 8.1kN
6. Live Load from slab (Bedroom)
= (1.7 x 1.5)m2 x 1.5 kN/m2
= 3.83kN
Total live load on first level
= (8.1 + 3.83)kN
= 11.93kN
*Marked in red are walls
Ground Level
1. Dead Load from slab
= 6.6m2 x 3.6 kN/m2
= 23.76kN
2. Dead Load from beam
= 5.9m x 1.44 kN/m
= 8.5kN
3. Dead load from wall
= (4.4 + 1.5)m x 8.55 kN/m = 50.45kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (23.76 + 8.5 + 50.45 + 2.88)kN
= 85.59kN
5. Live Load from slab (Kitchen)
= (2.9 x 1.5)m2 x 2 kN/m2 = 8.7kN
6. Live Load from slab (Storage + Garden)
= (1.5 x 1.5)m2 x 1.5 kN/m2
= 3.38N
Total live load on first level
= (8.7 + 3.38)kN
= 12.08kN
Ultimate Dead Load = Total dead load x 1.4 = (15.1kN + 85.59kN + 85.59kN) x 1.4
= 260.79kN
Ultimate Live Load = Total live load x 1.6 = (3.3kN + 11.93kN + 12.08kN) x 1.6
= 43.7kN
 Total Load acting on Column B2 = 304.49kN
*Marked in red are walls
SCHOOL OF ARCHITECTURE, BUILDING &
DESIGN
Bachelor of Science (Honours) (Architecture)
Building Structures (ARC 2522/2523)
Project 2: Structural Analysis of a Bungalow
Individual Work:
LIM JOE ONN 0318679
37
Slab A-B/5-6
Ly/Lx = 4000/3000
= 1.333 < 2
(Two way slab)
Determine one way or two way slab:
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam A-5/6
Dead Load from Slab A-B/5-6
(two way slab)
= 1.0 kN/m3 x (3 x ½ )m
= 1.5 kN/m2
Total Dead Load
= (1.44 + 1.5) kN/m2
= 2.94 kN/m2
5 6
1.5kN/m
1.44kN/m
4.0m
2.94kN/m
Live Load
Live Load from Slab A-B/5-6
= 0.5 kN/m3 x (3 x ½ ) m2
= 0.75 kN/m
5 6
0.75 kN/m
0.75kN/m
4.0m
Total Live Load
= 0.75 kN/m2
Ultimate Load
= (2.94kN/m x 1.4) + (0.75kN/m2 x 1.6)
= 4.116 kN/m + 1.2 kN/m
= 5.316 kN/m
Load Diagram
Reaction Force
RA4 = RA6
= 5.316kN/m x 4m
2
= 10.632 kN
5.316kN/m
Shear Force
Diagram
10.632kN/m 10.632kN/m
9.75kN/m
-9.75kN/m
2 m 2 m
A1 = A2
= 9.75kN/m x 2 m x ½
= 9.75 kNm
9.75 kNm
2 m 2 m
Bending Moment
Diagram
Slab A-B/5-6
Ly/Lx = 4000/3000
= 1.333 < 2
(Two way slab)
Determine one way or two way slab:
Slab B-C/5-6
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam B/5-6
Dead Load from Slab A-B/5-6
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4 kN/m2
Dead Load from Slab B-C/5-6
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4 kN/m2
Total Dead Load
= (1.44 + 5.4 + 5.4) kN/m2
= 12.24kN/m2
C D
5.4kN/m
5.4kN/m
1.44kN/m
4.0 m
12.24kN/m
Live Load
Live Load from Slab A-B/5-6
= 0.5kN/m3 x (3 x ½ ) m2
= 3 kN/m
Live Load from Slab B-C/5-6
= 0.5kN/m3 x (3 x ½ ) m2
= 3 kN/m
C D
3kN/m
6kN/m
3kN/m
4.0m
Total Live Load
= (3 + 3) kN/m2
= 6 kN/m2
Ultimate Load
= (12.24kN/m x 1.4) + (6kN/m2 x 1.6)
= 17.136kN/m + 9.6kN/m
= 26.736kN/m
Load Diagram
Reaction Force
RB5 = RB6
= 26.736kN/m x 4m
2
= 53.472 kN
26.736kN/m
Shear Force
Diagram
53.472 kN/m 53.472 kN/m
53.472 kN/m
-53.472kN/m
2 m 2 m
A1 = A2
= 53.472kN/m x 2m x ½
= 53.472 kNm
53.472 kNm
2 m 2 m
Bending Moment
Diagram
Slab B-C/5-6
Ly/Lx = 4000/3900
= 1.026< 2
(Two way slab)
Determine one way or two way slab:
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam C-5/6
Dead Load from Slab A-B/5-6
(two way slab)
= 1.0 kN/m3 x (3.9 x ½ )m
= 1.95 kN/m2
Total Dead Load
= (1.44 + 1.95) kN/m2
= 3.39 kN/m2
5 6
1.95kN/m
1.44kN/m
4.0m
3.39kN/m
Live Load
Live Load from Slab A-B/5-6
= 0.5 kN/m3 x (3.9 x ½ ) m2
= 0.975 kN/m
5 6
0.975 kN/m
0.975kN/m
4.0m
Total Live Load
= 0.975 kN/m2
Ultimate Load
= (3.39kN/m x 1.4) + (0.975kN/m2 x 1.6)
= 4.746 kN/m + 1.56 kN/m
= 6.306 kN/m
Load Diagram
Reaction Force
RC5 = RC6
= 6.306kN/m x 4m
2
= 12.612 kN
6.306 kN/m
Shear Force
Diagram
12.612kN/m 12.612kN/m
12.612kN/m
-12.612kN/m
2 m 2 m
A1 = A2
= 12.612kN/m x 2 m x ½
= 12.612 kNm
12.612 kNm
2 m 2 m
Bending Moment
Diagram
Slab B-C/5-6
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam A-C/6
Dead Load from Slab A-B/5-6
(two way slab)
= 1 kN/m3 x (3 x ½ x 2/3)m
= 1 kN/m2
Dead Load from Slab B-C/5-6
(two way slab)
= 1 kN/m3 x (3.9 x ½ x 2/3)m
= 1.3 kN/m2
A C
1 kN/m
1.44kN/m
3 m
1.3kN/m
Slab A-B/5-6
Ly/Lx = 4000/3000
= 1.33 < 2
(Two way slab)
B
3.9 m
Total Dead Load on A-B/6
= (1.44 + 1) kN/m2
= 2.44 kN/m2
Total Dead Load on B-C/6
= (1.44 + 1.3) kN/m2
= 2.74kN/m2
2.44 kN/m
2.74 kN/m
Live Load from Slab A-B/5-6
(two way slab)
= 0.5kN/m3 x (3 x ½ x 2/3)m
= 0.5 kN/m2
Live Load
0.5 kN/m
0.65kN/m
Live Load from Slab B-C/5-6
(two way slab)
= 0.5kN/m3 x (3.9 x ½ x 2/3)m
= 0.65 kN/m2
0.5 kN/m
0.65 kN/m
A B
3 m 3.9 m
Ultimate Load on Beam C/3-4
= (2.44kN/m x 1.4) + (0.5kN/m2 x 1.6)
= 3.416kN/m + 0.8kN/m
= 4.216kN/m
Ultimate Load on Beam C/4-5
= (2.74kN/m x 1.4) + (0.65kN/m2 x 1.6)
= 3.836kN/m + 1.04kN/m
= 5.116kN/m
C
Load Diagram
Point load from secondary beam, B6=44.328 kN
Take RA6 as centre, reaction force:
4.216 x 3 = 12.648kN
5.116 x 3.9 = 19.952kN
ΣM = 0
0 = 6.9RC6 – 19.952(4.95) – 44.328(3) –
12.648(1.5)
= 6.9RC6 – 98.762 – 132.984 – 18.972
= 6.9RC6 – 250.718
6.9RC6 = 250.718
RC6 = 36.336kN
ΣY = 0
0 = RA6 + RC6 – 12.648 – 44.328 – 19.952
= RA6 + 36.336 – 76.928
RA6 = 40.592kN
4.216kN/m
3 m 3.9 m
5.116kN/m
44.328kN/m
RA6 RC6
40.592kN
3 m 3.9 m
27.944kN
-16.384kN
-36.336kN
Shear Force Diagram
A1 = ½(40.592kN/m + 27.944kN/m) x 3
= 102.804 kNm
102.804 kNm
3 m 3.9 m
Bending Moment Diagram
A2 = ½(16.384kN/m + 36.336kN/m) x 3.9
= 102.804 kNm
Slab C-D/3-4
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Slab C-D/4-5
Ly/Lx = 3900/2000
= 1.95 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
Dead Load from Brick Wall Height
=0.15 x 3 x 19kN/m3
=8.55 kN/m
First Floor Beam D/3-5
Dead Load from Slab C-D/3-4
(two way slab)
= 3.6kN/m3 x (3 x ½ x 2/3)m
= 3.6 kN/m2
Dead Load from Slab D-E/3-4
(two way slab)
= 3.6kN/m3 x (4 x ½)m
= 7.2 kN/m2
Total Dead Load for Beam D/3-4
= (1.44+8.55+3.6+7.2) kN/m2
= 20.79kN/m2
Slab D-E/3-5
Ly/Lx = 5000/4000
= 1.25 < 2
(Two way slab)
3 5
8.55kN/m
3.6kN/m
1.44kN/m
3 m
7.2kN/m
4
2 m
20.79kN/m
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
Dead Load from Brick Wall Height
=0.15 x 3 x 19kN/m3
=8.55 kN/m
Dead Load from Slab C-D/4-5
(two way slab)
= 3.6kN/m3 x (2 x ½ x 2/3)m
= 2.4 kN/m2
Dead Load from Slab D-E/4-5
(two way slab)
= 3.6kN/m3 x (4 x ½)m
= 7.2 kN/m2
Total Dead Load for Beam D/4-5
= (1.44+8.55+2.4+7.2) kN/m2
= 19.59kN/m2
3 5
8.55kN/m
1.44kN/m
3 m
4
2 m
2.4kN/m
7.2kN/m
19.59kN/m
20.79 kN/m
19.59 kN/m
Live Load
2kN/m
1.33 kN/m
Live Load from Slab C-D/3-4
(two way slab)
= 2kN/m3 x (3 x ½ x 2/3)m
= 2kN/m2
Live Load from Slab D-E/3-4
(two way slab)
= 2kN/m3 x (4 x ½)m
= 4 kN/m2
Live Load from Slab C-D/4-5
(two way slab)
= 2kN/m3 x (2 x ½ x 2/3)m
= 1.33 kN/m2
6 kN/m
5.33 kN/m
3 54
3 m 2 m
Total Live Load on D/3-4
= (2 + 4) kN/m2
= 6 kN/m2
Total Live Load on D/4-5
= (1.33 + 4) kN/m2
= 5.33 kN/m2
Ultimate Load on Beam D/3-4
= (20.79kN/m x 1.4) + (6kN/m2 x 1.6)
= 29.106kN/m + 9.6kN/m
= 38.706kN/m
Ultimate Load on Beam D/4-5
= (19.59kN/m x 1.4) + (5.33kN/m2 x 1.6)
= 27.426kN/m + 8.528kN/m
= 35.954kN/m
Live Load from Slab D-E/4-5
(two way slab)
= 2kN/m3 x (4 x ½ )m
= 4 kN/m2
4kN/m
4 kN/m
38.706 kN/m
35.954 kN/m
Load Diagram
Point load from secondary beam, D4=40.21 kN
Take RD3 as centre, reaction force:
38.706 x 3 = 116.118kN
35.954 x 2 = 71.908kN
ΣM = 0
0 = 5RD5 – 116.118(1.5) – 40.21(3) – 71.908(4)
= 5RD5 – 174.177 – 120.63 – 287.632
= 5RD5 – 582.439
5RD5 = 582.439
RD5 = 116.488kN
ΣY = 0
0 = RD3 + RD5 – 116.118 – 40.21 – 71.908
= RD3 + 116.488 – 228.236
RD3 = 111.748kN
38.706kN/m
3 m 2 m
35.954kN/m
40.21kN/m
RD3 RD5
111.748kN
3 m 2 m
-4.37kN
-44.58kN
-116.488kN
Shear Force Diagram
Ratio:
(111.748+4.37) = 111.748
3 a
116.118 a = 335.244
a = 2.8872.887 m
A1 = 111.748 x 2.887 x ½
+ 4.37 x ½(3 – 2.887)
= 161.308 – 0.247
= 161.061kNm
A2 = (116.488 + 44.58) x 2
2
= 161.068kNm
161.068kNm
2.887 m 3 m
Bending Moment Diagram160. 821kNm
Slab D-E/3-5
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
Dead Load for Brick Wall Height
=0.15 x 3 x 19kN/m3
=8.55 kN/m
First Floor Beam C-E/5
Dead Load from Slab C-D/4-5
(two way slab)
= 3.6 kN/m3 x (2 x ½ )m
= 3.6 kN/m2
Dead Load from Slab D-E/3-5
(two way slab)
= 3.6 kN/m3 x (3 x ½ x 2/3)m
= 3.6 kN/m2
C E
3.6 kN/m
1.44kN/m
3.9 m
3.6kN/m
Slab C-D/4-5
Ly/Lx = 3900/2000
= 1.95 < 2
(Two way slab)
D
3 m
Total Dead Load on C-D/4-5
= (3.6+8.55+1.44) kN/m2
= 13.59 kN/m2
Total Dead Load on D-E/3-5
= (1.44 + 8.55 +3.6) kN/m2
= 13.59 kN/m2
13.59 kN/m
13.59 kN/m
8.55kN/m
Live Load from Slab C-D/4-5
(two way slab)
= 2.0kN/m3 x (2 x ½ )m
= 2 kN/m2
Live Load
2 kN/m
2 kN/m
Live Load from Slab D-E/3-5
(two way slab)
= 2.0kN/m3 x (3 x ½ x 2/3)m
= 2 kN/m2
2 kN/m
2 kN/m
C D
3.9 m 3 m
Ultimate Load on Beam A-B/5
= (13.59kN/m x 1.4) + (2kN/m2 x 1.6)
= 19.026kN/m + 3.2kN/m
= 22.226kN/m
Ultimate Load on Beam B-C/5
= (13.59kN/m x 1.4) + (2kN/m2 x 1.6)
= 19.026kN/m + 3.2kN/m
= 22.226kN/m
E
Load Diagram
Point load from secondary beam, D5=116.496 kN
Take RC5 as centre, reaction force:
22.226 x 3.9= 86.681kN
22.226 x 3 = 66.678kN
ΣM = 0
0 = 6.9RE5 – 86.681(1.95) – 116.496(3.9) –
66.678(5.4)
= 6.9RE5 – 169.028 – 454.334 – 360.061
= 6.9RE5 – 983.424
6.9RE5 = 983.424
RE5 = 142.525 kN
ΣY = 0
0 = RC5 + RE5 – 86.681 – 116.496 – 66.678
= RC5 + 142.525 – 269.855
RC5 = 127.33kN
22.226kN/m
3.9 m 3 m
22.226kN/m
116.496kN/m
RC5 RE5
127.33kN
3.9 m 3 m
40.649kN
-75.847kN
-142.525kN
Shear Force Diagram
A1 = ½(40.649kN/m + 127.33kN/m) x 3.9
= 327.55kNm
102.804 kNm
3 m 3.9 m
Bending Moment Diagram
A2 = ½(75.847kN/m + 142.525kN/m) x 3
= 327.55 kNm
Column C6
Dead Load Calculation
Ground Floor
Beam Self Weight
= 4000mm/2 x 1.44 + 6900mm/2 x 1.44
= 7.848 kN
Column Self Weight
= 0.2 x 0.2 x 3 x 24
= 2.88 kN
Brick Wall Self Weight
= 0 (no wall)
Concrete Slab Load
= 4000mm/2 x 6900mm/2 x 3.6
= 24.84 kN
Total Dead Load on Ground Floor
= 7.848 + 2.88 + 24.84
= 35.568 kN
Total Dead Load
= 35.568 + 14.748
= 50.316 kN
Capacity of the column:
Given, FCU= 30N/mm2
Fy = 460 N/mm2
Ac = 200mm x 200mm = 40000mm2
Assuming 2% steel reinforcement in concrete
Asc = 2% x 40000mm2 = 800mm2
N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc)
= (0.4 x 30 x 40000) + (0.8 x 460 x 800)
= 774400N = 774.4kN
Live Load Calculation
Ground Floor
Porch
= 1.5 kN/m x 4000mm/2 x 6900mm/2
= 10.35 kN
First Floor
Flat Roof
= 0.5 kN/m x 4000mm/2 x 6900mm/2
= 3.45 kN
Total Live Load
= 10.35 + 3.45
= 13.8 kN
Ultimate Load
= 50.316 x 1.4 + 13.8 x 1.6
= 92.523 kN
92.523 kN < 774.4kN, it is below the
column maximum load bearing capacity.
First Floor (Flat Roof)
Beam Self Weight
= 4000mm/2 x 1.44 + 6900mm/2 x 1.44
=7.848 kN
Column Self Weight
= 0 (no column)
Brick Wall Self Weight
= 0 (no wall)
Concrete Slab Load
= 4000mm/2 x 6900mm/2 x 1.0
= 6.9 kN
Total Dead Load on First Floor
= 7.848 + 6.9
=14.748 kN
55
Column A6
Dead Load Calculation
Ground Floor
Beam Self Weight
= 4000mm/2 x 1.44 = 6900mm/2 x 1.44
= 7.848 kN
Column Self Weight
= 0.2 x 0.2 x 3 x 24
= 2.88 kN
Brick Wall Self Weight
= 6900mm/2 x 8.55 + 4000mm/2 x 8.55
= 46. 598 kN
Concrete Slab Load
= 4000mm/2 x 6900mm/2 x 3.6
= 24.84 kN
Total Dead Load on Ground Floor
= 7.848 + 2.88 + 46.598 + 24.84
= 82.166 kN
First Floor (Flat Roof)
Beam Self Weight
= 4000mm/2 x 1.44 + 6900mm/2 x 1.44
= 7.848 kN
Column Self Weight
= 0 (no column)
Brick Wall Self Weight
= 0 (no wall)
Total Dead Load
=82.166 +14.748
= 96.914 kN
96.914 kN < 774.4kN, it is below the
column maximum load bearing capacity.
Concrete Slab Load
= 4000mm/2 x 6900mm/2 x 1.0
= 6.9 kN
Total Dead Load on Ground Floor
= 7.848 + 6.9
= 14.748 kN
56
Live Load Calculation
Ground Floor
Living Room
= 2.0 kN/m x 4000mm/2 x 6900mm/2
= 13.8 kN
First Floor
Flat Roof
= 0.5 kN/m x 4000mm/2 x 6900mm/2
= 3.45 kN
Total Live Load
= 13.8 + 3.45
= 17.25 kN
Ultimate Load
= 96.914 x 1.4 + 17.25 x 1.6
= 163.28 kN
57
Column E5
Dead Load Calculation
Ground Floor
Beam Self Weight
= 3000mm/2 x 1.44 + 5000mm/2 x 1.44
= 5.76 kN
Column Self Weight
= 0.2 x 0.2 x 3 x 24
= 2.88 kN
Brick Wall Self Weight
= no wall (0)
Concrete Slab Load
= 3000mm/2 x 5000mm/2 x 3.6
= 13. 5 kN
Total Dead Load on Ground Floor
= 5.76 + 2.88 + 13.5
= 22.14 kN
First Floor
Beam Self Weight
= 3000mm/2 x 1.44 + 5000mm/2 x 1.44
= 5.76 kN
Column Self Weight
= 0.2 x 0.2 x 3 x 24
= 2.88 kN
Brick Wall Self Weight
= 3000mm/2 x 8.55 + 5000mm/2 x 8.55
= 34.2 kN
Concrete Slab Load
= 3000mm/2 x 5000mm/2 x 3.6
= 13. 5 kN
Total Dead Load on First Floor
= 5.76 + 2.88 + 34.2 + 13.5
= 56.34 kN
58
Roof
Beam Self Weight
= 3000mm/2 x 1.44 + 5000mm/2 x 1.44
= 5.76 kN
Column Self Weight
= 0 (no column)
Brick Wall Self Weight
= 0 (no wall)
Concrete Slab Load
= 3000mm/2 x 5000mm/2 x 3.6
= 13. 5 kN
Total Dead Load on First Floor
= 5.76 +13.5
= 19.26 kN
Total Dead Load
= 22.14 + 56.34 + 19.26
= 97.74 kN
Live Load Calculation
Ground Floor
Porch
= 0.5 kN/m x 3000mm/2 x 5000mm/2
= 1.875 kN
First Floor
Family Area
= 2.0 kN/m x 3000mm/2 x 5000mm/2
= 7.5 kN
Roof
= 0.5 kN/m x 3000mm/2 x 5000mm/2
= 1.875 kN
154.836 kN < 774.4kN, it is
below the column maximum load
bearing capacity.
Total Live Load
= 1.875 + 7.5 + 1.875
= 11.25 kN
Ultimate Load
= 97.74 x 1.4 + 11.25 x 1.6
= 154.836 kN
59
SCHOOL OF ARCHITECTURE, BUILDING &
DESIGN
Bachelor of Science (Honours) (Architecture)
Building Structures (ARC 2522/2523)
Project 2: Structural Analysis of a Bungalow
Individual Work:
ONG SENG PENG 0319016
60
FAMILY AREA
Slab C-D/3-4
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Slab C-D/4-5
Ly/Lx = 3900/2000
= 1.95 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam C-D/4
Dead Load from Slab C-D/3-4
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4 kN/m2
Dead Load from Slab C-D/4-5
(two way slab)
= 3.6kN/m3 x (2 x ½)m
= 3.6 kN/m2
Total Dead Load
= (1.44 + 5.4 + 3.6) kN/m2
= 10.44kN/m2
C D
5.4kN/m
3.6kN/m
1.44kN/m
3.9m
10.44kN/m
FAMILY AREA
Shear Force
Diagram
Bending Moment
Diagram
Live Load
Live Load from Slab C-D/3-4
= 2kN/m3 x (3 x ½ ) m2
= 3 kN/m
Live Load from Slab C-D/4-5
= 2kN/m3 x (2 x ½ ) m2
= 2 kN/m
C D
2kN/m
5kN/m
3kN/m
3.9m
Total Live Load
= (2 + 3) kN/m2
= 5 kN/m2
Ultimate Load
= (10.44kN/m x 1.4) + (5kN/m2 x 1.6)
= 14.616kN/m + 8kN/m
= 22.616kN/m
Load Diagram
Reaction Force
RC4 = RD4
= 22.616kN/m x 3.9m
2
= 44.10kN
22.616kN/m
Shear Force
Diagram
44.10kN 44.10kN
44.1kN
-44.1kN
1.95 m 1.95 m
A1 = A2
= 44.10kN x 1.95m x ½
= 43 kNm
43 kNm
1.95 m 1.95 m
3.9m
RC4 RD4
FAMILY AREA
Slab C-D/3-4
Ly/Lx = 3900/3000
= 1.3 < 2
(Two way slab)
Determine one way or two way slab:
Slab C-D/4-5
Ly/Lx = 3900/2000
= 1.95 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam C/3-5
Dead Load from Slab B1-C/3-5
(one way slab)
= 3.6kN/m3 x (2.3 x ½)m
= 4.14 kN/m2
Dead Load from Slab C-D/3-4
(two way slab)
= 3.6kN/m3 x (3 x ½ x 2/3)m
= 3.6 kN/m2
3 5
4.14kN/m
3.6kN/m
1.44kN/m
3 m
2.4kN/m
FAMILY AREA
FAMILY AREA
Slab B1-C/3-4
Ly/Lx = 5000/2300
= 2.17 > 2
(One way slab)
4
2 m
Dead Load from Slab C-D/4-5
(two way slab)
= 3.6kN/m3 x (2 x ½ x 2/3)m
= 2.4 kN/m2
Total Dead Load on C/3-4
= (1.44 + 4.14 + 3.6) kN/m2
= 9.18 kN/m2
Total Dead Load on C/4-5
= (1.44 + 4.14 + 2.4) kN/m2
= 7.98 kN/m2
9.18 kN/m
7.98 kN/m
Live Load
2kN/m
1.33kN/m
2.3kN/m
Live Load from Slab B1-C/3-5
(one way slab)
= 2kN/m3 x (2.3 x ½)m
= 2.3 kN/m2
Live Load from Slab C-D/3-4
(two way slab)
= 2kN/m3 x (3 x ½ x 2/3)m
= 2 kN/m2
Live Load from Slab C-D/4-5
(two way slab)
= 2kN/m3 x (2 x ½ x 2/3)m
= 1.33 kN/m2
4.3 kN/m
3.36 kN/m
3 54
3 m 2 m
Total Live Load on C/3-4
= (2.3 + 2) kN/m2
= 4.3 kN/m2
Total Live Load on C/4-5
= (2.3 + 1.33) kN/m2
= 3.63 kN/m2
Ultimate Load on Beam C/3-4
= (9.18kN/m x 1.4) + (4.3kN/m2 x 1.6)
= 12.852kN/m + 8kN/m
= 22.616kN/m
Ultimate Load on Beam C/4-5
= (7.98kN/m x 1.4) + (3.63kN/m2 x 1.6)
= 11.172kN/m + 5.808kN/m
= 16.98kN/m
-39.72kN
Load Diagram
Point load from secondary beam, C4= 44.1 kN
Take RC3 as centre, reaction force:
22.616 x 3 = 67.848kN
16.98 x 2 = 33.96kN
ΣM = 0
0 = 5RC5 – 67.848(3/2) – 44.1(3) – 33.96(4)
= 5RC5 – 101.772 – 132.3 – 135.84
= 5RC5 – 369.912
5RC5 = 366.612
RC5 = 73.98kN
ΣY = 0
0 = RC3 + RC5 – 67.848 – 44.1 – 33.96
= RC3 + 73.98 – 146.208
RC3 = 72.228kN
22.616kN/m
3 m 2 m
16.98kN/m
44.1 kN
RC3 RC5
72.228kN
3 m 2 m
4.38kN
-73.98kN
Shear Force Diagram
Ratio:
(68.488 + 9.66) = 9.66
2 a
39.074 a = 9.66
a = 0.247
A1 = (72.228 + 4.38) x 3
2
= 114.912kNm
A2 = (39.72 + 73.98) x 2
2
= 113.7 kNm
114.912 kNm
3 m
Bending Moment Diagram
BEDROOM
Slab D-F/2-3
Ly/Lx = 5800/4000
= 1.45 < 2
(Two way slab)
Determine one way or two way slab:
Slab D-E/3-5
Ly/Lx = 5000/3000
= 1.67 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam E/3-5
3 5
8.55kN/m
5.4kN/m
1.44kN/m
5m
15.39kN/m
FAMILY AREA
Dead Load from brick wall
= 19kN/m3 x (0.15 x 3)m2
= 8.55 kN/m
Dead Load from Slab D-E/3-5
(two way slab)
= 3.6kN/m3 x (3 x ½)m
= 5.4 kN/m2
Total Dead Load
= (1.44 + 8.55 + 5.4) kN/m
= 15.39kN/m
Live Load
Live Load from Slab D-E/3-5
= 2kN/m3 x (3 x ½ ) m2
= 3 kN/m
C D
3kN/m
5m
Ultimate Load
= (15.39kN/m x 1.4) + (3kN/m2 x 1.6)
= 21.546kN/m + 4.8kN/m
= 26.346kN/m
Load Diagram
Reaction Force
RE3 = RE5
= 26.346kN/m x 3.9m
2
= 51.375 kN
26.346kN/m
Shear Force Diagram
51.375 kN 51.375 kN
51.375 kN
- 51.375 kN
2.5 m 2.5 m
A1 = A2
= 26.346kN/m x 2.5m x ½
= 32.9325 kNm
32.9325 kNm
2.5 m 2.5 m
Bending Moment
Diagram
5mRE3 RE5
Dead Load from Slab D-E/3-5
(two way slab)
= 3.6kN/m3 x (3 x ½) x 2/3 m
= 3.6 kN/m2
BEDROOM
Slab D-F/2-3
Ly/Lx = 5800/4000
= 1.45 < 2
(Two way slab)
Determine one way or two way slab:
Slab D-E/3-5
Ly/Lx = 5000/3000
= 1.67 < 2
(Two way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam D-F/3
D F
8.55kN/m
3.6kN/m
1.44kN/m
3m
18.39kN/m
FAMILY AREA
Dead Load from brick wall
= 19kN/m3 x (0.15 x 3)m2
= 8.55 kN/m
Total Dead Load on Beam D-E/3
= (1.44 + 8.55 + 4.8 + 3.6) kN/m
= 18.39kN/m
E
1m
4.8kN/m
14.79kN/m
Total Dead Load on Beam E-F/3
= (1.44 + 8.55 + 4.8) kN/m
= 14.79kN/m
Dead Load from Slab D-F/2-3
(two way slab)
= 3.6kN/m3 x (4 x ½) x 2/3
= 4.8 kN/m2
Live Load
2kN/m
2kN/m
Live Load from Slab D1-F/2-3
(two way slab)
= 1.5kN/m3 x (4 x ½)m x 2/3
= 2 kN/m2
Live Load from Slab D-E/3-5
(two way slab)
= 2kN/m3 x (3 x ½ x 2/3)m
= 2 kN/m2
4 kN/m
2 kN/m
D FE
3 m 1 m
Total Live Load on D-E/3
= (2 + 2) kN/m2
= 4 kN/m2
Ultimate Load on Beam D-E/3
= (18.39kN/m x 1.4) + (4kN/m2 x 1.6)
= 25.746kN/m + 6.4kN/m
= 32.146kN/m
Ultimate Load on Beam C/4-5
= (14.79kN/m x 1.4) + (2kN/m2 x 1.6)
= 20.706kN/m + 3.2kN/m
= 23.906kN/m
Total Live Load on E-F/3
= 2kN/m2
-21.198kN
Load Diagram
Point load from secondary beam, C4= 51.375 kN
Take RD3 as centre, reaction force:
32.146 x 3 = 96.438kN
16.98 x 1 = 16.98kN
ΣM = 0
0 = 4RF3 – 96.438(3/2) – 51.375(3) – 16.98(3.5)
= 4RF3 – 144.657 – 154.125 – 59.43
= 4RF3 – 358.212
4RF3 = 358.212
RF3 = 89.553kN
ΣY = 0
0 = RD3 + RF3 – 96.438 – 51.375 – 16.98
= RD3 + 89.553 – 164.793
RD3 = 75.24kN
32.146kN/m
3 m 1 m
16.98kN/m
51.375 kN
RD3 RF3
75.24kN
3 m 1 m -89.553kN
Shear Force Diagram
Ratio:
(75.24 + 21.198) = 21.198
3 a
32.146 a = 21.198
a = 0.66
A1 = 75.24 x 2.34 x ½
= 88.03kNm
88.03 kNm
3 m
Bending Moment
Diagram
-72.573kN
2.34 m 0.66 m
A2 = 21.198 x 0.66 x ½
= 7kNm
A2 = (72.573 + 89.553) x 1
2
= 81.063kNm
81.03 kNm
2.34 m
Void
Determine one way or two way slab:
Slab A-B1/4-5
Ly/Lx = 4600/2000
= 2.3 > 2
(One way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam A-B1/4
A
3.6kN/m
5.04kN/m
1.44kN/m
4.6m
1.5kN/m
Corridor
Dead Load from Slab A-B1/4-5
(one way slab)
= 3.6kN/m3 x (2 x ½)m
= 3.6 kN/m2
Total Dead Load
= (1.44 + 3.6) kN/m
= 5.04kN/m
B1
Live Load
Live Load from Slab A-B1/4-5
= 1.5 kN/m3 x (2 x ½ ) m2
= 1.5 kN/m
Ultimate Load
= (5.04kN/m x 1.4) + (1.5kN/m2 x 1.6)
= 21.546kN/m + 4.8kN/m
= 9.456kN/m
Load Diagram
Reaction Force
RA4 = RB1.4
= 9.456kN/m x 4.6m
2
= 21.749 kN
9.456 kN/m
Shear Force Diagram
21.749 kN 21.749 kN
21.749 kN
- 21.749 kN2.3 m 2.3 m
A1 = A2
= 21.749 kN/m x 2.3m x ½
= 25.011 kNm
25.011 kNm
2.3 m 2.3 m
Bending Moment
Diagram
4.6mRA4 RB1.4
Dead Load from brick wall
= 19kN/m3 x (0.15 x 3)m2
= 8.55 kN/m
Void
Determine one way or two way slab:
Slab A-B1/4-5
Ly/Lx = 4600/2000
= 2.3 > 2
(One way slab)
Dead Load
Concrete Beam Self Weight
= 24kN/m3 x (0.2 x 0.3)m2
= 1.44 kN/m
First Floor Beam A/3-5
3 5
8.55kN/m
9.99kN/m
1.44kN/m
3m
Corridor
No Dead Load from Slab A-B1/4-5
(one way slab)
Total Dead Load
= (1.44 + 8.55) kN/m
= 9.99kN/m
Ultimate Load
= 9.99kN/m x 1.4
= 13.986kN/m
2m
4
No Live Load from Slab A-B1/4-5
(one way slab)
Live Load
-20.042kN
Load Diagram
Point load from secondary beam, A4= 21.749 kN
kN
Take RA3 as centre, reaction force:
13.986 x 3 = 41.958 kN
13.986 x 2 = 27.972 kN
ΣM = 0
0 = 5RA5 – 41.958(3/2) – 21.749(3) – 27.972(4)
= 5RA5 – 62.937 – 65.247 – 111.888
= 5RA5 – 240.072
5RA5 = 240.072
RA5 = 48.014kN
ΣY = 0
0 = RA3 + RA5 – 41.958 – 21.749 – 27.972
= RA3 + 48.014 – 91.679
RD3 = 43.665kN
13.986kN/m
3 m 2 m
13.986kN/m
21.749 kN
43.665kN
3 m 2 m -48.014kN
Shear Force Diagram
A1 = (43.665 +1.707) x 3
2
= 68.058kNm
68.058 kNm
3 m
Bending Moment
Diagram
A2 = (48.014 + 20.042) x 2
2
= 68.056kNm
2.34 m
43.665 kN 48.014 kN
RA3 RA5
1.707kN
Capacity of the column:
Given, FCU= 30N/mm2
Fy = 460 N/mm2
Ac = 200mm x 200mm = 40000mm2
Assuming 2% steel reinforcement in concrete
Asc = 2% x 40000mm2 = 800mm2
N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc)
= (0.4 x 30 x 40000) + (0.8 x 460 x 800)
= 774400N = 774.4kN
Column A3
Roof Level
1. Dead Load from slab
= (5.9m x 1.5m) x 1.0 kN/m2 = 8.1kN
2. Dead Load from beam
= 6.9m x 1.44 kN/m
= 9.936kN
Total dead load on roof level
= (8.1 + 9.936)kN = 18.036kN
3. Live Load from slab
= 8.1m2 x 0.5 kN/m2 = 4.05kN
First Level
1. Dead Load from slab
= (1.5m x 2.9m) x 3.6 kN/m2
= 8.1 kN
2. Dead Load from beam
= 4.5m x 1.44 kN/m
= 6.48kN
3. Dead load from wall
= 6.9m x 8.55 kN/m
= 58.995kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (8.1 + 6.48 + 58.995 + 2.88)kN
= 73.575kN
5. Live Load from slab
= (2.9 x 1.5) x 1.5 kN/m2
= 6.525kN
Ground Level
1. Dead Load from slab
= (5.4 x 1.5)m2 x 3.6 kN/m2
= 29.16kN
2. Dead Load from beam
= 4.5m x 1.44 kN/m
= 6.48kN
3. Dead load from wall
= 6.9m x 8.55 kN/m = 58.995kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on ground level
= (29.16 + 6.48 + 58.995 + 2.88)kN
= 97.515kN
5. Live Load from slab (Living room)
= (1.5 x 2.9)m2 x 2 kN/m2 = 8.7kN
6. Live Load from slab
= (1.5 x 2.5)m2 x 1.5 kN/m2
= 5.625kN
Total live load on ground level
= (8.7 + 5.625)kN
= 14.325kN
Ultimate Dead Load = Total dead load x 1.4 = (18.036kN + 73.575kN + 97.515kN) x 1.4
= 264.7764kN
Ultimate Live Load = Total live load x 1.6 = (4.05kN + 6.525kN + 14.325kN) x 1.6
= 39.84kN
 Total Load acting on Column A3 = 304.616kN
304.616kN < 774.4kN, it is below the column maximum load bearing capacity.
Column B3 Roof Level
1. Dead Load from slab
= (5.4m x 3.45m) x 1.0 kN/m2 = 18.63kN
2. Dead Load from beam
= 3.45m x 1.44 kN/m
= 4.968kN
Total dead load on roof level
= (18.63 + 4.968)kN = 23.598kN
3. Live Load from slab
= 18.63 m2 x 0.5 kN/m2 = 9.315kN
First Level
1. Dead Load from slab
= {(3m x 3.45m) + (0.45 x 2.4)} x 3.6 kN/m2
= 41.148 kN
2. Dead Load from beam
= 3.45m x 1.44 kN/m
= 4.968kN
3. Dead load from wall
= 3.45m x 8.55 kN/m
= 29.4975kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (41.148 + 4.968 + 29.4975 + 2.88)kN
= 78.4935kN
5. Live Load from slab
= 11.43 x 1.5 kN/m2
= 17.145kN
Ground Level
1. Dead Load from slab
= (5.4 x 3.45)m2 x 3.6 kN/m2
= 67.068kN
2. Dead Load from beam
= 3.45m x 1.44 kN/m
= 4.968kN
3. Dead load from wall
= 3.45m x 8.55 kN/m = 29.4975kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on ground level
= (67.068 + 4.968 + 29.4975 + 2.88)kN
= 104.4135kN
5. Live Load from slab
= 18.63m2 x 1.5 kN/m2
= 27.945kN
Ultimate Dead Load = Total dead load x 1.4 = (23.598kN + 78.4935+ 104.4135kN) x 1.4
= 289.107kN
Ultimate Live Load = Total live load x 1.6 = (9.315kN + 17.145kN + 27.945kN) x 1.6
= 87.048kN
 Total Load acting on Column A3 = 376.1kN
376.1kN < 774.4kN, it is below the column maximum load bearing capacity.
Column C3 Roof Level
1. Dead Load from slab
= (5.4m x 3.9m) x 1.0 kN/m2 = 21.06kN
2. Dead Load from beam
= (5.4 + 3.9)m x 1.44 kN/m
= 13.392kN
Total dead load on roof level
= (21.06 + 13.392)kN = 34.452kN
3. Live Load from slab
= 21.06m2 x 0.5 kN/m2 = 10.53kN
First Level
1. Dead Load from slab
= (3.9m x 5.4m) x 3.6 kN/m2
= 75.816 kN
2. Dead Load from beam
= 3.9m x 1.44 kN/m
= 13.392kN
3. Dead load from wall
= (1.95 +2.9)m x 8.55 kN/m
= 41.4675kN
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on first level
= (75.816 + 13.392 + 41.4675 + 2.88)kN
= 133.5555kN
5. Live Load from slab (family area)
= (2.9 x 1.95) x 2 kN/m2
= 9.75kN
6. Live Load from slab (Bedroom and corridor)
=(3.9 x 2.9) + (1.95 x 2.5) x 1.5
=24.2775kN
Total dead load on first level
= (9.75+ 24.2775)kN
= 34.0275kNkN
Ground Level
1. Dead Load from slab
= (5.4 x 3.9)m2 x 3.6 kN/m2
= 75.816kN
2. Dead Load from beam
= (5.4 + 3.9)m x 1.44 kN/m
= 41.4675kN
3. Dead load from wall
= none
4. Dead load from column
= 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN
Total dead load on ground level
= (75.816 + 41.4675+ 2.88)kN
= 120.1635kN
5. Live Load from slab (Dry kitchen and dining)
= (3.9 x 2.9)m2 x 2 kN/m2 = 22.62kN
6. Live Load from slab
= (3.9 x 2.5)m2 x 1.5 kN/m2
= 14.625kN
Total live load on ground level
= (22.62 + 14.625)kN
= 37.245kN
Ultimate Dead Load = Total dead load x 1.4 = (34.452kN 133.5555kN + 120.1635kN) x 1.4
= 403.438kN
Ultimate Live Load = Total live load x 1.6 = (10.53kN + 24.2775kN + 37.245kN) x 1.6
= 130.884kN
 Total Load acting on Column A3 = 534.322kN
534.322kN < 774.4kN, it is below the column maximum load bearing capacity.
Conclusion
Based on the calculations we did on the load transfer of beams and columns,
we conclude that the proposed sizes and positioning of structural point is
sufficient to support both dead loads and live loads of the building and in the
same time, meeting the user’s living requirements. Through this exercise, we
learned how to design a building based on structural considerations and
propose practical building structures for future studio assignments.
81
The project has a big role to bring exposure about the technicality and
rationality about what and how to build buildings in real life. Designs and ideas
which can be realized won’t contribute to the society. With a better basic
understanding on how to know whether the structures of a building can
withstand through the time, not only to stand for a short amount of time, it
gives us an insight as how to make ideas real. Not only to understand the
importance of structures, the exercise also allows us to know exactly on the
points where the members are actually vulnerable in order for us to think of a
concrete solution. An extra measure of safety to ensure the structures are
able to withstand unpredicted events in the future or a sudden shock to
certain member is always better.
Last but not least, we would like to express our token of appreciation to our
lecturers for their patience and dedication in teaching us these technical skills.
References:
(2013) Uniform Building By-laws 1984 (G.N. 5178/85) (1st ed.). Petaling Jaya, Malaysia:
Penerbitan Akta (M) Sdn. Bhd
Ambrose, James. (1991). Building Structures (Second Ed.). US: John Wiley & Sons,
1993.
How to Calculate the Bending Moment Diagram of a Beam. (2013). Retrieved
from http://bendingmomentdiagram.com/tutorials/how-to-find-bending-moment-
diagrams/
Jalal, Asfar. (2013, 17 November). Types of Load. Retrieved from
http://www.engineeringintro.com/mechanics-of-structures/sfd-bmd/types-of-load/
LearnEngineering.org & Imajey Consulting Engineers Pvt. Ltd. (2011). Analysis of
Beams: Shear Force and Bending Moment Diagram. Retrieved from
http://www.learnengineering.org/2013/08/shear-force-bending-moment-
diagram.html
Learn to Engineer. Uniform Distributed Loads. Retrieved from
http://learntoengineer.com/note/Uniform_Distributed_Loads
The American Wood Council (AWC). 2005, January 6. Beam Design Formulas with
Shear and Moment Diagrams (2005 Ed.). Washington, DC: American Forest &
Paper Association, Inc.
http://bendingmomentdiagram.com/tutorials/how-to-find-bending-moment-
diagrams/
http://www.iitg.ac.in/kd/Lecture%20Notes/ME101-Lecture11-KD.pdf
82

Weitere ähnliche Inhalte

Was ist angesagt?

Structures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC BungalowStructures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC BungalowYee Len Wan
 
Beam and Column Analysis | Group Component
Beam and Column Analysis | Group ComponentBeam and Column Analysis | Group Component
Beam and Column Analysis | Group ComponentJoyce Wee
 
Design of combined footing ppt
Design of combined footing pptDesign of combined footing ppt
Design of combined footing pptBharti Shinde
 
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSISBUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSISYaseen Syed
 
Chapter 5 beams design
Chapter 5  beams designChapter 5  beams design
Chapter 5 beams designSimon Foo
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Hossam Shafiq II
 
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Hossam Shafiq II
 
Basement wall design
Basement wall designBasement wall design
Basement wall designCETCBIM
 
Final structure report
Final structure reportFinal structure report
Final structure reportTay Jit Ying
 
Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525KAMARAN SHEKHA
 
Column Analysis and Design
Column Analysis and Design Column Analysis and Design
Column Analysis and Design Waqas Javaid
 
Civil structural engineering - Flat slab design
Civil structural engineering -  Flat slab designCivil structural engineering -  Flat slab design
Civil structural engineering - Flat slab designSatish Narayan
 
Composite construction by Er. SURESH RAO
Composite construction by Er. SURESH RAOComposite construction by Er. SURESH RAO
Composite construction by Er. SURESH RAOAjit Sabnis
 

Was ist angesagt? (20)

Structures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC BungalowStructures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
 
Beam and Column Analysis | Group Component
Beam and Column Analysis | Group ComponentBeam and Column Analysis | Group Component
Beam and Column Analysis | Group Component
 
Design of combined footing ppt
Design of combined footing pptDesign of combined footing ppt
Design of combined footing ppt
 
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSISBUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
 
Doubly reinforced beam analysis
Doubly reinforced beam   analysisDoubly reinforced beam   analysis
Doubly reinforced beam analysis
 
Chapter 5 beams design
Chapter 5  beams designChapter 5  beams design
Chapter 5 beams design
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Staircase design
Staircase designStaircase design
Staircase design
 
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
Final structure report
Final structure reportFinal structure report
Final structure report
 
Reinforced column design
Reinforced column design Reinforced column design
Reinforced column design
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525
 
Column Analysis and Design
Column Analysis and Design Column Analysis and Design
Column Analysis and Design
 
Design of floor slab
Design of floor slabDesign of floor slab
Design of floor slab
 
Civil structural engineering - Flat slab design
Civil structural engineering -  Flat slab designCivil structural engineering -  Flat slab design
Civil structural engineering - Flat slab design
 
Flat slab
Flat slabFlat slab
Flat slab
 
Wind load
Wind  loadWind  load
Wind load
 
Composite construction by Er. SURESH RAO
Composite construction by Er. SURESH RAOComposite construction by Er. SURESH RAO
Composite construction by Er. SURESH RAO
 

Ähnlich wie Building Structure Project 2 (Taylor's lakeside campus)

individual part
individual part individual part
individual part KC Wong
 
Building structures final
Building structures finalBuilding structures final
Building structures finalJamie Lee
 
Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2Wen Yee
 
B structure
B structure B structure
B structure Andy Heng
 
B.structure report
B.structure reportB.structure report
B.structure reportjiuaN59
 
Building Structure
Building Structure Building Structure
Building Structure Nicole Foo
 
Building Structures Final Compilation
Building Structures Final CompilationBuilding Structures Final Compilation
Building Structures Final Compilationjisunfoo
 
Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2Ivy Yee
 
Beam and Column Analysis | Individual Component
Beam and Column Analysis | Individual ComponentBeam and Column Analysis | Individual Component
Beam and Column Analysis | Individual ComponentJoyce Wee
 
Building structure real
Building structure realBuilding structure real
Building structure realong93
 
Structural Analysis of a Bungalow
Structural Analysis of a BungalowStructural Analysis of a Bungalow
Structural Analysis of a BungalowJing Fan Koh
 
Building Structure Final report
Building Structure Final reportBuilding Structure Final report
Building Structure Final reportCanisius Bong
 
Oscar individual b structure report
Oscar individual b structure reportOscar individual b structure report
Oscar individual b structure reportlee yiang siang
 
Building Structures_Project_02
Building Structures_Project_02Building Structures_Project_02
Building Structures_Project_02Winnie Ang
 
B structure power point
B structure power pointB structure power point
B structure power pointAnderson Wong
 
Building Structures Report (Group and Individual)
Building Structures Report (Group and Individual)Building Structures Report (Group and Individual)
Building Structures Report (Group and Individual)Patch Yuen
 
Structural analysis of a bungalow report
Structural analysis of a bungalow reportStructural analysis of a bungalow report
Structural analysis of a bungalow reportChengWei Chia
 
Assignement 2: Structural Analysis
Assignement 2: Structural AnalysisAssignement 2: Structural Analysis
Assignement 2: Structural AnalysisDavidJPCChai
 
Building structure
Building structure Building structure
Building structure yenweizheng
 

Ähnlich wie Building Structure Project 2 (Taylor's lakeside campus) (20)

individual part
individual part individual part
individual part
 
Building structures final
Building structures finalBuilding structures final
Building structures final
 
Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2
 
B structure
B structure B structure
B structure
 
B.structure report
B.structure reportB.structure report
B.structure report
 
Building Structure
Building Structure Building Structure
Building Structure
 
Building Structures Final Compilation
Building Structures Final CompilationBuilding Structures Final Compilation
Building Structures Final Compilation
 
Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2
 
Beam and Column Analysis | Individual Component
Beam and Column Analysis | Individual ComponentBeam and Column Analysis | Individual Component
Beam and Column Analysis | Individual Component
 
Building structure real
Building structure realBuilding structure real
Building structure real
 
Structural Analysis of a Bungalow
Structural Analysis of a BungalowStructural Analysis of a Bungalow
Structural Analysis of a Bungalow
 
Building Structure Final report
Building Structure Final reportBuilding Structure Final report
Building Structure Final report
 
Oscar individual b structure report
Oscar individual b structure reportOscar individual b structure report
Oscar individual b structure report
 
Building Structures_Project_02
Building Structures_Project_02Building Structures_Project_02
Building Structures_Project_02
 
Structures
StructuresStructures
Structures
 
B structure power point
B structure power pointB structure power point
B structure power point
 
Building Structures Report (Group and Individual)
Building Structures Report (Group and Individual)Building Structures Report (Group and Individual)
Building Structures Report (Group and Individual)
 
Structural analysis of a bungalow report
Structural analysis of a bungalow reportStructural analysis of a bungalow report
Structural analysis of a bungalow report
 
Assignement 2: Structural Analysis
Assignement 2: Structural AnalysisAssignement 2: Structural Analysis
Assignement 2: Structural Analysis
 
Building structure
Building structure Building structure
Building structure
 

Mehr von Ong Seng Peng Jeff

Ong seng peng (jeff) ent 2 project 2 core optimization handbook c
Ong seng peng (jeff) ent 2 project 2 core optimization handbook cOng seng peng (jeff) ent 2 project 2 core optimization handbook c
Ong seng peng (jeff) ent 2 project 2 core optimization handbook cOng Seng Peng Jeff
 
Final kampung baru research proposal
Final kampung baru research proposalFinal kampung baru research proposal
Final kampung baru research proposalOng Seng Peng Jeff
 
Bentley Music Auditorium Acoustic Studies
Bentley Music Auditorium Acoustic Studies Bentley Music Auditorium Acoustic Studies
Bentley Music Auditorium Acoustic Studies Ong Seng Peng Jeff
 
0319016 critical regionalism txt 5&amp;6 (ver 3)
0319016 critical regionalism txt 5&amp;6 (ver 3)0319016 critical regionalism txt 5&amp;6 (ver 3)
0319016 critical regionalism txt 5&amp;6 (ver 3)Ong Seng Peng Jeff
 
0319016 phenomenology of architecture (ver3)
0319016 phenomenology of architecture (ver3)0319016 phenomenology of architecture (ver3)
0319016 phenomenology of architecture (ver3)Ong Seng Peng Jeff
 
Comparative essay ton that dam and jalan tar 2
Comparative essay ton that dam and jalan tar 2Comparative essay ton that dam and jalan tar 2
Comparative essay ton that dam and jalan tar 2Ong Seng Peng Jeff
 
Building science 2 final report
Building science 2 final reportBuilding science 2 final report
Building science 2 final reportOng Seng Peng Jeff
 
Arc2622 log sheets & report file ong seng peng 0319016
Arc2622 log sheets & report file ong seng peng 0319016Arc2622 log sheets & report file ong seng peng 0319016
Arc2622 log sheets & report file ong seng peng 0319016Ong Seng Peng Jeff
 
OPEN SECRET - ( PETALING STREET )
OPEN SECRET - ( PETALING STREET )OPEN SECRET - ( PETALING STREET )
OPEN SECRET - ( PETALING STREET )Ong Seng Peng Jeff
 
Building Service Project 2 Year 2016 (Taylors University Lakeside Campus)
Building Service Project 2 Year 2016 (Taylors University Lakeside Campus)Building Service Project 2 Year 2016 (Taylors University Lakeside Campus)
Building Service Project 2 Year 2016 (Taylors University Lakeside Campus)Ong Seng Peng Jeff
 
Redefining Malaysian Terrace Residential Architecture by Introducing Passive ...
Redefining Malaysian Terrace Residential Architecture by Introducing Passive ...Redefining Malaysian Terrace Residential Architecture by Introducing Passive ...
Redefining Malaysian Terrace Residential Architecture by Introducing Passive ...Ong Seng Peng Jeff
 
Building construction 2 project 1 report
Building construction 2 project 1 reportBuilding construction 2 project 1 report
Building construction 2 project 1 reportOng Seng Peng Jeff
 
PENANG SHOPHOUSES - ( LORONG IKAN LOT 3,5,7)
PENANG SHOPHOUSES -  ( LORONG IKAN LOT 3,5,7)PENANG SHOPHOUSES -  ( LORONG IKAN LOT 3,5,7)
PENANG SHOPHOUSES - ( LORONG IKAN LOT 3,5,7)Ong Seng Peng Jeff
 
Precedent study: Chartres Cathedral (the architect and its background)
Precedent study: Chartres Cathedral (the architect and its background)Precedent study: Chartres Cathedral (the architect and its background)
Precedent study: Chartres Cathedral (the architect and its background)Ong Seng Peng Jeff
 

Mehr von Ong Seng Peng Jeff (20)

Ong seng peng (jeff) ent 2 project 2 core optimization handbook c
Ong seng peng (jeff) ent 2 project 2 core optimization handbook cOng seng peng (jeff) ent 2 project 2 core optimization handbook c
Ong seng peng (jeff) ent 2 project 2 core optimization handbook c
 
Ari presentationslides
Ari presentationslidesAri presentationslides
Ari presentationslides
 
Pm project 1
Pm project 1Pm project 1
Pm project 1
 
Pm report final
Pm report finalPm report final
Pm report final
 
Final kampung baru research proposal
Final kampung baru research proposalFinal kampung baru research proposal
Final kampung baru research proposal
 
Bentley Music Auditorium Acoustic Studies
Bentley Music Auditorium Acoustic Studies Bentley Music Auditorium Acoustic Studies
Bentley Music Auditorium Acoustic Studies
 
0319016 critical regionalism txt 5&amp;6 (ver 3)
0319016 critical regionalism txt 5&amp;6 (ver 3)0319016 critical regionalism txt 5&amp;6 (ver 3)
0319016 critical regionalism txt 5&amp;6 (ver 3)
 
0319016 phenomenology of architecture (ver3)
0319016 phenomenology of architecture (ver3)0319016 phenomenology of architecture (ver3)
0319016 phenomenology of architecture (ver3)
 
Comparative essay ton that dam and jalan tar 2
Comparative essay ton that dam and jalan tar 2Comparative essay ton that dam and jalan tar 2
Comparative essay ton that dam and jalan tar 2
 
Building science 2 final report
Building science 2 final reportBuilding science 2 final report
Building science 2 final report
 
Arc2622 log sheets & report file ong seng peng 0319016
Arc2622 log sheets & report file ong seng peng 0319016Arc2622 log sheets & report file ong seng peng 0319016
Arc2622 log sheets & report file ong seng peng 0319016
 
OPEN SECRET - ( PETALING STREET )
OPEN SECRET - ( PETALING STREET )OPEN SECRET - ( PETALING STREET )
OPEN SECRET - ( PETALING STREET )
 
Building Service Project 2 Year 2016 (Taylors University Lakeside Campus)
Building Service Project 2 Year 2016 (Taylors University Lakeside Campus)Building Service Project 2 Year 2016 (Taylors University Lakeside Campus)
Building Service Project 2 Year 2016 (Taylors University Lakeside Campus)
 
Redefining Malaysian Terrace Residential Architecture by Introducing Passive ...
Redefining Malaysian Terrace Residential Architecture by Introducing Passive ...Redefining Malaysian Terrace Residential Architecture by Introducing Passive ...
Redefining Malaysian Terrace Residential Architecture by Introducing Passive ...
 
Building construction 2 project 1 report
Building construction 2 project 1 reportBuilding construction 2 project 1 report
Building construction 2 project 1 report
 
PENANG SHOPHOUSES - ( LORONG IKAN LOT 3,5,7)
PENANG SHOPHOUSES -  ( LORONG IKAN LOT 3,5,7)PENANG SHOPHOUSES -  ( LORONG IKAN LOT 3,5,7)
PENANG SHOPHOUSES - ( LORONG IKAN LOT 3,5,7)
 
Angkasapuri final report
Angkasapuri final reportAngkasapuri final report
Angkasapuri final report
 
Team organica final
Team organica finalTeam organica final
Team organica final
 
Precedent study: Chartres Cathedral (the architect and its background)
Precedent study: Chartres Cathedral (the architect and its background)Precedent study: Chartres Cathedral (the architect and its background)
Precedent study: Chartres Cathedral (the architect and its background)
 
DPJ 2
DPJ 2DPJ 2
DPJ 2
 

Kürzlich hochgeladen

9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 

Kürzlich hochgeladen (20)

9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 

Building Structure Project 2 (Taylor's lakeside campus)

  • 1. SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Bachelor of Science (Honours) (Architecture) Building Structures (ARC 2522/2523) Project 2: Structural Analysis of a Bungalow Tutor: Mr Azim Sulaiman Team Members: EVELIN DEVINA 0322176 LIM JOE ONN 0318679 ONG SENG PENG 0319016 1
  • 2. TABLE OF CONTENTS Introduction to Bungalow Floor Plans • Ground Floor • First Floor Structural Plans • Foundation Plan • Ground Floor Plan • First Floor Plan • Roof Plan Structural 3D model Design Brief • Assumed Material Weight • Assumed Live Load Beam Analysis Report • Load Distribution Plans • Load Diagram • Bending Moment Diagram • Shear Force Diagram Column Analysis Report • Load Distribution Plans for Column Design • Estimation of Column Load • Suggested Column Size Conclusion 2
  • 3. The proposed bungalow is built to accommodate the needs of a family. With an estimated total built up area of 450 square meters, its interior spaces include a living hall, a dining area, two kitchens, a guest room, three bathrooms, a master bedroom, two bedrooms and a storage space. Typical to modern day residential houses, its structure consists of basic key components of columns and beams which functions to support its own weight. Basic procedures of building structure design are recognized, executed and implemented. A structural proposal is produced to ensure the bungalow’s structural integrity, guaranteeing the safety of its inhabitants. INTRODUCTION TO BUNGALOW 3
  • 11. Dead Loads of Structure (Constant) Density of concrete = 24 kN/m3 Density of brick = 19 kN/m3 Dead load of roof = 1.0 kN/m2 (According to UBBL) Dead load factor = 1.4 Structure Self-weight Calculation Concrete beam self-weight Cross-sectional area = width x height of the beam = 0.2m x 0.3m = 0.06m2 Beam self-weight per meter length = cross-sectional area x density of concrete = 0.06m2 x 24 kN/m3 = 1.44 kN/m Brick wall self- weight Wall self-weight per meter length = thickness x height x density of brick wall = 0.15m x 3.0m x 19 kN/m2 = 8.55 kN/m Floor slab self- weight Floor slab self-weight per meter square = slab thickness x density of concrete = 0.15m x 24 kN/m3 = 3.6kN/m2 Live Loads of Rooms according to its function (Constant) Live load factor = 1.6 Room Live Load per meter square area (kN/m2) Bedroom 1.5 Dining Area 2.0 Living Area 2.0 Bathroom 2.0 Corridor 1.5 Kitchen 2.0 Roof 0.5 Design Brief: 11
  • 12. SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Bachelor of Science (Honours) (Architecture) Building Structures (ARC 2522/2523) Project 2: Structural Analysis of a Bungalow Individual Work: EVELIN DEVINA 0322176 12
  • 13. Slab A-B/1-2A Ly/Lx = 4200/3000 = 1.4 < 2 (Two way slab) Determine one way or two way slab: Slab A-B/2A-3 Ly/Lx = 4600/3000 = 1.53 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab A-B/1-2A (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (3/2)m = 5.4 kN/m 4. Load from Slab A-B/2A-3 (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (3/2)m = 5.4 kN/m Total Dead Load on Beam A/2-2A = (1.44 + 8.55 + 5.4) kN/m = 15.39 kN/m Total Dead Load on Beam A/2A-3 = (1.44 + 8.55 + 5.4) kN/m = 15.39 kN/m 1) First Floor Beam A/2-3 Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 2 3 8.55 kN/m 5.4kN/m 1.44kN/m 4.6m 5.4kN/m 2A 1.2m 15.39kN/m 15.39
  • 14. Live Load 1. Load from Slab A-B/1-2A (two-way slab) = Live load intensity x (Lx/2) = 2 kN/m2 x (3/2)m = 3 kN/m 2. Load from Slab A-B/2A-3 (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (3/2)m = 2.25 kN/m Ultimate Load  Ultimate Load on Beam A/2-2A = Ultimate Dead Load + Ultimate Live Load = (15.39 kN/m x 1.4) + (3 kN/m x 1.6) = 21.55 KN/m + 4.8 kN/m = 26.35 kN/m  Ultimate Load on Beam A/2A-3 = Ultimate Dead Load + Ultimate Live Load = (15.39 kN/m x 1.4) + (2.25 kN/m x 1.6) = 21.55 KN/m + 3.6 kN/m = 25.15 kN/m Point Load at point A/2A from beam A-B/2A 1. Concrete Beam Self-weight = 1.44 kN/m 2. Brick Wall Load = 8.55 kN/m 3. Dead Load from Slab A-B/1-2A (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m 4. Dead Load from Slab A-B/2A-3 (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m Total Dead Load on Beam A-B/2A = (1.44 + 8.55 + 3.6 + 3.6)kN/m = 17.19 kN/m 5. Live Load from Slab A-B/1-2A (two-way slab) = Live Load Intensity x (Lx/2) x 2/3 = 2 kN/m2 x (3/2)m x 2/3 = 2 kN/m 6. Live Load from Slab A-B/2A-3 (two-way slab) = Live Load Intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m Total Live Load on Beam A-B/2A = (2 + 1.5)kN/m = 3.5 kN/m 2 3 4.6m 2A 1.2m 3kN/m 2.25kN/m 25.15kN/m 26.35kN/m
  • 15. Ultimate Load on Beam A-B/2A = (17.19 kN/m x 1.4) + (3.5 kN/m x 1.6) = 29.67 kN/m Total Load on Beam A-B/2A = Uniform Distributed Load x Beam Length = 29.67 kN/m x 3m = 89.01 kN  Point Load at Point A/2A Total Load is distributed equally to 2 points = 89.01 kN / 2 = 44.51 kN Reaction Force 1. Beam A/2-2A UDL to Point Load = 26.35 kN/m x 1.2m = 31.62 kN 2. Beam A/2A-3 UDL to Point Load = 25.15 kN/m x 4.6m = 115.69 kN 0 = ∑M2 0 = (31.62kN x 0.6m) + (44.51kN x 1.2m) + (115.69kN x 3.5m) – (R3 x 5.8m) R3 = 477.3kNm / 5.8m = 82.30 kN ∑Fy = (31.62 + 44.51 + 115.69) - (R2 + 82.30) = 0 R2 = 191.82 – 82.30 = 109.52 kN Shear Force Diagram 33.39 : X = 82.30 : (4.6 - X) 82.3 X = 33.39 (4.6 – X) X = 153.59/115.69 = 1.33m Bending Moment Diagram 1. (109.52m + 77.9m)/2 x 1.2m = 112.45m2 2. (33.39m x1.33m)/2 = 21.70m2 3. (82.30m x 3.27m)/2 = 134.56m2 2 3 4.6m 2A 1.2m 25.15kN/m 26.35kN/m 44.51kN R3=82.30kN 31.62kN 44.51kN R2=109.52kN 115.69kN x (4.6 – x) 82.30 33.39 4.6m1.2m 109.52kN 134.65kNm (109.52-31.62= 77.9kN) (77.9-44.51= 33.39kN) 0 (33.39-115.69= -82.30kN) 112.45kNm (134.65-134.56= +0.9)
  • 16. Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Load from Slab B-C/2-2B (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m 3. Load from Slab B-C/2B-3 (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (3/2)m = 5.4 kN/m Total Dead Load on Beam B-C/2B = (1.44 + 5.04 + 5.4) kN/m = 11.88 kN/m Slab B-C/2-2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Determine one way or two way slab: Slab B-C/2B-3 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) 2) First Floor Beam B-C/2B Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 Live Load 1. Load from Slab B-C/2-2B (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (2.8/2)m = 2.1 kN/m 2. Load from Slab B-C/2B-3 (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (3/2)m = 2.25 kN/m Total Live Load on Beam B-C/2B = (2.1 + 2.25) kN/m = 4.35 kN/m B C 5.04 kN/m 1.44kN/m 3.9m 5.4 kN/m 11.88 kN/m 2.1 kN/m 2.25 kN/m 4.35 kN/m
  • 17. Ultimate Load  Ultimate Load on Beam B-C/2B = Ultimate Dead Load + Ultimate Live Load = (11.88 kN/m x 1.4) + (4.35 kN/m x 1.6) = 16.63 KN/m + 6.96 kN/m = 23.59 kN/m Reaction Force Beam B-C/2B UDL to Point Load = 23.59 kN/m x 3.9m = 92 kN RB = RC ∑Fy = 92 - (RB + RC) = 0 RB = 46 kN RC = 46 kN Shear Force Diagram Bending Moment Diagram (46m x 1.95m)/2 = 89.7 m2 B C 3.9m RC=46 kN 92 kN 23.59kN/m RB=46 kN 46kN 1.95 m 1.95 m 0 - 46kN 89.7 kNm 0 (89.7-89.7 = 0)
  • 18. Slab B-C/2-2B = C-D/2/2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Determine one way or two way slab: Slab B-C/2-2B = C-D/2B-3 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab B-C/2-2B (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m = Load from Slab C-D/2-2B 4. Load from Slab B-C/2B-3 (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m = Load from Slab C-D/2B-3 Total Dead Load on Beam C/2-2B = (1.44 + 8.55 + 3.36 + 3.36) kN/m = 16.71 kN/m Total Dead Load on Beam C/2B-3 = (1.44 + 8.55 + 3.6 + 3.6) kN/m = 17.19 kN/m 3) First Floor Beam C/2-3 Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 2 3 8.55 kN/m 3.36kN/m 1.44kN/m 3m 3.6kN/m 17.19kN/m 16.71kN/m 2B 2.8m
  • 19. Live Load 1. Load from Slab B-C/2-2B (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (2.8/2)m x 2/3 = 1.4 kN/m = Load from Slab C-D/2-2B 2. Load from Slab B-C/2B-3 (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m = Load from Slab C-D/2B-3 Total Live Load on Beam C/2-2B = (1.4 + 1.4) kN/m = 2.8 kN/m Total Dead Load on Beam C/2B-3 = (1.5 + 1.5) kN/m = 3 kN/m Ultimate Load  Ultimate Load on Beam C/2-2B = Ultimate Dead Load + Ultimate Live Load = (16.71 kN/m x 1.4) + (2.8 kN/m x 1.6) = 23.39 KN/m + 4.48 kN/m = 27.87 kN/m  Ultimate Load on Beam C/2B-3 = Ultimate Dead Load + Ultimate Live Load = (17.19 kN/m x 1.4) + (3 kN/m x 1.6) = 24.07 KN/m + 4.8 kN/m = 28.87 kN/m Point Load at point C/2B from beam B-C/2B and beam C-D/2B From calculation no.2; 1. Point Load from beam B-C/2B = 46kN 2. Point Load from beam C-D/2B = 46kN  Point Load at Point C/2B = 92kN 2 3 1.4kN/m 3m 1.5kN/m 3kN/m2.8kN/m 2B 2.8m 28.87kN/m27.87kN/m 92kN/m 28.87kN/m27.87kN/m
  • 20. Reaction Force 1. Beam C/2-2B UDL to Point Load = 27.87 kN/m x 2.8m = 78.04 kN 2. Beam C/2B-3 UDL to Point Load = 28.87 kN/m x 3m = 86.6 kN 0 = ∑M2 0 = (78.04kN x 1.4m) + (92kN x 2.8m) + (86.6kN x 4.3m) – (R3 x 5.8m) R3 = 739.24kNm / 5.8m = 127.45 kN ∑Fy = (78.04 + 92 + 86.6) - (R2 + 127.45) = 0 R2 = 256.64 –127.45 = 129.19 kN Shear Force Diagram Bending Moment Diagram 1. (129.19m + 51.15m)/2 x 2.8m = 252.48m2 2. (40.85m + 127.45m)/2 x 3m = 252.45m2 R3=127.45kN 92kN 86.6kN 2 3 3m 2B 2.8m R2=129.19kN 78.04kN 20 129.19kN 252.48kNm (129.19-78.04= 51.15kN) 0 (-40.85-86.6= -127.45kN) (252.48-252.45= +0.03) (51.15-92= -40.85kN) 0
  • 21. Slab B-C/2-2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Determine one way or two way slab: Slab C-D/2/2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab B-C/2-2B (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m = Load from Slab C-D/2-2B Total Dead Load on Beam B-C/2 = (1.44 + 8.55 + 5.04) kN/m = 15.03 kN/m Total Dead Load on Beam C-D/2 = (1.44 + 5.04) kN/m = 6.48 kN/m 4) First Floor Beam B-D/2 Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 Live Load Load from Slab B-C/2-2B (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (2.8/2)m = 2.1 kN/m = Load from Slab C-D/2-2B B D 8.55 kN/m 1.44kN/m 3.9m C 3.9m 6.48kN/m 15.03kN/m 5.04 kN/m 2.1 kN/m
  • 22. Ultimate Load  Ultimate Load on Beam B-C/2 = Ultimate Dead Load + Ultimate Live Load = (15.03 kN/m x 1.4) + (2.1 kN/m x 1.6) = 21.04 KN/m + 3.36 kN/m = 24.40 kN/m  Ultimate Load on Beam C-D/2 = Ultimate Dead Load + Ultimate Live Load = (6.48 kN/m x 1.4) + (2.1 kN/m x 1.6) = 9.07KN/m + 3.36 kN/m = 12.43 kN/m Point Load at point C/2 from beam C/2-3 From calculation no.3;  Point Load at Point C/2B = 129.19kN Reaction Force 1. Beam B-C/2 UDL to Point Load = 24.40 kN/m x 3.9m = 95.16 kN 2. Beam C-D/2 UDL to Point Load =12.43 kN/m x 3.9m = 48.47 kN 0 = ∑MB 0 = (95.16kN x 1.95m) + (129.19kN x 3.9m) + (48.47kN x 5.85m) – (RD x 7.8m) RD = 972.95kNm / 7.8m = 124.74 kN ∑Fy = (95.16 + 129.19 + 48.47) - (R2 + 124.74) = 0 RB = 272.82 –124.74 = 148.08 kN Shear Force Diagram Bending Moment Diagram 1. (148.08m + 52.92m)/2 x 3.9m = 391.95m2 2. (76.27m + 124.74m)/2 x 3.9m = 391.97m2 B D 3.9m C 3.9m 12.43kN/m 24.40kN/m RD=124.74kN 129.19kN 48.47kN RB=148.08kN 95.16kN 12.43kN/m 24.40kN/m 129.19kN 22 148.08kN 391.95Nm (148.08-95.16= 52.92kN) 0 (-76.27-48.47= -124.74) (391.95-391.97= -0.02) (52.92-129.19= -76.27) 0
  • 23. Slab A-B/1-2A Ly/Lx = 4200/3000 = 1.4 < 2 (Two way slab) Determine one way or two way slab: Slab A-B/2A-3 Ly/Lx = 4600/3000 = 1.53 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab A-B/1-2A (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (3/2)m = 5.4 kN/m = Load from Slab A-B/2A-3 4. Load from Slab B-C/2-2B (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m 5. Load from Slab B-C/2B-3 (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m Total Dead Load on Beam B/2-2A = (1.44 + 8.55 + 5.4 + 3.36) kN/m = 18.75 kN/m Total Dead Load on Beam B/2A-2B = (1.44 + 5.4 + 3.36) kN/m = 10.2 kN/m Total Dead Load on Beam B/2B-3 = (1.44 + 5.4 + 3.6) kN/m = 10.44 kN/m 5) First Floor Beam B/2-3 Slab self-weight = Slab thickness x concrete density = 0.15m x 24 kN/m3 = 3.6 kN/m2 Slab B-C/2-2B Ly/Lx = 3900/2800 = 1.39 < 2 (Two way slab) Slab B-C/2B-3 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) 2 3 8.55 kN/m 1.44kN/m 3m 18.75kN/m 2A 1.2m 3.6kN/m 2B 1.6m 5.4 kN/m 10.44kN/m 10.2kN/m 3.36kN/m
  • 24. Live Load 1. Load from Slab A-B/1-2A (two-way slab) = Live load intensity x (Lx/2) = 2 kN/m2 x (3/2)m = 3 kN/m 2. Load from Slab A-B/2A-3 (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (3/2)m = 2.25 kN/m 3. Load from Slab B-C/2-2B (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (2.8/2)m x 2/3 = 1.4 kN/m 4. Load from Slab B-C/2B-3 (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m Total Live Load on Beam B/2-2A = (3 + 1.4) kN/m = 4.4 kN/m Total Live Load on Beam B/2A-2B = (2.25 + 1.4) kN/m = 3.65 kN/m Total Live Load on Beam B/2B-3 = (2.25 + 1.5) kN/m = 3.75 kN/m Ultimate Load  Ultimate Load on Beam B/2-2A = Ultimate Dead Load + Ultimate Live Load = (18.75 kN/m x 1.4) + (4.4 kN/m x 1.6) = 26.25 KN/m + 7.04 kN/m = 33.29 kN/m  Ultimate Load on Beam B/2A-2B = Ultimate Dead Load + Ultimate Live Load = (10.2 kN/m x 1.4) + (3.65 kN/m x 1.6) = 14.28 KN/m + 5.84 kN/m = 20.12 kN/m  Ultimate Load on Beam B/2B-3 = Ultimate Dead Load + Ultimate Live Load = (10.44 kN/m x 1.4) + (3.75 kN/m x 1.6) = 14.62 KN/m + 6 kN/m = 20.62 kN/m 3 2.25 kN/m 3kN/m 3m 2A 1.2m 4.4kN/m 2B 1.6m 1.4kN/m 3.75kN/m 3.65kN/m 1.5kN/m 2 33.29kN/m 20.62kN/m 20.12kN/m
  • 25. Point Load at point B/2A from beam A-B/2A and point B/2B from beam B-C/2B From calculation no.1;  Point Load at Point B/2A = 44.51 kN From calculation no. 2;  Point Load at point B/2B = 46 kN Reaction Force 1. Beam B/2-2A UDL to Point Load = 33.29 kN/m x 1.2m = 39.95 kN 2. Beam B/2A-2B UDL to Point Load = 20.12 kN/m x 1.6m = 32.19 kN 3. Beam B/2B-3 UDL to Point Load = 20.62 kN/m x 3m = 61.86 kN 0 = ∑M2 0 = (39.95kN x 0.6m) + (44.51kN x 1.2m) + (32.19kN x 2m) + (46kN x 2.8m) + (61.86kN x 4.3m) – (R3 x 5.8m) R3 = 536.56kNm / 5.8m = 92.51 kN ∑Fy = (39.95 + 44.51 + 32.19 + 46 + 61.86) - (R2 + 92.51) = 0 R2 = 218.51 – 92.51 = 132 kN Shear Force Diagram Bending Moment Diagram 1. (132m + 92.05m)/2 x 1.2m = 134.43m2 2. (47.54m + 15.35m)/2 x 1.6m = 50.31m2 3. (30.65m + 92.51m)/2 x 3m = 184.70m2 2 3 3m 2A 1.2m R3=92.51kN 44.51kN 61.86kN 20.62kN/m 20.12kN/m 2B 1.6m 44.51kN 46kN R2=126.62kN 46kN 33.29kN/m 32.19kN39.95kN 132kN 184.74kNm (92.05-44.51=47.54kN) (-30.65-61.86= -92.51kN) (184.74-184.70= +0.04) (15.35-46= -30.65kN) (132-39.95=92.05kN) (47.54-32.19=15.35kN) 0 134.43 kNm
  • 26. Slab D-F/1-2A Ly/Lx = 4200/4000 = 1.05 < 2 (Two way slab) Determine one way or two way slab: Slab D-F/2A-3 Ly/Lx = 4600/4000 = 1.15 < 2 (Two way slab) Dead Load 1. Concrete Beam Self-weight = Density x Beam size = 24 kN/m3 x (0.2m x 0.3m) = 1.44 kN/m 2. Brick Wall Load = Wall density x (thickness x height) = 19 kN/m3 x (0.15m x 3m) = 8.55 kN/m 3. Load from Slab D-F/1-2A (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (4/2)m = 7.2 kN/m = Load from Slab D-F/2A-3 4. Load from Slab F-G/2-2B (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (2.8/2)m x 2/3 = 3.36 kN/m 5. Load from Slab F-G/2B-3 (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m Total Dead Load on Beam F/2-2A = (1.44 + 8.55 + 7.2 + 3.36) kN/m = 20.55 kN/m Total Dead Load on Beam F/2A-2B = (1.44 + 8.55 + 7.2 + 3.36) kN/m = 20.55 kN/m Total Dead Load on Beam F/2B-3 = (1.44 + 7.2 + 3.6) kN/m = 12.2 kN/m 6) First Floor Beam F/2-3 Slab F-G/2-2B Ly/Lx = 3000/2800 = 1.07 < 2 (Two way slab) Slab F-G/2B-3 Ly/Lx = 3000/3000 = 1 < 2 (Two way slab) 2 3 8.55 kN/m 1.44kN/m 3m 20.55kN/m 2A 1.2m 3.6kN/m 2B 1.6m 7.2 kN/m 12.2kN/m 20.55kN/m 3.36kN/m
  • 27. Live Load 1. Load from Slab D-F/1-2A (two-way slab) = Live load intensity x (Lx/2) = 1.5 kN/m2 x (4/2)m = 3 kN/m = Load from Slab D-F/2A-3 2. Load from Slab F-G/2-2B (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 2 kN/m2 x (2.8/2)m x 2/3 = 1.87 kN/m 3. Load from Slab F-G/2B-3 (two-way slab) = Live load intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m Total Live Load on Beam B/2-2A = (3 + 1.87) kN/m = 4.87 kN/m Total Live Load on Beam B/2A-2B = (3 + 1.87) kN/m = 4.87 kN/m Total Live Load on Beam B/2B-3 = (3 + 1.5) kN/m = 4.5 kN/m Ultimate Load  Ultimate Load on Beam B/2-2A = Ultimate Dead Load + Ultimate Live Load = (20.55 kN/m x 1.4) + (4.87 kN/m x 1.6) = 28.77 KN/m + 7.79 kN/m = 36.56 kN/m  Ultimate Load on Beam B/2A-2B = Ultimate Dead Load + Ultimate Live Load = (20.55 kN/m x 1.4) + (4.87 kN/m x 1.6) = 28.77 KN/m + 7.79 kN/m = 36.56 kN/m  Ultimate Load on Beam B/2B-3 = Ultimate Dead Load + Ultimate Live Load = (12.2 kN/m x 1.4) + (4.5 kN/m x 1.6) = 17.08 KN/m + 7.2 kN/m = 24.28 kN/m 3 3m 2A 1.2m 4.87kN/m 2B 1.6m 1.87kN/m 4.5kN/m 4.87kN/m 1.5kN/m 2 36.56kN/m 24.28kN/m 36.56kN/m 3 kN/m
  • 28. Point Load at point F/2A from beam D-F/2A 1. Concrete Beam Self-weight = 1.44 kN/m 2. Dead Load from Slab D-F/1-2A (two-way slab) = Slab self-weight x (Lx/2) x 2/3 = 3.6 kN/m2 x (4/2)m x 2/3 = 4.8 kN/m =Load from slab D-F/2A-3 Total Dead Load on Beam D-F/2A = (1.44 + 4.8 + 4.8)kN/m = 11.04 kN/m 3. Live Load from Slab D-F/1-2A (two-way slab) = Live Load Intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (4/2)m x 2/3 = 2 kN/m =Load from slab D-F/2A-3 Total Live Load on Beam D-F/2A = (2 + 2)kN/m = 4 kN/m Ultimate Load on Beam D-F/2A = (11.04 kN/m x 1.4) + (4 kN/m x 1.6) = 15.46 kN/m + 6.4kN/m = 21.86kN/m Total Load on Beam D-F/2A = Uniform Distributed Load x Beam Length = 21.86 kN/m x 4m = 87.44 kN  Point Load at Point A/2A Total Load is distributed equally to 2 points = 87.44 kN / 2 = 43.72 kN 2 3 3m 2A 1.2m 36.56kN/m 36.56kN/m 2B 1.6m 43.71kN 36.56kN/m
  • 29. Point Load at point F/2B from beam F-G/2B 1. Concrete Beam Self-weight = 1.44 kN/m 2. Brick Wall Load = 8.55 kN/m 3. Dead Load from Slab F-G/2-2B (two-way slab) = Slab self-weight x (Lx/2) = 3.6 kN/m2 x (2.8/2)m = 5.04 kN/m 4. Dead Load from Slab F-G/2B-3 (two-way slab) = Slab self-weight x (Lx/2) x2/3 = 3.6 kN/m2 x (3/2)m x 2/3 = 3.6 kN/m Total Dead Load on Beam F-G/2B = (1.44 + 8.55 + 5.04 + 3.6)kN/m = 18.63 kN/m 5. Live Load from Slab F-G/2-2B (two-way slab) = Live Load Intensity x (Lx/2) = 2 kN/m2 x (2.8/2)m = 2.8 kN/m 6. Live Load from Slab F-G/2B-3 (two-way slab) = Live Load Intensity x (Lx/2) x 2/3 = 1.5 kN/m2 x (3/2)m x 2/3 = 1.5 kN/m Total Live Load on Beam F-G/2B = (2.8 + 1.5)kN/m = 4.3 kN/m Ultimate Load on Beam F-G/2B = (18.63 kN/m x 1.4) + (4.3 kN/m x 1.6) = 26.08 kN/m + 6.88kN/m = 32.96kN/m Total Load on Beam F-G/2B = Uniform Distributed Load x Beam Length = 32.96 kN/m x 3m = 98.89 kN  Point Load at Point A/2A Total Load is distributed equally to 2 points = 98.89 kN / 2 = 49.44 kN 2 3 3m 2A 1.2m 36.56kN/m 36.56kN/m 2B 1.6m 43.71kN 36.56kN/m 49.44kN
  • 30. Reaction Force 1. Beam F/2-2A UDL to Point Load = 36.56 kN/m x 1.2m = 43.87 kN 2. Beam F/2A-2B UDL to Point Load = 36.56 kN/m x 1.6m = 58.5 kN 3. Beam F/2B-3 UDL to Point Load = 24.28 kN/m x 3m = 72.84 kN 0 = ∑M2 0 = (43.87kN x 0.6m) + (43.71kN x 1.2m) + (58.5kN x 2m) + (49.44kNx2.8m) + (72.84kN x 4.3m) – (R3 x 5.8m) R3 = 647.42kNm / 5.8m = 111.62 kN R2 = 218.51 – 92.51 = 156.74 kN Shear Force Diagram Bending Moment Diagram 1. (156.74m + 112.87m)/2 x 1.2m = 161.77m2 2. (69.16+10.66)/2 x 1.6m = 63.86m2 3. (38.78+111.62)/2 x 3m = 225.6m2 2 3 3m 2A 1.2m R3=111.62kN 43.71kN 72.84kN 36.56kN/m 36.56kN/m 2B 1.6m 43.71kN 49.44kN R2=156.74kN 49.44kN 36.56kN/m 58.5kN43.87kN 156.74kN 225.63kNm (112.87-43.71=69.16kN) (-38.78-72.84= -111.62kN) (225.63-225.6= +0.03) (10.66-49.44= -38.78kN) (156.74-43.87=112.87kN) (69.16-58.5=10.66kN) 0 161.77kNm
  • 31. Roof Level 1. Dead Load from slab = (5.9m x 4.4m) x 1.0 kN/m2 = 25.96kN 2. Dead Load from beam = (4.4 + 4.4 + 3.9 + 3.9 + 1.5)m x 1.44 kN/m = 26.78kN Total dead load on roof level = (25.96 + 26.78)kN = 52.74kN 3. Live Load from slab = 25.96m2 x 0.5 kN/m2 = 12.98kN 7) Column D2 Capacity of the column: Given, FCU= 30N/mm2 Fy = 460 N/mm2 Ac = 200mm x 200mm = 40000mm2 Assuming 2% steel reinforcement in concrete Asc = 2% x 40000mm2 = 800mm2 N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc) = (0.4 x 30 x 40000) + (0.8 x 460 x 800) = 774400N = 774.4kN First Level 1. Dead Load from slab = {(3.9m x 2.9m)+(2m x 4.4m)} x 3.6 kN/m2 = 72.40kN 2. Dead Load from beam = 18.6m x 1.44 kN/m = 26.78kN 3. Dead load from wall = (1.5 + 1.7 + 1.2 + 2 + 2.9)m x 8.55 kN/m = 79.52kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (72.40 + 26.78 + 79.52 + 2.88)kN = 181.58kN 5. Live Load from slab (Bedroom + Corridor) = 20.11m2 x 1.5 kN/m2 = 30.15kN *Marked in red are walls
  • 32. Ground Level 1. Dead Load from slab = 25.96m2 x 3.6 kN/m2 = 93.46kN 2. Dead Load from beam = (2.9 + 4.4 + 3.9 + 2)m x 1.44 kN/m = 19kN 3. Dead load from wall = (2.9 + 2 + 2.9)m x 8.55 kN/m = 66.69kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Ultimate Dead Load = Total dead load x 1.4 = (52.74kN + 181.58kN + 182.03kN) x 1.4 = 582.89kN Ultimate Live Load = Total live load x 1.6 = (12.98kN + 30.15kN + 44.6kN) x 1.6 = 140.37kN  Total Load acting on Column D2 = 723.26kN *Marked in red are walls Total dead load on ground level = (93.46 + 19 + 66.69 + 2.88)kN = 182.03kN 5. Live Load from slab (Dining) = (3.9 x 2.9)m2 x 2 kN/m2 = 22.62kN 6. Live Load from slab (Garden + Bedroom) = {(3.9 x 1.5) + (2 x 4.4)}m2 x 1.5 kN/m2 = 21.98kN Total live load on ground level = (22.62 + 21.98)kN = 44.6kN
  • 33. Roof Level 1. Dead Load from slab = (5.4m x 4.4m) x 1.0 kN/m2 = 23.76kN 2. Dead Load from beam = (5.4 + 4.4 + 3.9 + 4.4)m x 1.44 kN/m = 26.06kN Total dead load on roof level = (23.76 + 26.06)kN = 49.82kN 3. Live Load from slab = 23.76m2 x 0.5 kN/m2 = 11.88kN 8) Column B2 First Level 1. Dead Load from slab = {(1.5m x 4.4m)+(3.9m x 2.9m)} x 3.6 kN/m2 = 64.48kN 2. Dead Load from beam = 16.6m x 1.44 kN/m = 23.9kN 3. Dead load from wall = (2.7 + 1.5 + 3.9 + 2.9)m x 8.55 kN/m = 94.05kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (64.48 + 23.9 + 94.05 + 2.88)kN = 172.41kN 5. Live Load from slab (Bath) = (1.5 x 2.7)m2 x 2 kN/m2 = 8.1kN 6. Live Load from slab (Bedroom) = 13.86m2 x 1.5 kN/m2 = 20.79kN Total live load on first level = (8.1 + 20.79)kN = 28.89kN *Marked in red are walls
  • 34. Ground Level 1. Dead Load from slab = 23.76m2 x 3.6 kN/m2 = 85.54kN 2. Dead Load from beam = (4.4 + 1.5 + 3.9 + 2.9)m x 1.44 kN/m = 18.29kN 3. Dead load from wall = (4.4 + 1.5)m x 8.55 kN/m = 50.45kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (85.54 + 18.29 + 50.45 + 2.88)kN = 157.16kN 5. Live Load from slab (Kitchen) = (5.4 x 2.9)m2 x 2 kN/m2 = 31.32kN 6. Live Load from slab (Storage + Garden) = (5.4 x 1.5)m2 x 1.5 kN/m2 = 12.15kN Total live load on first level = (31.32 + 12.15)kN = 43.47kN Ultimate Dead Load = Total dead load x 1.4 = (49.82kN + 172.41kN + 157.16kN) x 1.4 = 531.15kN Ultimate Live Load = Total live load x 1.6 = (11.88kN + 28.89kN + 43.47kN) x 1.6 = 134.78kN  Total Load acting on Column B2 = 665.93kN *Marked in red are walls
  • 35. Roof Level 1. Dead Load from slab = (1.5m x 4.4m) x 1.0 kN/m2 = 6.6kN 2. Dead Load from beam = (1.5 + 2.9 + 1.5)m x 1.44 kN/m = 8.5kN Total dead load on roof level = (6.6 + 8.5)kN = 15.1kN 3. Live Load from slab = 6.6m2 x 0.5 kN/m2 = 3.3kN 9) Column A2 First Level 1. Dead Load from slab = 6.6m2 x 3.6 kN/m2 = 23.76kN 2. Dead Load from beam = 5.9m x 1.44 kN/m = 8.5kN 3. Dead load from wall = 5.9m x 8.55 kN/m = 50.45kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (23.76 + 8.5 + 50.45 + 2.88)kN = 85.59kN 5. Live Load from slab (Bath) = (1.5 x 2.7)m2 x 2 kN/m2 = 8.1kN 6. Live Load from slab (Bedroom) = (1.7 x 1.5)m2 x 1.5 kN/m2 = 3.83kN Total live load on first level = (8.1 + 3.83)kN = 11.93kN *Marked in red are walls
  • 36. Ground Level 1. Dead Load from slab = 6.6m2 x 3.6 kN/m2 = 23.76kN 2. Dead Load from beam = 5.9m x 1.44 kN/m = 8.5kN 3. Dead load from wall = (4.4 + 1.5)m x 8.55 kN/m = 50.45kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (23.76 + 8.5 + 50.45 + 2.88)kN = 85.59kN 5. Live Load from slab (Kitchen) = (2.9 x 1.5)m2 x 2 kN/m2 = 8.7kN 6. Live Load from slab (Storage + Garden) = (1.5 x 1.5)m2 x 1.5 kN/m2 = 3.38N Total live load on first level = (8.7 + 3.38)kN = 12.08kN Ultimate Dead Load = Total dead load x 1.4 = (15.1kN + 85.59kN + 85.59kN) x 1.4 = 260.79kN Ultimate Live Load = Total live load x 1.6 = (3.3kN + 11.93kN + 12.08kN) x 1.6 = 43.7kN  Total Load acting on Column B2 = 304.49kN *Marked in red are walls
  • 37. SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Bachelor of Science (Honours) (Architecture) Building Structures (ARC 2522/2523) Project 2: Structural Analysis of a Bungalow Individual Work: LIM JOE ONN 0318679 37
  • 38. Slab A-B/5-6 Ly/Lx = 4000/3000 = 1.333 < 2 (Two way slab) Determine one way or two way slab: Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam A-5/6 Dead Load from Slab A-B/5-6 (two way slab) = 1.0 kN/m3 x (3 x ½ )m = 1.5 kN/m2 Total Dead Load = (1.44 + 1.5) kN/m2 = 2.94 kN/m2 5 6 1.5kN/m 1.44kN/m 4.0m 2.94kN/m
  • 39. Live Load Live Load from Slab A-B/5-6 = 0.5 kN/m3 x (3 x ½ ) m2 = 0.75 kN/m 5 6 0.75 kN/m 0.75kN/m 4.0m Total Live Load = 0.75 kN/m2 Ultimate Load = (2.94kN/m x 1.4) + (0.75kN/m2 x 1.6) = 4.116 kN/m + 1.2 kN/m = 5.316 kN/m Load Diagram Reaction Force RA4 = RA6 = 5.316kN/m x 4m 2 = 10.632 kN 5.316kN/m Shear Force Diagram 10.632kN/m 10.632kN/m 9.75kN/m -9.75kN/m 2 m 2 m A1 = A2 = 9.75kN/m x 2 m x ½ = 9.75 kNm 9.75 kNm 2 m 2 m Bending Moment Diagram
  • 40. Slab A-B/5-6 Ly/Lx = 4000/3000 = 1.333 < 2 (Two way slab) Determine one way or two way slab: Slab B-C/5-6 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam B/5-6 Dead Load from Slab A-B/5-6 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4 kN/m2 Dead Load from Slab B-C/5-6 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4 kN/m2 Total Dead Load = (1.44 + 5.4 + 5.4) kN/m2 = 12.24kN/m2 C D 5.4kN/m 5.4kN/m 1.44kN/m 4.0 m 12.24kN/m
  • 41. Live Load Live Load from Slab A-B/5-6 = 0.5kN/m3 x (3 x ½ ) m2 = 3 kN/m Live Load from Slab B-C/5-6 = 0.5kN/m3 x (3 x ½ ) m2 = 3 kN/m C D 3kN/m 6kN/m 3kN/m 4.0m Total Live Load = (3 + 3) kN/m2 = 6 kN/m2 Ultimate Load = (12.24kN/m x 1.4) + (6kN/m2 x 1.6) = 17.136kN/m + 9.6kN/m = 26.736kN/m Load Diagram Reaction Force RB5 = RB6 = 26.736kN/m x 4m 2 = 53.472 kN 26.736kN/m Shear Force Diagram 53.472 kN/m 53.472 kN/m 53.472 kN/m -53.472kN/m 2 m 2 m A1 = A2 = 53.472kN/m x 2m x ½ = 53.472 kNm 53.472 kNm 2 m 2 m Bending Moment Diagram
  • 42. Slab B-C/5-6 Ly/Lx = 4000/3900 = 1.026< 2 (Two way slab) Determine one way or two way slab: Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam C-5/6 Dead Load from Slab A-B/5-6 (two way slab) = 1.0 kN/m3 x (3.9 x ½ )m = 1.95 kN/m2 Total Dead Load = (1.44 + 1.95) kN/m2 = 3.39 kN/m2 5 6 1.95kN/m 1.44kN/m 4.0m 3.39kN/m
  • 43. Live Load Live Load from Slab A-B/5-6 = 0.5 kN/m3 x (3.9 x ½ ) m2 = 0.975 kN/m 5 6 0.975 kN/m 0.975kN/m 4.0m Total Live Load = 0.975 kN/m2 Ultimate Load = (3.39kN/m x 1.4) + (0.975kN/m2 x 1.6) = 4.746 kN/m + 1.56 kN/m = 6.306 kN/m Load Diagram Reaction Force RC5 = RC6 = 6.306kN/m x 4m 2 = 12.612 kN 6.306 kN/m Shear Force Diagram 12.612kN/m 12.612kN/m 12.612kN/m -12.612kN/m 2 m 2 m A1 = A2 = 12.612kN/m x 2 m x ½ = 12.612 kNm 12.612 kNm 2 m 2 m Bending Moment Diagram
  • 44. Slab B-C/5-6 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam A-C/6 Dead Load from Slab A-B/5-6 (two way slab) = 1 kN/m3 x (3 x ½ x 2/3)m = 1 kN/m2 Dead Load from Slab B-C/5-6 (two way slab) = 1 kN/m3 x (3.9 x ½ x 2/3)m = 1.3 kN/m2 A C 1 kN/m 1.44kN/m 3 m 1.3kN/m Slab A-B/5-6 Ly/Lx = 4000/3000 = 1.33 < 2 (Two way slab) B 3.9 m Total Dead Load on A-B/6 = (1.44 + 1) kN/m2 = 2.44 kN/m2 Total Dead Load on B-C/6 = (1.44 + 1.3) kN/m2 = 2.74kN/m2 2.44 kN/m 2.74 kN/m
  • 45. Live Load from Slab A-B/5-6 (two way slab) = 0.5kN/m3 x (3 x ½ x 2/3)m = 0.5 kN/m2 Live Load 0.5 kN/m 0.65kN/m Live Load from Slab B-C/5-6 (two way slab) = 0.5kN/m3 x (3.9 x ½ x 2/3)m = 0.65 kN/m2 0.5 kN/m 0.65 kN/m A B 3 m 3.9 m Ultimate Load on Beam C/3-4 = (2.44kN/m x 1.4) + (0.5kN/m2 x 1.6) = 3.416kN/m + 0.8kN/m = 4.216kN/m Ultimate Load on Beam C/4-5 = (2.74kN/m x 1.4) + (0.65kN/m2 x 1.6) = 3.836kN/m + 1.04kN/m = 5.116kN/m C
  • 46. Load Diagram Point load from secondary beam, B6=44.328 kN Take RA6 as centre, reaction force: 4.216 x 3 = 12.648kN 5.116 x 3.9 = 19.952kN ΣM = 0 0 = 6.9RC6 – 19.952(4.95) – 44.328(3) – 12.648(1.5) = 6.9RC6 – 98.762 – 132.984 – 18.972 = 6.9RC6 – 250.718 6.9RC6 = 250.718 RC6 = 36.336kN ΣY = 0 0 = RA6 + RC6 – 12.648 – 44.328 – 19.952 = RA6 + 36.336 – 76.928 RA6 = 40.592kN 4.216kN/m 3 m 3.9 m 5.116kN/m 44.328kN/m RA6 RC6 40.592kN 3 m 3.9 m 27.944kN -16.384kN -36.336kN Shear Force Diagram A1 = ½(40.592kN/m + 27.944kN/m) x 3 = 102.804 kNm 102.804 kNm 3 m 3.9 m Bending Moment Diagram A2 = ½(16.384kN/m + 36.336kN/m) x 3.9 = 102.804 kNm
  • 47. Slab C-D/3-4 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Slab C-D/4-5 Ly/Lx = 3900/2000 = 1.95 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m Dead Load from Brick Wall Height =0.15 x 3 x 19kN/m3 =8.55 kN/m First Floor Beam D/3-5 Dead Load from Slab C-D/3-4 (two way slab) = 3.6kN/m3 x (3 x ½ x 2/3)m = 3.6 kN/m2 Dead Load from Slab D-E/3-4 (two way slab) = 3.6kN/m3 x (4 x ½)m = 7.2 kN/m2 Total Dead Load for Beam D/3-4 = (1.44+8.55+3.6+7.2) kN/m2 = 20.79kN/m2 Slab D-E/3-5 Ly/Lx = 5000/4000 = 1.25 < 2 (Two way slab) 3 5 8.55kN/m 3.6kN/m 1.44kN/m 3 m 7.2kN/m 4 2 m 20.79kN/m
  • 48. Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m Dead Load from Brick Wall Height =0.15 x 3 x 19kN/m3 =8.55 kN/m Dead Load from Slab C-D/4-5 (two way slab) = 3.6kN/m3 x (2 x ½ x 2/3)m = 2.4 kN/m2 Dead Load from Slab D-E/4-5 (two way slab) = 3.6kN/m3 x (4 x ½)m = 7.2 kN/m2 Total Dead Load for Beam D/4-5 = (1.44+8.55+2.4+7.2) kN/m2 = 19.59kN/m2 3 5 8.55kN/m 1.44kN/m 3 m 4 2 m 2.4kN/m 7.2kN/m 19.59kN/m 20.79 kN/m 19.59 kN/m
  • 49. Live Load 2kN/m 1.33 kN/m Live Load from Slab C-D/3-4 (two way slab) = 2kN/m3 x (3 x ½ x 2/3)m = 2kN/m2 Live Load from Slab D-E/3-4 (two way slab) = 2kN/m3 x (4 x ½)m = 4 kN/m2 Live Load from Slab C-D/4-5 (two way slab) = 2kN/m3 x (2 x ½ x 2/3)m = 1.33 kN/m2 6 kN/m 5.33 kN/m 3 54 3 m 2 m Total Live Load on D/3-4 = (2 + 4) kN/m2 = 6 kN/m2 Total Live Load on D/4-5 = (1.33 + 4) kN/m2 = 5.33 kN/m2 Ultimate Load on Beam D/3-4 = (20.79kN/m x 1.4) + (6kN/m2 x 1.6) = 29.106kN/m + 9.6kN/m = 38.706kN/m Ultimate Load on Beam D/4-5 = (19.59kN/m x 1.4) + (5.33kN/m2 x 1.6) = 27.426kN/m + 8.528kN/m = 35.954kN/m Live Load from Slab D-E/4-5 (two way slab) = 2kN/m3 x (4 x ½ )m = 4 kN/m2 4kN/m 4 kN/m 38.706 kN/m 35.954 kN/m
  • 50. Load Diagram Point load from secondary beam, D4=40.21 kN Take RD3 as centre, reaction force: 38.706 x 3 = 116.118kN 35.954 x 2 = 71.908kN ΣM = 0 0 = 5RD5 – 116.118(1.5) – 40.21(3) – 71.908(4) = 5RD5 – 174.177 – 120.63 – 287.632 = 5RD5 – 582.439 5RD5 = 582.439 RD5 = 116.488kN ΣY = 0 0 = RD3 + RD5 – 116.118 – 40.21 – 71.908 = RD3 + 116.488 – 228.236 RD3 = 111.748kN 38.706kN/m 3 m 2 m 35.954kN/m 40.21kN/m RD3 RD5 111.748kN 3 m 2 m -4.37kN -44.58kN -116.488kN Shear Force Diagram Ratio: (111.748+4.37) = 111.748 3 a 116.118 a = 335.244 a = 2.8872.887 m A1 = 111.748 x 2.887 x ½ + 4.37 x ½(3 – 2.887) = 161.308 – 0.247 = 161.061kNm A2 = (116.488 + 44.58) x 2 2 = 161.068kNm 161.068kNm 2.887 m 3 m Bending Moment Diagram160. 821kNm
  • 51. Slab D-E/3-5 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m Dead Load for Brick Wall Height =0.15 x 3 x 19kN/m3 =8.55 kN/m First Floor Beam C-E/5 Dead Load from Slab C-D/4-5 (two way slab) = 3.6 kN/m3 x (2 x ½ )m = 3.6 kN/m2 Dead Load from Slab D-E/3-5 (two way slab) = 3.6 kN/m3 x (3 x ½ x 2/3)m = 3.6 kN/m2 C E 3.6 kN/m 1.44kN/m 3.9 m 3.6kN/m Slab C-D/4-5 Ly/Lx = 3900/2000 = 1.95 < 2 (Two way slab) D 3 m Total Dead Load on C-D/4-5 = (3.6+8.55+1.44) kN/m2 = 13.59 kN/m2 Total Dead Load on D-E/3-5 = (1.44 + 8.55 +3.6) kN/m2 = 13.59 kN/m2 13.59 kN/m 13.59 kN/m 8.55kN/m
  • 52. Live Load from Slab C-D/4-5 (two way slab) = 2.0kN/m3 x (2 x ½ )m = 2 kN/m2 Live Load 2 kN/m 2 kN/m Live Load from Slab D-E/3-5 (two way slab) = 2.0kN/m3 x (3 x ½ x 2/3)m = 2 kN/m2 2 kN/m 2 kN/m C D 3.9 m 3 m Ultimate Load on Beam A-B/5 = (13.59kN/m x 1.4) + (2kN/m2 x 1.6) = 19.026kN/m + 3.2kN/m = 22.226kN/m Ultimate Load on Beam B-C/5 = (13.59kN/m x 1.4) + (2kN/m2 x 1.6) = 19.026kN/m + 3.2kN/m = 22.226kN/m E
  • 53. Load Diagram Point load from secondary beam, D5=116.496 kN Take RC5 as centre, reaction force: 22.226 x 3.9= 86.681kN 22.226 x 3 = 66.678kN ΣM = 0 0 = 6.9RE5 – 86.681(1.95) – 116.496(3.9) – 66.678(5.4) = 6.9RE5 – 169.028 – 454.334 – 360.061 = 6.9RE5 – 983.424 6.9RE5 = 983.424 RE5 = 142.525 kN ΣY = 0 0 = RC5 + RE5 – 86.681 – 116.496 – 66.678 = RC5 + 142.525 – 269.855 RC5 = 127.33kN 22.226kN/m 3.9 m 3 m 22.226kN/m 116.496kN/m RC5 RE5 127.33kN 3.9 m 3 m 40.649kN -75.847kN -142.525kN Shear Force Diagram A1 = ½(40.649kN/m + 127.33kN/m) x 3.9 = 327.55kNm 102.804 kNm 3 m 3.9 m Bending Moment Diagram A2 = ½(75.847kN/m + 142.525kN/m) x 3 = 327.55 kNm
  • 54. Column C6 Dead Load Calculation Ground Floor Beam Self Weight = 4000mm/2 x 1.44 + 6900mm/2 x 1.44 = 7.848 kN Column Self Weight = 0.2 x 0.2 x 3 x 24 = 2.88 kN Brick Wall Self Weight = 0 (no wall) Concrete Slab Load = 4000mm/2 x 6900mm/2 x 3.6 = 24.84 kN Total Dead Load on Ground Floor = 7.848 + 2.88 + 24.84 = 35.568 kN Total Dead Load = 35.568 + 14.748 = 50.316 kN Capacity of the column: Given, FCU= 30N/mm2 Fy = 460 N/mm2 Ac = 200mm x 200mm = 40000mm2 Assuming 2% steel reinforcement in concrete Asc = 2% x 40000mm2 = 800mm2 N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc) = (0.4 x 30 x 40000) + (0.8 x 460 x 800) = 774400N = 774.4kN
  • 55. Live Load Calculation Ground Floor Porch = 1.5 kN/m x 4000mm/2 x 6900mm/2 = 10.35 kN First Floor Flat Roof = 0.5 kN/m x 4000mm/2 x 6900mm/2 = 3.45 kN Total Live Load = 10.35 + 3.45 = 13.8 kN Ultimate Load = 50.316 x 1.4 + 13.8 x 1.6 = 92.523 kN 92.523 kN < 774.4kN, it is below the column maximum load bearing capacity. First Floor (Flat Roof) Beam Self Weight = 4000mm/2 x 1.44 + 6900mm/2 x 1.44 =7.848 kN Column Self Weight = 0 (no column) Brick Wall Self Weight = 0 (no wall) Concrete Slab Load = 4000mm/2 x 6900mm/2 x 1.0 = 6.9 kN Total Dead Load on First Floor = 7.848 + 6.9 =14.748 kN 55
  • 56. Column A6 Dead Load Calculation Ground Floor Beam Self Weight = 4000mm/2 x 1.44 = 6900mm/2 x 1.44 = 7.848 kN Column Self Weight = 0.2 x 0.2 x 3 x 24 = 2.88 kN Brick Wall Self Weight = 6900mm/2 x 8.55 + 4000mm/2 x 8.55 = 46. 598 kN Concrete Slab Load = 4000mm/2 x 6900mm/2 x 3.6 = 24.84 kN Total Dead Load on Ground Floor = 7.848 + 2.88 + 46.598 + 24.84 = 82.166 kN First Floor (Flat Roof) Beam Self Weight = 4000mm/2 x 1.44 + 6900mm/2 x 1.44 = 7.848 kN Column Self Weight = 0 (no column) Brick Wall Self Weight = 0 (no wall) Total Dead Load =82.166 +14.748 = 96.914 kN 96.914 kN < 774.4kN, it is below the column maximum load bearing capacity. Concrete Slab Load = 4000mm/2 x 6900mm/2 x 1.0 = 6.9 kN Total Dead Load on Ground Floor = 7.848 + 6.9 = 14.748 kN 56
  • 57. Live Load Calculation Ground Floor Living Room = 2.0 kN/m x 4000mm/2 x 6900mm/2 = 13.8 kN First Floor Flat Roof = 0.5 kN/m x 4000mm/2 x 6900mm/2 = 3.45 kN Total Live Load = 13.8 + 3.45 = 17.25 kN Ultimate Load = 96.914 x 1.4 + 17.25 x 1.6 = 163.28 kN 57
  • 58. Column E5 Dead Load Calculation Ground Floor Beam Self Weight = 3000mm/2 x 1.44 + 5000mm/2 x 1.44 = 5.76 kN Column Self Weight = 0.2 x 0.2 x 3 x 24 = 2.88 kN Brick Wall Self Weight = no wall (0) Concrete Slab Load = 3000mm/2 x 5000mm/2 x 3.6 = 13. 5 kN Total Dead Load on Ground Floor = 5.76 + 2.88 + 13.5 = 22.14 kN First Floor Beam Self Weight = 3000mm/2 x 1.44 + 5000mm/2 x 1.44 = 5.76 kN Column Self Weight = 0.2 x 0.2 x 3 x 24 = 2.88 kN Brick Wall Self Weight = 3000mm/2 x 8.55 + 5000mm/2 x 8.55 = 34.2 kN Concrete Slab Load = 3000mm/2 x 5000mm/2 x 3.6 = 13. 5 kN Total Dead Load on First Floor = 5.76 + 2.88 + 34.2 + 13.5 = 56.34 kN 58
  • 59. Roof Beam Self Weight = 3000mm/2 x 1.44 + 5000mm/2 x 1.44 = 5.76 kN Column Self Weight = 0 (no column) Brick Wall Self Weight = 0 (no wall) Concrete Slab Load = 3000mm/2 x 5000mm/2 x 3.6 = 13. 5 kN Total Dead Load on First Floor = 5.76 +13.5 = 19.26 kN Total Dead Load = 22.14 + 56.34 + 19.26 = 97.74 kN Live Load Calculation Ground Floor Porch = 0.5 kN/m x 3000mm/2 x 5000mm/2 = 1.875 kN First Floor Family Area = 2.0 kN/m x 3000mm/2 x 5000mm/2 = 7.5 kN Roof = 0.5 kN/m x 3000mm/2 x 5000mm/2 = 1.875 kN 154.836 kN < 774.4kN, it is below the column maximum load bearing capacity. Total Live Load = 1.875 + 7.5 + 1.875 = 11.25 kN Ultimate Load = 97.74 x 1.4 + 11.25 x 1.6 = 154.836 kN 59
  • 60. SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Bachelor of Science (Honours) (Architecture) Building Structures (ARC 2522/2523) Project 2: Structural Analysis of a Bungalow Individual Work: ONG SENG PENG 0319016 60
  • 61. FAMILY AREA Slab C-D/3-4 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Slab C-D/4-5 Ly/Lx = 3900/2000 = 1.95 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam C-D/4 Dead Load from Slab C-D/3-4 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4 kN/m2 Dead Load from Slab C-D/4-5 (two way slab) = 3.6kN/m3 x (2 x ½)m = 3.6 kN/m2 Total Dead Load = (1.44 + 5.4 + 3.6) kN/m2 = 10.44kN/m2 C D 5.4kN/m 3.6kN/m 1.44kN/m 3.9m 10.44kN/m FAMILY AREA Shear Force Diagram
  • 62. Bending Moment Diagram Live Load Live Load from Slab C-D/3-4 = 2kN/m3 x (3 x ½ ) m2 = 3 kN/m Live Load from Slab C-D/4-5 = 2kN/m3 x (2 x ½ ) m2 = 2 kN/m C D 2kN/m 5kN/m 3kN/m 3.9m Total Live Load = (2 + 3) kN/m2 = 5 kN/m2 Ultimate Load = (10.44kN/m x 1.4) + (5kN/m2 x 1.6) = 14.616kN/m + 8kN/m = 22.616kN/m Load Diagram Reaction Force RC4 = RD4 = 22.616kN/m x 3.9m 2 = 44.10kN 22.616kN/m Shear Force Diagram 44.10kN 44.10kN 44.1kN -44.1kN 1.95 m 1.95 m A1 = A2 = 44.10kN x 1.95m x ½ = 43 kNm 43 kNm 1.95 m 1.95 m 3.9m RC4 RD4
  • 63. FAMILY AREA Slab C-D/3-4 Ly/Lx = 3900/3000 = 1.3 < 2 (Two way slab) Determine one way or two way slab: Slab C-D/4-5 Ly/Lx = 3900/2000 = 1.95 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam C/3-5 Dead Load from Slab B1-C/3-5 (one way slab) = 3.6kN/m3 x (2.3 x ½)m = 4.14 kN/m2 Dead Load from Slab C-D/3-4 (two way slab) = 3.6kN/m3 x (3 x ½ x 2/3)m = 3.6 kN/m2 3 5 4.14kN/m 3.6kN/m 1.44kN/m 3 m 2.4kN/m FAMILY AREA FAMILY AREA Slab B1-C/3-4 Ly/Lx = 5000/2300 = 2.17 > 2 (One way slab) 4 2 m Dead Load from Slab C-D/4-5 (two way slab) = 3.6kN/m3 x (2 x ½ x 2/3)m = 2.4 kN/m2 Total Dead Load on C/3-4 = (1.44 + 4.14 + 3.6) kN/m2 = 9.18 kN/m2 Total Dead Load on C/4-5 = (1.44 + 4.14 + 2.4) kN/m2 = 7.98 kN/m2 9.18 kN/m 7.98 kN/m
  • 64. Live Load 2kN/m 1.33kN/m 2.3kN/m Live Load from Slab B1-C/3-5 (one way slab) = 2kN/m3 x (2.3 x ½)m = 2.3 kN/m2 Live Load from Slab C-D/3-4 (two way slab) = 2kN/m3 x (3 x ½ x 2/3)m = 2 kN/m2 Live Load from Slab C-D/4-5 (two way slab) = 2kN/m3 x (2 x ½ x 2/3)m = 1.33 kN/m2 4.3 kN/m 3.36 kN/m 3 54 3 m 2 m Total Live Load on C/3-4 = (2.3 + 2) kN/m2 = 4.3 kN/m2 Total Live Load on C/4-5 = (2.3 + 1.33) kN/m2 = 3.63 kN/m2 Ultimate Load on Beam C/3-4 = (9.18kN/m x 1.4) + (4.3kN/m2 x 1.6) = 12.852kN/m + 8kN/m = 22.616kN/m Ultimate Load on Beam C/4-5 = (7.98kN/m x 1.4) + (3.63kN/m2 x 1.6) = 11.172kN/m + 5.808kN/m = 16.98kN/m
  • 65. -39.72kN Load Diagram Point load from secondary beam, C4= 44.1 kN Take RC3 as centre, reaction force: 22.616 x 3 = 67.848kN 16.98 x 2 = 33.96kN ΣM = 0 0 = 5RC5 – 67.848(3/2) – 44.1(3) – 33.96(4) = 5RC5 – 101.772 – 132.3 – 135.84 = 5RC5 – 369.912 5RC5 = 366.612 RC5 = 73.98kN ΣY = 0 0 = RC3 + RC5 – 67.848 – 44.1 – 33.96 = RC3 + 73.98 – 146.208 RC3 = 72.228kN 22.616kN/m 3 m 2 m 16.98kN/m 44.1 kN RC3 RC5 72.228kN 3 m 2 m 4.38kN -73.98kN Shear Force Diagram Ratio: (68.488 + 9.66) = 9.66 2 a 39.074 a = 9.66 a = 0.247 A1 = (72.228 + 4.38) x 3 2 = 114.912kNm A2 = (39.72 + 73.98) x 2 2 = 113.7 kNm 114.912 kNm 3 m Bending Moment Diagram
  • 66. BEDROOM Slab D-F/2-3 Ly/Lx = 5800/4000 = 1.45 < 2 (Two way slab) Determine one way or two way slab: Slab D-E/3-5 Ly/Lx = 5000/3000 = 1.67 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam E/3-5 3 5 8.55kN/m 5.4kN/m 1.44kN/m 5m 15.39kN/m FAMILY AREA Dead Load from brick wall = 19kN/m3 x (0.15 x 3)m2 = 8.55 kN/m Dead Load from Slab D-E/3-5 (two way slab) = 3.6kN/m3 x (3 x ½)m = 5.4 kN/m2 Total Dead Load = (1.44 + 8.55 + 5.4) kN/m = 15.39kN/m
  • 67. Live Load Live Load from Slab D-E/3-5 = 2kN/m3 x (3 x ½ ) m2 = 3 kN/m C D 3kN/m 5m Ultimate Load = (15.39kN/m x 1.4) + (3kN/m2 x 1.6) = 21.546kN/m + 4.8kN/m = 26.346kN/m Load Diagram Reaction Force RE3 = RE5 = 26.346kN/m x 3.9m 2 = 51.375 kN 26.346kN/m Shear Force Diagram 51.375 kN 51.375 kN 51.375 kN - 51.375 kN 2.5 m 2.5 m A1 = A2 = 26.346kN/m x 2.5m x ½ = 32.9325 kNm 32.9325 kNm 2.5 m 2.5 m Bending Moment Diagram 5mRE3 RE5
  • 68. Dead Load from Slab D-E/3-5 (two way slab) = 3.6kN/m3 x (3 x ½) x 2/3 m = 3.6 kN/m2 BEDROOM Slab D-F/2-3 Ly/Lx = 5800/4000 = 1.45 < 2 (Two way slab) Determine one way or two way slab: Slab D-E/3-5 Ly/Lx = 5000/3000 = 1.67 < 2 (Two way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam D-F/3 D F 8.55kN/m 3.6kN/m 1.44kN/m 3m 18.39kN/m FAMILY AREA Dead Load from brick wall = 19kN/m3 x (0.15 x 3)m2 = 8.55 kN/m Total Dead Load on Beam D-E/3 = (1.44 + 8.55 + 4.8 + 3.6) kN/m = 18.39kN/m E 1m 4.8kN/m 14.79kN/m Total Dead Load on Beam E-F/3 = (1.44 + 8.55 + 4.8) kN/m = 14.79kN/m Dead Load from Slab D-F/2-3 (two way slab) = 3.6kN/m3 x (4 x ½) x 2/3 = 4.8 kN/m2
  • 69. Live Load 2kN/m 2kN/m Live Load from Slab D1-F/2-3 (two way slab) = 1.5kN/m3 x (4 x ½)m x 2/3 = 2 kN/m2 Live Load from Slab D-E/3-5 (two way slab) = 2kN/m3 x (3 x ½ x 2/3)m = 2 kN/m2 4 kN/m 2 kN/m D FE 3 m 1 m Total Live Load on D-E/3 = (2 + 2) kN/m2 = 4 kN/m2 Ultimate Load on Beam D-E/3 = (18.39kN/m x 1.4) + (4kN/m2 x 1.6) = 25.746kN/m + 6.4kN/m = 32.146kN/m Ultimate Load on Beam C/4-5 = (14.79kN/m x 1.4) + (2kN/m2 x 1.6) = 20.706kN/m + 3.2kN/m = 23.906kN/m Total Live Load on E-F/3 = 2kN/m2
  • 70. -21.198kN Load Diagram Point load from secondary beam, C4= 51.375 kN Take RD3 as centre, reaction force: 32.146 x 3 = 96.438kN 16.98 x 1 = 16.98kN ΣM = 0 0 = 4RF3 – 96.438(3/2) – 51.375(3) – 16.98(3.5) = 4RF3 – 144.657 – 154.125 – 59.43 = 4RF3 – 358.212 4RF3 = 358.212 RF3 = 89.553kN ΣY = 0 0 = RD3 + RF3 – 96.438 – 51.375 – 16.98 = RD3 + 89.553 – 164.793 RD3 = 75.24kN 32.146kN/m 3 m 1 m 16.98kN/m 51.375 kN RD3 RF3 75.24kN 3 m 1 m -89.553kN Shear Force Diagram Ratio: (75.24 + 21.198) = 21.198 3 a 32.146 a = 21.198 a = 0.66 A1 = 75.24 x 2.34 x ½ = 88.03kNm 88.03 kNm 3 m Bending Moment Diagram -72.573kN 2.34 m 0.66 m A2 = 21.198 x 0.66 x ½ = 7kNm A2 = (72.573 + 89.553) x 1 2 = 81.063kNm 81.03 kNm 2.34 m
  • 71. Void Determine one way or two way slab: Slab A-B1/4-5 Ly/Lx = 4600/2000 = 2.3 > 2 (One way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam A-B1/4 A 3.6kN/m 5.04kN/m 1.44kN/m 4.6m 1.5kN/m Corridor Dead Load from Slab A-B1/4-5 (one way slab) = 3.6kN/m3 x (2 x ½)m = 3.6 kN/m2 Total Dead Load = (1.44 + 3.6) kN/m = 5.04kN/m B1 Live Load Live Load from Slab A-B1/4-5 = 1.5 kN/m3 x (2 x ½ ) m2 = 1.5 kN/m Ultimate Load = (5.04kN/m x 1.4) + (1.5kN/m2 x 1.6) = 21.546kN/m + 4.8kN/m = 9.456kN/m
  • 72. Load Diagram Reaction Force RA4 = RB1.4 = 9.456kN/m x 4.6m 2 = 21.749 kN 9.456 kN/m Shear Force Diagram 21.749 kN 21.749 kN 21.749 kN - 21.749 kN2.3 m 2.3 m A1 = A2 = 21.749 kN/m x 2.3m x ½ = 25.011 kNm 25.011 kNm 2.3 m 2.3 m Bending Moment Diagram 4.6mRA4 RB1.4
  • 73. Dead Load from brick wall = 19kN/m3 x (0.15 x 3)m2 = 8.55 kN/m Void Determine one way or two way slab: Slab A-B1/4-5 Ly/Lx = 4600/2000 = 2.3 > 2 (One way slab) Dead Load Concrete Beam Self Weight = 24kN/m3 x (0.2 x 0.3)m2 = 1.44 kN/m First Floor Beam A/3-5 3 5 8.55kN/m 9.99kN/m 1.44kN/m 3m Corridor No Dead Load from Slab A-B1/4-5 (one way slab) Total Dead Load = (1.44 + 8.55) kN/m = 9.99kN/m Ultimate Load = 9.99kN/m x 1.4 = 13.986kN/m 2m 4 No Live Load from Slab A-B1/4-5 (one way slab) Live Load
  • 74. -20.042kN Load Diagram Point load from secondary beam, A4= 21.749 kN kN Take RA3 as centre, reaction force: 13.986 x 3 = 41.958 kN 13.986 x 2 = 27.972 kN ΣM = 0 0 = 5RA5 – 41.958(3/2) – 21.749(3) – 27.972(4) = 5RA5 – 62.937 – 65.247 – 111.888 = 5RA5 – 240.072 5RA5 = 240.072 RA5 = 48.014kN ΣY = 0 0 = RA3 + RA5 – 41.958 – 21.749 – 27.972 = RA3 + 48.014 – 91.679 RD3 = 43.665kN 13.986kN/m 3 m 2 m 13.986kN/m 21.749 kN 43.665kN 3 m 2 m -48.014kN Shear Force Diagram A1 = (43.665 +1.707) x 3 2 = 68.058kNm 68.058 kNm 3 m Bending Moment Diagram A2 = (48.014 + 20.042) x 2 2 = 68.056kNm 2.34 m 43.665 kN 48.014 kN RA3 RA5 1.707kN
  • 75. Capacity of the column: Given, FCU= 30N/mm2 Fy = 460 N/mm2 Ac = 200mm x 200mm = 40000mm2 Assuming 2% steel reinforcement in concrete Asc = 2% x 40000mm2 = 800mm2 N = (0.4 x Fcu x Ac) + (0.8 x Fy x Asc) = (0.4 x 30 x 40000) + (0.8 x 460 x 800) = 774400N = 774.4kN Column A3 Roof Level 1. Dead Load from slab = (5.9m x 1.5m) x 1.0 kN/m2 = 8.1kN 2. Dead Load from beam = 6.9m x 1.44 kN/m = 9.936kN Total dead load on roof level = (8.1 + 9.936)kN = 18.036kN 3. Live Load from slab = 8.1m2 x 0.5 kN/m2 = 4.05kN First Level 1. Dead Load from slab = (1.5m x 2.9m) x 3.6 kN/m2 = 8.1 kN 2. Dead Load from beam = 4.5m x 1.44 kN/m = 6.48kN 3. Dead load from wall = 6.9m x 8.55 kN/m = 58.995kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (8.1 + 6.48 + 58.995 + 2.88)kN = 73.575kN 5. Live Load from slab = (2.9 x 1.5) x 1.5 kN/m2 = 6.525kN
  • 76. Ground Level 1. Dead Load from slab = (5.4 x 1.5)m2 x 3.6 kN/m2 = 29.16kN 2. Dead Load from beam = 4.5m x 1.44 kN/m = 6.48kN 3. Dead load from wall = 6.9m x 8.55 kN/m = 58.995kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on ground level = (29.16 + 6.48 + 58.995 + 2.88)kN = 97.515kN 5. Live Load from slab (Living room) = (1.5 x 2.9)m2 x 2 kN/m2 = 8.7kN 6. Live Load from slab = (1.5 x 2.5)m2 x 1.5 kN/m2 = 5.625kN Total live load on ground level = (8.7 + 5.625)kN = 14.325kN Ultimate Dead Load = Total dead load x 1.4 = (18.036kN + 73.575kN + 97.515kN) x 1.4 = 264.7764kN Ultimate Live Load = Total live load x 1.6 = (4.05kN + 6.525kN + 14.325kN) x 1.6 = 39.84kN  Total Load acting on Column A3 = 304.616kN 304.616kN < 774.4kN, it is below the column maximum load bearing capacity.
  • 77. Column B3 Roof Level 1. Dead Load from slab = (5.4m x 3.45m) x 1.0 kN/m2 = 18.63kN 2. Dead Load from beam = 3.45m x 1.44 kN/m = 4.968kN Total dead load on roof level = (18.63 + 4.968)kN = 23.598kN 3. Live Load from slab = 18.63 m2 x 0.5 kN/m2 = 9.315kN First Level 1. Dead Load from slab = {(3m x 3.45m) + (0.45 x 2.4)} x 3.6 kN/m2 = 41.148 kN 2. Dead Load from beam = 3.45m x 1.44 kN/m = 4.968kN 3. Dead load from wall = 3.45m x 8.55 kN/m = 29.4975kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (41.148 + 4.968 + 29.4975 + 2.88)kN = 78.4935kN 5. Live Load from slab = 11.43 x 1.5 kN/m2 = 17.145kN
  • 78. Ground Level 1. Dead Load from slab = (5.4 x 3.45)m2 x 3.6 kN/m2 = 67.068kN 2. Dead Load from beam = 3.45m x 1.44 kN/m = 4.968kN 3. Dead load from wall = 3.45m x 8.55 kN/m = 29.4975kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on ground level = (67.068 + 4.968 + 29.4975 + 2.88)kN = 104.4135kN 5. Live Load from slab = 18.63m2 x 1.5 kN/m2 = 27.945kN Ultimate Dead Load = Total dead load x 1.4 = (23.598kN + 78.4935+ 104.4135kN) x 1.4 = 289.107kN Ultimate Live Load = Total live load x 1.6 = (9.315kN + 17.145kN + 27.945kN) x 1.6 = 87.048kN  Total Load acting on Column A3 = 376.1kN 376.1kN < 774.4kN, it is below the column maximum load bearing capacity.
  • 79. Column C3 Roof Level 1. Dead Load from slab = (5.4m x 3.9m) x 1.0 kN/m2 = 21.06kN 2. Dead Load from beam = (5.4 + 3.9)m x 1.44 kN/m = 13.392kN Total dead load on roof level = (21.06 + 13.392)kN = 34.452kN 3. Live Load from slab = 21.06m2 x 0.5 kN/m2 = 10.53kN First Level 1. Dead Load from slab = (3.9m x 5.4m) x 3.6 kN/m2 = 75.816 kN 2. Dead Load from beam = 3.9m x 1.44 kN/m = 13.392kN 3. Dead load from wall = (1.95 +2.9)m x 8.55 kN/m = 41.4675kN 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on first level = (75.816 + 13.392 + 41.4675 + 2.88)kN = 133.5555kN 5. Live Load from slab (family area) = (2.9 x 1.95) x 2 kN/m2 = 9.75kN 6. Live Load from slab (Bedroom and corridor) =(3.9 x 2.9) + (1.95 x 2.5) x 1.5 =24.2775kN Total dead load on first level = (9.75+ 24.2775)kN = 34.0275kNkN
  • 80. Ground Level 1. Dead Load from slab = (5.4 x 3.9)m2 x 3.6 kN/m2 = 75.816kN 2. Dead Load from beam = (5.4 + 3.9)m x 1.44 kN/m = 41.4675kN 3. Dead load from wall = none 4. Dead load from column = 0.2m x 0.2m x 3m x 24kN/m3 = 2.88kN Total dead load on ground level = (75.816 + 41.4675+ 2.88)kN = 120.1635kN 5. Live Load from slab (Dry kitchen and dining) = (3.9 x 2.9)m2 x 2 kN/m2 = 22.62kN 6. Live Load from slab = (3.9 x 2.5)m2 x 1.5 kN/m2 = 14.625kN Total live load on ground level = (22.62 + 14.625)kN = 37.245kN Ultimate Dead Load = Total dead load x 1.4 = (34.452kN 133.5555kN + 120.1635kN) x 1.4 = 403.438kN Ultimate Live Load = Total live load x 1.6 = (10.53kN + 24.2775kN + 37.245kN) x 1.6 = 130.884kN  Total Load acting on Column A3 = 534.322kN 534.322kN < 774.4kN, it is below the column maximum load bearing capacity.
  • 81. Conclusion Based on the calculations we did on the load transfer of beams and columns, we conclude that the proposed sizes and positioning of structural point is sufficient to support both dead loads and live loads of the building and in the same time, meeting the user’s living requirements. Through this exercise, we learned how to design a building based on structural considerations and propose practical building structures for future studio assignments. 81 The project has a big role to bring exposure about the technicality and rationality about what and how to build buildings in real life. Designs and ideas which can be realized won’t contribute to the society. With a better basic understanding on how to know whether the structures of a building can withstand through the time, not only to stand for a short amount of time, it gives us an insight as how to make ideas real. Not only to understand the importance of structures, the exercise also allows us to know exactly on the points where the members are actually vulnerable in order for us to think of a concrete solution. An extra measure of safety to ensure the structures are able to withstand unpredicted events in the future or a sudden shock to certain member is always better. Last but not least, we would like to express our token of appreciation to our lecturers for their patience and dedication in teaching us these technical skills.
  • 82. References: (2013) Uniform Building By-laws 1984 (G.N. 5178/85) (1st ed.). Petaling Jaya, Malaysia: Penerbitan Akta (M) Sdn. Bhd Ambrose, James. (1991). Building Structures (Second Ed.). US: John Wiley & Sons, 1993. How to Calculate the Bending Moment Diagram of a Beam. (2013). Retrieved from http://bendingmomentdiagram.com/tutorials/how-to-find-bending-moment- diagrams/ Jalal, Asfar. (2013, 17 November). Types of Load. Retrieved from http://www.engineeringintro.com/mechanics-of-structures/sfd-bmd/types-of-load/ LearnEngineering.org & Imajey Consulting Engineers Pvt. Ltd. (2011). Analysis of Beams: Shear Force and Bending Moment Diagram. Retrieved from http://www.learnengineering.org/2013/08/shear-force-bending-moment- diagram.html Learn to Engineer. Uniform Distributed Loads. Retrieved from http://learntoengineer.com/note/Uniform_Distributed_Loads The American Wood Council (AWC). 2005, January 6. Beam Design Formulas with Shear and Moment Diagrams (2005 Ed.). Washington, DC: American Forest & Paper Association, Inc. http://bendingmomentdiagram.com/tutorials/how-to-find-bending-moment- diagrams/ http://www.iitg.ac.in/kd/Lecture%20Notes/ME101-Lecture11-KD.pdf 82