SlideShare ist ein Scribd-Unternehmen logo
1 von 100
Downloaden Sie, um offline zu lesen
COMMUNICATIONS SYSTEMSCOMMUNICATIONS SYSTEMS
University of Natural Sciences- HCMC
Faculty of Electronics and Telecommunications
11/14/2012 1
Digital CommunicationsDigital Communications
H TH NG TRUY N THÔNG S
• TRUY N THÔNG S – H TH NG S TH C S :
CÁC XUNG S (i.e. NRZ, AMI, MANCHESTER,HDB3) TRUY N QUA
CÁP ð NG/QUANG (KHÔNG SÓNG MANG TƯƠNG T ). THÔNG TIN
CÓ TH BAO G M S VÀ TƯƠNG T (C N A/D và D/A).
H TH NG TRUY N THÔNG S
11/14/2012 2
CÓ TH BAO G M S VÀ TƯƠNG T (C N A/D và D/A).
• CAO T N S (DIGITAL RADIO):
SÓNG MANG TƯƠNG T ðƯ C ðI U CH D NG S (i.e. PAM, QAM,
ASK, PSK, FSK, PWM). TRUY N THÔNG QUA CÁP ð NG HO C CÁP
QUANG HAY KHÔNG GIAN
DUNG LƯ NG KÊNH TRUY N/THÔNG TIN
HARTLEY’S LAW (BELL LABS)
DUNG LƯ NG KÊNH TRUY N LÀ HÀM TUY N TÍNH:
ðO XEM CÓ BAO NHIÊU THÔNG TIN (i.e. S M U ð C L P)
CÓ TH TRUY N QUA M T KÊNH TRUY N TRONG M T ðƠN V
TH I GIAN
11/14/2012 3
DUNG LƯ NG KÊNH TRUY N LÀ HÀM TUY N TÍNH:
txBC ∝
C: DUNG LƯ NG KÊNH TRUY N
B: BĂNG THÔNG (Hz)
t: TH I GIAN TRUY N (secs)
V I 1 KÊNH TRUY N CÓ NHI U, T S TÍN Hi U TRÊN NHI U (S/N) LÀ T S
C A CÔNG SU T TÍN HI U TRÊN CÔNG SU T NHI U, ðƯ C ðO ð U THU
M I QUAN H C A BĂNG THÔNG VÀ DUNG LƯ NG
KÊNH












=
PowerNoise
PowerSignal
NS dB log10)/(
11/14/2012 4
)1(log 2
N
S
BC +=
C: DUNG LƯ NG KÊNH TRUY N (bps) / BIT RATE
B: BĂNG THÔNG (Hz)
S/N: T S TÍN HI U TRÊN NHI U
)1(log 2
N
S
C
B
+
=

SHANNON’S THEOREM (BELL LABS)
DUNG LƯ NG KÊNH
VÍ D
DÙNG 1 KÊNH THO I ð TRUY N D Li U S QUA MODEM.
B = 3100Hz, S/N = 30 dB = ratio of 1000:1
bps
N
S
BC 894,30)10001(log3100)1(log 22 =+=+=
11/14/2012 5
T C ð BIT NÀY CH LÀ T I ðA THEO LÝ THUY T.
NÓ KHÔNG TH ð T ð N V I MÃ HÓA NH PHÂN.
• GI NGUYÊN CÁC GIÁ TR KHÁC, TĂNG BĂNG THÔNG
S TĂNG T C ð D LI U.
BAUD RATE Vs BIT RATE
BIT RATE = S LƯ NG BIT M I GIÂY (BIT = MOST BASIC SYMBOL)
BAUD RATE = S LƯ NG M U (SYMBOLS) M I PER SECOND.
USING MULTI-LEVEL ENCODING SCHEMES ARE NEEDED TO ACHIEVE THE SHANNON
LIMIT.
TRANSMISSION OF M SIGNAL SYMBOLS, N BITS EACH.
N
M 2=
11/14/2012 6
• EXAMPLE: 2-LEVEL BINARY SYSTEM: M = 2, N = 1. ONE SIGNAL SYMBOL = 1 BIT.
TRANSMISSION OF 1 SIGNAL SYMBOL = TRANSMISSION OF 1 BIT.
(BAUD RATE = BIT RATE)
• EXAMPLE: 16-QAM. M = 16, N = 4. ONE SIGNAL SYMBOL = 4 BITS.
TRANSMISSION OF 1 SIGNAL SYMBOL = TRANSMISSION OF 4 BITS.
THUS, 9600 BPS = 2400 BAUDS.
COMMUNICATIONS SYSTEMS EXAMPLES
DIGITAL TRANSMISSIONDIGITAL TRANSMISSION
NO ANALOG CARRIERNO ANALOG CARRIER
TRUE DIGITAL SYSTEM:TRUE DIGITAL SYSTEM:
11/14/2012 7
DIGITAL TRANSMISSIONDIGITAL TRANSMISSION
DIGITAL RADIODIGITAL RADIO
ANALOG CARRIERANALOG CARRIER
CAO T N S (DIGITAL RADIO):CAO T N S (DIGITAL RADIO):
•• THÔNG TIN CÓ TH LÀ TƯƠNG TTHÔNG TIN CÓ TH LÀ TƯƠNG T Ho CHo C SS
11/14/2012 8
•• ði Uði U CH SCH S ::
•• TÍNTÍN Hi UHi U ði Uði U CH D NG SCH D NG S
•• SÓNG MANG D NG TƯƠNG TSÓNG MANG D NG TƯƠNG T
H TH NG CAO T N SH TH NG CAO T N S
11/14/2012 9
ENCODERENCODER
PHASE LOCKED LOOPPHASE LOCKED LOOP
CLOCKS HAVE TO BE SYNCHRONIZEDCLOCKS HAVE TO BE SYNCHRONIZED
DIGITAL MODULATION SCHEMES
•• ði Uði U CH BIÊN ð S / ONCH BIÊN ð S / ON--OFFOFF
KEYING (KEYING (OOKOOK) / AMPLITUDE SHIFT KEYING () / AMPLITUDE SHIFT KEYING (ASKASK))
•• FREQUENCY SHIFT KEYING (FREQUENCY SHIFT KEYING (FSKFSK))
•• BINARY FSK (BINARY FSK (BFSKBFSK))
•• CONTINUOUSCONTINUOUS--PHASE FSK (PHASE FSK (CPCP--FSKFSK))
•• PHASEPHASE SHIFT KEYING (SHIFT KEYING (PSKPSK))
•• BINARY PSK (BINARY PSK (BPSKBPSK))
11/14/2012 10
•• BINARY PSK (BINARY PSK (BPSKBPSK))
•• QUATERNARY PSK (QUATERNARY PSK (QPSKQPSK))
•• EIGHTEIGHT--PHASE PSK (PHASE PSK (88--PSKPSK))
•• QUADRATURE AMPLITUDE MODULATION (QUADRATURE AMPLITUDE MODULATION (QAMQAM))
•• EIGHT QAM (EIGHT QAM (88--QAMQAM))
•• SIXTEEN QAM (SIXTEEN QAM (1616--QAMQAM))
•• DIFFERENTIAL PHASE SHIFT KEYING (DIFFERENTIAL PHASE SHIFT KEYING (DPSK, DBPSKDPSK, DBPSK))
ðI U CH
BIÊN ð
11/14/2012 11
S
ðI U CH BIÊN ð S (OOK, ASK)ðI U CH BIÊN ð S (OOK, ASK)
•• K THU T ðI U CH S ðƠN GI N NH TK THU T ðI U CH S ðƠN GI N NH T
•• LÀ SÓNG LIÊN T C (CM), SINCELÀ SÓNG LIÊN T C (CM), SINCE
SÓNG MANG TRUY N (‘1’) CÓ BIÊN ð , T N SSÓNG MANG TRUY N (‘1’) CÓ BIÊN ð , T N S
VÀ PHA C ð NHVÀ PHA C ð NH
•• DSBDSB--FC AM WAVE: TÍN HI U ðI U CH NGÕ VÀOFC AM WAVE: TÍN HI U ðI U CH NGÕ VÀO
11/14/2012 12
•• DSBDSB--FC AM WAVE: TÍN HI U ðI U CH NGÕ VÀOFC AM WAVE: TÍN HI U ðI U CH NGÕ VÀO
LÀ D NG NH PHÂNLÀ D NG NH PHÂN
•• K THU T ðI U CH CHI PHÍ TH P, CH T LƯ NGK THU T ðI U CH CHI PHÍ TH P, CH T LƯ NG
TH P, HI U SU T TH PTH P, HI U SU T TH P
•• HI M KHI ðƯ C S D NG TRONG H TH NG HI UHI M KHI ðƯ C S D NG TRONG H TH NG HI U
SU T VÀ DUNG LƯ NG CAOSU T VÀ DUNG LƯ NG CAO
ðI U CH BIÊN ð SðI U CH BIÊN ð S
BINARY INPUTBINARY INPUT
(BASEBAND SIGNAL)(BASEBAND SIGNAL)tbtb tbtb
11/14/2012 13
ONON--OFF KEYINGOFF KEYING
MODULATIONMODULATION
(OOK, ASK)(OOK, ASK)
tb = BIT TIMEtb = BIT TIME
1/tb = fb=BIT RATE1/tb = fb=BIT RATE
DIGITALAMPLITUDE MODULATIONDIGITALAMPLITUDE MODULATION
[ ] )cos(
2
)(1)( t
V
tvtv c
c
mam ω+=
 =+ 1log1 icalV
)cos(
2
)()cos(
2
)( t
V
tvt
V
tv c
c
mc
c
am ωω +=
11/14/2012 14



=−
=+
=
0log1
1log1
)(
icalV
icalV
tvm



=
inputical
inputicaltV
tv
cc
am
0log;0
1log);cos(
)(
ω
NORMALIZEDNORMALIZED
INPUT SIGNALINPUT SIGNAL
DIGITALAMPLITUDE MODULATIONDIGITALAMPLITUDE MODULATION
)(ωM
INPUT
SIGNAL
DSB-FC
bt/10bt/1−
b
b
f
t
=
1
11/14/2012 15
)(ωϑDSB
DSB-FC
MODULATED SIGNAL
cω
b
c
t
1
−ω
0
b
c
t
1
+ω
BB
bfB 2=
FREQUENCY
SHIFT
11/14/2012 16
SHIFT
KEYING
FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK)
•• K THU T ðI U CH S ðƠN GI NK THU T ðI U CH S ðƠN GI N
•• K THU T ðI U CH CHI PHÍ TH P, HI U SU T TH PK THU T ðI U CH CHI PHÍ TH P, HI U SU T TH P
•• BFSK TƯƠNG T NHƯ FM (CONSTANT AMPLITUDE/BFSK TƯƠNG T NHƯ FM (CONSTANT AMPLITUDE/
PHASE) NGO I TR TÍN HI U ðI U CH LÀ NH PHÂNPHASE) NGO I TR TÍN HI U ðI U CH LÀ NH PHÂN
(THAY ð I GI A 2 M C RIÊNG BI T)(THAY ð I GI A 2 M C RIÊNG BI T)
11/14/2012 17
(THAY ð I GI A 2 M C RIÊNG BI T)(THAY ð I GI A 2 M C RIÊNG BI T)
•• BFSK HI M KHI ðƯ C S D NG TRONG H TH NGBFSK HI M KHI ðƯ C S D NG TRONG H TH NG
S HI U SU T CAO. S D NG H N CH TRONGS HI U SU T CAO. S D NG H N CH TRONG
MODEM B T ð NG B HI U SU T TH P, CHI PHÍMODEM B T ð NG B HI U SU T TH P, CHI PHÍ
TH P DÙNG ð TRUY N D LI U QUA ðƯ NG DÂYTH P DÙNG ð TRUY N D LI U QUA ðƯ NG DÂY
THO I TƯƠNG T .THO I TƯƠNG T .
FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK)
{ }[ ]tftvfVtv mccfsk ∆+= )(2cos)( π
≡
≡∆
≡
c
c
V
f
f T N S SÓNG MANG TRUNG TÂMT N S SÓNG MANG TRUNG TÂM
ð L CH T N S ð NHð L CH T N S ð NH
BIÊN ð SÓNG MANG ð NHBIÊN ð SÓNG MANG ð NH
11/14/2012 18



=−
=+
=
0log1
1log1
)(
icalV
icalV
tvm
NORMALIZEDNORMALIZED
INPUT SIGNALINPUT SIGNAL
{ }[ ]
{ }[ ]


∆−
∆+
=
inputicaltffV
inputicaltffV
tv
cc
cc
fsk
0log;2cos
1log;2cos
)(
π
π
FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK)
•• V I BPSK, T N S SÓNG MANG B D CH B I TÍNV I BPSK, T N S SÓNG MANG B D CH B I TÍN Hi UHi U NHNH
PHÂN NGÕ VÀOPHÂN NGÕ VÀO
fcm ff ∆+≡•
MARKMARK FREQUENCY = T N S NGÕ RA V IFREQUENCY = T N S NGÕ RA V I
LOGIC 1 NGÕ VÀOLOGIC 1 NGÕ VÀO
(SHIFT UP)(SHIFT UP)
11/14/2012 19
LOGIC 1 NGÕ VÀOLOGIC 1 NGÕ VÀO
SPACESPACE FREQUENCY = T N S NGÕ RA V IFREQUENCY = T N S NGÕ RA V I
LOGIC 0 NGÕ VÀOLOGIC 0 NGÕ VÀO
fcs ff ∆−≡• (SHIFT DOWN)(SHIFT DOWN)
sm ff ,• GIÁ TR D A VÀO THI T K H TH NGGIÁ TR D A VÀO THI T K H TH NG
FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK)
f∆f∆
f∆2
11/14/2012 20
fcm ff ∆+=fcs ff ∆−= cf
2
sm
f
ff −
=∆
LOGICAL 0LOGICAL 0
(SPACE)(SPACE)
LOGICAL 1LOGICAL 1
(MARK)(MARK)
FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK)
2 tb2 tb
tb = BIT TIMEtb = BIT TIME
1/tb = fb=BIT RATE1/tb = fb=BIT RATE
11/14/2012 21
1/2tb =1/2tb =
FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK)
•• V I BFSK, T C ð NGÕ RA B NG T C ð NGÕ VÀOV I BFSK, T C ð NGÕ RA B NG T C ð NGÕ VÀO
(T N S NGÕ RA THAY ð I M I L N M C LOGIC(T N S NGÕ RA THAY ð I M I L N M C LOGIC
NGÕ VÀO THAY ð I)NGÕ VÀO THAY ð I)
•• V I BFSK, T C ð BIT B NG V I T C ð BAUDV I BFSK, T C ð BIT B NG V I T C ð BAUD
(A SIGNAL SYMBOL = A BIT)(A SIGNAL SYMBOL = A BIT)
11/14/2012 22
(A SIGNAL SYMBOL = A BIT)(A SIGNAL SYMBOL = A BIT)
•• BB ði Uði U CH FSK THƯ NG LÀ 1 VCO V I 1 T N SCH FSK THƯ NG LÀ 1 VCO V I 1 T N S
TRUNG TÂM:TRUNG TÂM:
2
sm
osc
ff
f
−
=
mosc ffinput →:'1'
sosc ffinput →:'0'}
BASKBASK
BFSKBFSK
11/14/2012 23
BFSKBFSK
BPSKBPSK
FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK)
)(ωI
INPUT
SIGNAL
MODULATED SIGNAL
0 bt/1bt/1−
b
b
f
t
=
1
11/14/2012 24
)(ωϑ
MODULATED SIGNAL
mf0 sf cf
b
m
t
f
1
+b
s
t
f
1
−
SIN X/XSIN X/X
(PULSED SINUSOIDAL WAVES)(PULSED SINUSOIDAL WAVES)
BB
FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK)
22
2)(
)()(
b
bsm
bsbm
ffB
fffB
ffffB
+∆=
+−=
−−+=
11/14/2012 25
)(2 bffB +∆=
)(2 bffB +∆=
BĂNG THÔNG T I THI U C A TÍNBĂNG THÔNG T I THI U C A TÍN Hi UHi U FSK:FSK:
BFSKBFSK -- MODULATION INDEXMODULATION INDEX
af
f∆
=β
THE REPETITION RATETHE REPETITION RATE bf
f∆
=
2
β22
1 b
b
a
f
t
f ==
b
sm
b f
ff
f
f −
=
∆
=∴
2
β
ff −
SEPERATION INSEPERATION IN
MARK AND SPACEMARK AND SPACE
FREQUENCIESFREQUENCIES
11/14/2012 26
bsm
b
sm
fff
f
ff
=−⇒=
−
=• 1;1β
2
5.;5.
b
sm
b
sm f
ff
f
ff
=−⇒=
−
=• β
bsm
b
sm
fff
f
ff
22;2 =−⇒=
−
=• β
FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK)
bsm fff >−
•• WIDEWIDE--BAND FSK:BAND FSK:
•• H SH S ði Uði U CH :CH :
b
sm
b
sm
a f
ff
f
ff
f
f
h
−
=
−
=
∆
=
2
2
11/14/2012 27
bsm fff >−
•• NARROWNARROW--BAND FSK:BAND FSK:
bsm fff <−
FSK EXAMPLEFSK EXAMPLE
CHO TÍNCHO TÍN Hi UHi U FSK V I MARK FREQUENCY LÀ 51 kHz, SPACEFSK V I MARK FREQUENCY LÀ 51 kHz, SPACE
FREQUENCY LÀ 49 kHz, VÀ T C ð BIT NGÕ VÀO LÀ 2 Kbps:FREQUENCY LÀ 49 kHz, VÀ T C ð BIT NGÕ VÀO LÀ 2 Kbps:
••ð L CH T N ð NHð L CH T N ð NH
2
sm
f
ff −
=∆ kHz
kHzkHz s
f 1
2
4951
=
−
=∆
•• BĂNG THÔNG T I THI UBĂNG THÔNG T I THI U
11/14/2012 28
•• BĂNG THÔNG T I THI UBĂNG THÔNG T I THI U
)(2 bffB +∆= kHzkHzkHzB 6)21(2 =+=
•• T C ð BAUDT C ð BAUD
WITH BFSK, THE BIT RATE EQUALS THE BAUD RATEWITH BFSK, THE BIT RATE EQUALS THE BAUD RATE
BAUD RATE = 2 kbpsBAUD RATE = 2 kbps
NONCOHERENT FSK RECEIVERNONCOHERENT FSK RECEIVER
KHÔNG CÓ T N S ðƯ C THÊM VÀO TRONG QUÁ TRÌNH GI I ðI U CHKHÔNG CÓ T N S ðƯ C THÊM VÀO TRONG QUÁ TRÌNH GI I ðI U CH
ð ð NG B C V PHA, T N S HAY C HAI V I TÍN HI U VÀO FSKð ð NG B C V PHA, T N S HAY C HAI V I TÍN HI U VÀO FSK
11/14/2012 29
00
OROR
11
COHERENT FSK RECEIVERCOHERENT FSK RECEIVER
TÍNTÍN Hi UHi U VÀO FSK ðƯ C NHÂN V I SÓNG MANG ðƯ C KHÔI PH CVÀO FSK ðƯ C NHÂN V I SÓNG MANG ðƯ C KHÔI PH C
CHÍNH XÁC V T N S VÀ PHA NHƯ C A B TRUY NCHÍNH XÁC V T N S VÀ PHA NHƯ C A B TRUY N
11/14/2012 30
00
OROR
11
Hi MHi M KHI S D NG K THU T: LÀ KHÔNG TH C T ð TÁI T O M T CÁI LOCALKHI S D NG K THU T: LÀ KHÔNG TH C T ð TÁI T O M T CÁI LOCAL
REFERENCE CÓ TH LIÊN K T C MARK AND SPACE FREQUENCIESREFERENCE CÓ TH LIÊN K T C MARK AND SPACE FREQUENCIES
PLLPLL--BASED FSK RECEIVERBASED FSK RECEIVER
FREQUENCY VARIESFREQUENCY VARIES
BETWEEN MARK AND SPACEBETWEEN MARK AND SPACE
FREQUENCIESFREQUENCIES
FOLLOWS THE FREQUENCYFOLLOWS THE FREQUENCY
SHIFTSHIFT
11/14/2012 31
00
OROR
11
2
sm
osc
ff
f
−
=
CONTINUOUSCONTINUOUS --PHASE (CPPHASE (CP--FSK)FSK)
•• CPCP--FSK IS BFSK V I MARK AND SPACEFSK IS BFSK V I MARK AND SPACE
FREQUENCIES ðƯ C ð NG B T C ð BIT NHFREQUENCIES ðƯ C ð NG B T C ð BIT NH
PHÂN NGÕ VÀOPHÂN NGÕ VÀO
•• sm ff , ðƯ C CH N SAO CHO CHÚNGðƯ C CH N SAO CHO CHÚNG
PHÂN BI T V I T N S TRUNG TÂM B NGPHÂN BI T V I T N S TRUNG TÂM B NG
S L L N C A ½ T C ð BITS L L N C A ½ T C ð BIT
11/14/2012 32






=
2
b
mm
f
nf
•• ðI U NÀY B O ð M S CHUY N PHA SUÔN SðI U NÀY B O ð M S CHUY N PHA SUÔN S
TÍN HI U NGÕ RA KHI THAY ð I GI A 2TÍN HI U NGÕ RA KHI THAY ð I GI A 2
T N ST N S




=
2
b
ss
f
nf



≠ sm
sm
nn
oddnoddn ;
S L L N C A ½ T C ð BITS L L N C A ½ T C ð BIT
NONNON--CONTINUOUS FSK WAVEFORM EXAMPLECONTINUOUS FSK WAVEFORM EXAMPLE
11 00 11 00
11/14/2012 33
CONTINUOUSCONTINUOUS--PHASE FSK WAVEFORM EXAMPLEPHASE FSK WAVEFORM EXAMPLE
mstb 1= kHz
ms
fb 1
1
1
==
11/14/2012 34
FSKFSK
SELECTSELECT nnm = 7m = 7 SELECTSELECT nns = 3s = 3
3500 Hz3500 Hz7777
3500 Hz3500 Hz
CONTINUOUSCONTINUOUS--PHASE FSK WAVEFORMPHASE FSK WAVEFORM
IN THE CPIN THE CP--FSK EXAMPLE:FSK EXAMPLE:
1500;3500
4
3;7;1000
==
=−∴
===
m
sm
smb
HzfsHzf
and
nn
nnHzf
11/14/2012 35
)2(22000
1500;3500
===−∴
==
βbsm
m
fHzff
HzfsHzf
Hz
ff
f
sm
1000
2
2000
2
==
−
=∆
Hzfffff smosc 2500=∆+=∆−=
CONTINUOUS FSKCONTINUOUS FSK -- (CP(CP--FSK)FSK)
f∆f∆
f∆2
Hzfb 1000=
1000 Hz1000 Hz 1000 Hz1000 Hz
11/14/2012 36
fcm ff ∆+=fcs ff ∆−= cf
2
sm
f
ff −
=∆LOGICAL 0LOGICAL 0
(SPACE)(SPACE)
LOGICAL 1LOGICAL 1
(MARK)(MARK)
Ns = 3; 1500 HzNs = 3; 1500 Hz 2500 Hz2500 Hz Nm = 7; 3500 HzNm = 7; 3500 Hz
1000 Hz1000 Hz 1000 Hz1000 Hz
MINIMUM CPMINIMUM CP--FSKFSK -- MSKMSK
PHÂN BI T T I THI U C A MARK AND SPACEPHÂN BI T T I THI U C A MARK AND SPACE
FREQUENCIES X Y RA KHIFREQUENCIES X Y RA KHI
b
ss
b
sm
f
nf
f
nf =+=
2
;
2
)2(
2+= sm nn
11/14/2012 37
1=⇒=− βbsm fff
H S ðI U CH LÀ 1 VÀ CHÚNG TA G I MSK NÀYH S ðI U CH LÀ 1 VÀ CHÚNG TA G I MSK NÀY
b
b
sm f
f
ff ==−∴
2
2
22
CONTINUOUSCONTINUOUS--PHASE MSK WAVEFORMPHASE MSK WAVEFORM
mstb 1= kHz
ms
fb 1
1
1
==
11/14/2012 38
MSKMSK
SELECT n = 5SELECT n = 5 SELECT n = 3SELECT n = 3
11/14/2012 39
PHASE
SHIFT
11/14/2012 40
SHIFT
KEYING
PHASE SHIFT KEYING (PSK, BPSK)PHASE SHIFT KEYING (PSK, BPSK)
•• CŨNG ðƯ C G I LÀ PHASE REVERSAL KEYING (PRK)CŨNG ðƯ C G I LÀ PHASE REVERSAL KEYING (PRK)
VÀ BIPHASE MODULATIONVÀ BIPHASE MODULATION
•• BPSK THÌ TƯƠNG T NHƯ PM (BIÊN ð VÀ T N SBPSK THÌ TƯƠNG T NHƯ PM (BIÊN ð VÀ T N S
KHÔNG ð I) NGO I TR TÍNKHÔNG ð I) NGO I TR TÍN Hi UHi U ði Uði U CH LÀ NHCH LÀ NH
PHÂN (PHÂNPHÂN (PHÂN Bi TBi T Gi AGi A 2 M C RIÊNG2 M C RIÊNG Bi TBi T))
11/14/2012 41
•• V I BPSK 2 PHA NGÕ RA CÓ TH T O B I 1 T N SV I BPSK 2 PHA NGÕ RA CÓ TH T O B I 1 T N S
SÓNG MANG. PHA C A TÍNSÓNG MANG. PHA C A TÍN Hi UHi U SÓNG MANG NGÕSÓNG MANG NGÕ
RA L CH NHAU 180RA L CH NHAU 18000 ðð Bi UBi U Di NDi N M C LOGIC 0 VÀ 1M C LOGIC 0 VÀ 1
•• BPSK LÀ 1 D NG C A DSBBPSK LÀ 1 D NG C A DSB--SCSC
BPSK TRANSMITTERBPSK TRANSMITTER
PHASE REVERSING SWITCHPHASE REVERSING SWITCH
(PRODUCT MODULATOR)(PRODUCT MODULATOR)
CARRIER IS EITHERCARRIER IS EITHER
IN PHASE (‘1’ INPUT)IN PHASE (‘1’ INPUT)
LOGICAL 0,LOGICAL 0,
UNIPOLARUNIPOLAR BIPOLARBIPOLAR
tbtb
11/14/2012 42
IN PHASE (‘1’ INPUT)IN PHASE (‘1’ INPUT)
OR 180 degrees OUT OFOR 180 degrees OUT OF
PHASE (‘0’ INPUT)PHASE (‘0’ INPUT)
CARRIER FREQUENCYCARRIER FREQUENCY
LOGICAL 0,LOGICAL 0,
LOGICAL 1LOGICAL 1
INPUTINPUT
OUTPUT RATE OFOUTPUT RATE OF
CHANGE (BAUD) =CHANGE (BAUD) =
INPUT RATE OF CHANGEINPUT RATE OF CHANGE
((bpsbps).). SYMBOL = BITSYMBOL = BIT
BPSK BALANCED RING MODULATORBPSK BALANCED RING MODULATOR
11/14/2012 43
DIGITAL VOLTAGE INPUT >>> PEAK CARRIER VOLTAGEDIGITAL VOLTAGE INPUT >>> PEAK CARRIER VOLTAGE
IN ORDER TO CONTROL D1IN ORDER TO CONTROL D1--D4 DIODE STATESD4 DIODE STATES
BPSK BALANCED RING MODULATORBPSK BALANCED RING MODULATOR
LOGICAL 1 INPUTLOGICAL 1 INPUT
11/14/2012 44
OUTPUTOUTPUT
SIGNAL IS INSIGNAL IS IN
PHASEPHASE
BPSK BALANCED RING MODULATORBPSK BALANCED RING MODULATOR
LOGICAL 0 INPUTLOGICAL 0 INPUT
11/14/2012 45
OUTPUTOUTPUT
SIGNAL ISSIGNAL IS
180 degrees OUT180 degrees OUT
OF PHASEOF PHASE
BPSK BALANCED RING MODULATORBPSK BALANCED RING MODULATOR
TRUTH TABLETRUTH TABLE
PHASOR DIAGRAMPHASOR DIAGRAM
11/14/2012 46
PHASOR DIAGRAMPHASOR DIAGRAM
CONSTELLATION DIAGRAMCONSTELLATION DIAGRAM
(SIGNAL STATE(SIGNAL STATE--SPACE DIAGRAM)SPACE DIAGRAM)
ONLY THE RELATIVE PEAKSONLY THE RELATIVE PEAKS
OF THE PHASORS ARE SHOWNOF THE PHASORS ARE SHOWN
BPSK GENERATIONBPSK GENERATION
[ ])2sin()()( tftvtv cmpsk π=
≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY
 =+ 1log1 icalVNORMALIZEDNORMALIZED
≡)(tvm INPUT BINARY SIGNALINPUT BINARY SIGNAL
11/14/2012 47



=−
=+
=
0log1
1log1
)(
icalV
icalV
tvm
NORMALIZEDNORMALIZED
INPUT SIGNALINPUT SIGNAL
(UNIPOLAR TO(UNIPOLAR TO
BIPOLAR SIGNAL)BIPOLAR SIGNAL)



−
+
=
inputicalt
inputicalt
tv
c
c
psk
0log;sin
1log;sin
)(
ω
ω IN PHASEIN PHASE
OUT OFOUT OF
PHASEPHASE
BPSK MODULATOR OUTPUT SIGNALBPSK MODULATOR OUTPUT SIGNAL
11/14/2012 48
BANDWITH CONSIDERATION OF BPSKBANDWITH CONSIDERATION OF BPSK
[ ][ ])2sin()2sin()( tftftv acpsk ππ=
≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY
REPETITION RATE (FUNDAMENTALREPETITION RATE (FUNDAMENTAL
FREQUENCY OF BINARY INPUT)FREQUENCY OF BINARY INPUT)
IT IS 1/2 THE BIT RATEIT IS 1/2 THE BIT RATE
≡==
22
1 b
b
a
f
t
f
11/14/2012 49
IT IS 1/2 THE BIT RATEIT IS 1/2 THE BIT RATEb
)cos(
2
1
)cos(
2
1
))(sin(sin YXYXYX +−−=
[ ] [ ]tfftfftv acacpsk )(2cos
2
1
)(2cos
2
1
)( +−−= ππ
LOWER SIDE FREQUENCYLOWER SIDE FREQUENCY UPPER SIDE FREQUENCYUPPER SIDE FREQUENCY
ff +ff − f
B
BANDWITH CONSIDERATION OF BPSKBANDWITH CONSIDERATION OF BPSK
LSBLSB USBUSB
2
b
a
f
f =
2
b
a
f
f =
11/14/2012 50
ac ff +ac ff −
cf
b
b
a f
f
fB ===
2
22
LSFLSF USFUSF
DSBDSB--SC MODULATIONSC MODULATION
EXAMPLEEXAMPLE
FOR A BPSK MODULATOR WITH A CARRIERFOR A BPSK MODULATOR WITH A CARRIER
FREQUENCY OF 70 MHz AND AN INPUT BIT RATE OFFREQUENCY OF 70 MHz AND AN INPUT BIT RATE OF
10 Mbps, DETERMINE a) THE LSF b) USF c) B d) BAUD RATE10 Mbps, DETERMINE a) THE LSF b) USF c) B d) BAUD RATE
MHzfc 70=
ab
b
a ff
f
f 2;
2
==
MHzfb 10=
11/14/2012 51
aba
2
MHz
MHz
fa 5
2
10
==
MHzffLSF ac 65570 =−=−=
MHzffUSF ac 75570 =+=+=
MHzfB b 10==
MHz70
MHz10
EXAMPLEEXAMPLE
LSBLSB USBUSB
MHz5MHz5
MHz75MHz65
11/14/2012 52
MHz70 MHz75MHz65
LSFLSF USFUSF
BAUD RATE = BIT RATE = 10 MEGABAUDBAUD RATE = BIT RATE = 10 MEGABAUD
BPSK RECEIVERBPSK RECEIVER
++
INPUT BPSKINPUT BPSK
SIGNALSIGNAL
PRODUCTPRODUCT
MODULATORMODULATOR
22
11/14/2012 53
FREQUENCY AND PHASEFREQUENCY AND PHASE
SYNCHRONIZED TO ORIGINALSYNCHRONIZED TO ORIGINAL
TRANSMIT CARRIERTRANSMIT CARRIER
SYNCHRONIZED TOSYNCHRONIZED TO
BIT RATEBIT RATE
BPSK DETECTIONBPSK DETECTION
ttttv ccc ωωω 2
mod sin2))(sin(sin2)( ==
ttv cm ωsin)( +=
XX 2cos
2
1
2
1
sin2
−=
LOGICAL 1:LOGICAL 1:
))(sin(2)(mod ttvtv cm ω=




−= ttv cω2cos
11
2)(mod
11/14/2012 54
XX 2cos
22
sin −=

−= ttv cω2cos
22
2)(mod
ttv cω2cos1)(mod −=
BLOCKED BY LPFBLOCKED BY LPF
V1)( =tvout LOGICAL 1:LOGICAL 1:
BPSK DETECTIONBPSK DETECTION
ttttv ccc ωωω 2
mod sin2))(sinsin(2)( −=−=
ttv cm ωsin)( −=
XX 2cos
2
1
2
1
sin2
−=
LOGICAL 0:LOGICAL 0:
))(sin(2)(mod ttvtv cm ω=




−−= ttv cω2cos
11
2)(mod
11/14/2012 55
XX 2cos
22
sin −=

−−= ttv cω2cos
22
2)(mod
ttv cω2cos1)(mod +−=
BLOCKED BY LPFBLOCKED BY LPF
V1)( −=tvout LOGICAL 0LOGICAL 0
MM--ARYARY ENCODINGENCODING
•• M LÀ M T S TH P PHÂNM LÀ M T S TH P PHÂN Bi UBi U Di NDi N S LƯ NGS LƯ NG
K T H P CÓ TH CHO 1 S BIT NH PHÂN CHOK T H P CÓ TH CHO 1 S BIT NH PHÂN CHO
TRƯ C (N)TRƯ C (N)
•• ði Uði U CH S BFSK VÀ BPSK MÃ HÓA 1 BIT ðƠNCH S BFSK VÀ BPSK MÃ HÓA 1 BIT ðƠN
VÀ CÓ TH CÓ 2 CÁCH K T H P NGÕVÀ CÓ TH CÓ 2 CÁCH K T H P NGÕ
(N = 1, 0 AND 1 INPUTS)(N = 1, 0 AND 1 INPUTS)
11/14/2012 56
(N = 1, 0 AND 1 INPUTS)(N = 1, 0 AND 1 INPUTS)
•• EXAMPLE: H TH NG PSK V I 4 PHA NGÕ RA LÀEXAMPLE: H TH NG PSK V I 4 PHA NGÕ RA LÀ
H TH NG MH TH NG M--ARYARY V I M = 4V I M = 4
•• BINARY LÀ MBINARY LÀ M--ARYARY V I M = 2V I M = 2
•• BPSK: M = 2, N = 1BPSK: M = 2, N = 1
MM--ARYARY ENCODING: M & N RELATIONSHIPENCODING: M & N RELATIONSHIP
MN
M N
2log
2
=
=
V I BFSK/BPSK, 1 BIT ðƯ C MÃ HÓA:V I BFSK/BPSK, 1 BIT ðƯ C MÃ HÓA:
T NG QUÁTT NG QUÁT
N = 1N = 1
11/14/2012 57
N = 1N = 1
M = 2M = 2
EXAMPLE:EXAMPLE:
N U NGÕ VÀO BAO G M 2 BIT, ðƯ C MÃ HÓA V IN U NGÕ VÀO BAO G M 2 BIT, ðƯ C MÃ HÓA V I
NHAU VÀ SAU ðÓ ðƯ CNHAU VÀ SAU ðÓ ðƯ C ði Uði U CH CÙNG 1 SÓNGCH CÙNG 1 SÓNG
MANG, THÌ: N = 2, M = 4MANG, THÌ: N = 2, M = 4
MINIMUM MMINIMUM M--ARYARY REQUIRED BANDWITHREQUIRED BANDWITH
N
f
M
f
B bb
==
2log
11/14/2012 58
N LÀ S LƯ NG BIT NRZ MÃ HÓAN LÀ S LƯ NG BIT NRZ MÃ HÓA
QUATERNARY PHASE SHIFT KEYING (QPSK)QUATERNARY PHASE SHIFT KEYING (QPSK)
•• CŨNG ðƯ C G I LÀ QUADRATURE PSKCŨNG ðƯ C G I LÀ QUADRATURE PSK
•• M T D NG KHÁC C A PMM T D NG KHÁC C A PM
•• QPSK LÀ 1 K THU T MÃ HÓA MQPSK LÀ 1 K THU T MÃ HÓA M--ARYARY V I M = 4V I M = 4
11/14/2012 59
•• V I QPSK, 4 PHA NGÕ RA ðƯ C TH CV I QPSK, 4 PHA NGÕ RA ðƯ C TH C Hi NHi N V IV I
1 SÓNG MANG1 SÓNG MANG
•• N = 2 (2 BITS) VÌ:N = 2 (2 BITS) VÌ:
4log2log 22 =⇒= MN
QUATERNARY PHASE SHIFT KEYING (QPSK)QUATERNARY PHASE SHIFT KEYING (QPSK)
•• DD Li ULi U NH PHÂN NGÕ VÀO ðƯ C K T H PNH PHÂN NGÕ VÀO ðƯ C K T H P
THÀNH NHÓM 2 BIT G I LÀTHÀNH NHÓM 2 BIT G I LÀ DIBITSDIBITS
•• DIBITDIBIT CODE: 00 = PHASE 1, 01 = PHASE 2,CODE: 00 = PHASE 1, 01 = PHASE 2,
10 = PHASE 3, 11 = PHASE 410 = PHASE 3, 11 = PHASE 4
11/14/2012 60
•• 1 SYMBOL = 1 PHASE = 2 BITS1 SYMBOL = 1 PHASE = 2 BITS
BAUD RATE = 1/2BAUD RATE = 1/2 BIT RATEBIT RATE
(SYMBOLS PER SEC)(SYMBOLS PER SEC) ((BITS PER SECBITS PER SEC))
QPSK MODULATORQPSK MODULATOR
DIBITSDIBITS
SERIALSERIAL
TOTO
PARALLELPARALLEL
IINN--PHASEPHASE
TWOTWO
OUTPUTOUTPUT
PHASESPHASES
PRODUCT MODULATORPRODUCT MODULATOR
bfRateBit =
11/14/2012 61
OUTOUT--OFOF
PHASEPHASE
TWOTWO
OUTPUTOUTPUT
PHASESPHASESPRODUCT MODULATORPRODUCT MODULATOR
2
bf
RateBit =
QPSK GENERATION: I CHANNEL OUTPUT PHASESQPSK GENERATION: I CHANNEL OUTPUT PHASES
[ ])2sin()()( tftvtv cmqpsk π=
≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY
 =+ 1log1 icalVNORMALIZEDNORMALIZED
≡)(tvm INPUT BINARY SIGNALINPUT BINARY SIGNAL
11/14/2012 62



=−
=+
=
0log1
1log1
)(
icalV
icalV
tvm
NORMALIZEDNORMALIZED
INPUT SIGNALINPUT SIGNAL
(UNIPOLAR TO(UNIPOLAR TO
BIPOLAR SIGNAL)BIPOLAR SIGNAL)



−
+
=
inputicalt
inputicalt
tv
c
c
qpsk
0log;sin
1log;sin
)(
ω
ω IN PHASEIN PHASE
OUT OFOUT OF
PHASEPHASE
QPSK GENERATION: Q CHANNEL OUTPUT PHASESQPSK GENERATION: Q CHANNEL OUTPUT PHASES
[ ])2cos()()( tftvtv cmqpsk π=
≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY
 =+ 1log1 icalVNORMALIZEDNORMALIZED
≡)(tvm INPUT BINARY SIGNALINPUT BINARY SIGNAL
11/14/2012 63



=−
=+
=
0log1
1log1
)(
icalV
icalV
tvm
NORMALIZEDNORMALIZED
INPUT SIGNALINPUT SIGNAL
(UNIPOLAR TO(UNIPOLAR TO
BIPOLAR SIGNAL)BIPOLAR SIGNAL)



−
+
=
inputicalt
inputicalt
tv
c
c
qpsk
0log;cos
1log;cos
)(
ω
ω IN PHASEIN PHASE
OUT OFOUT OF
PHASEPHASE
QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES
DIBITDIBIT
CODECODE Q CHANNEL I CHANNEL SUMMER OUTPUTQ CHANNEL I CHANNEL SUMMER OUTPUT
0 00 0
0 10 1
)2sin( tfcπ−)2cos( tfcπ−
)2sin( tfπ+)2cos( tfπ−
)2sin()2cos( tftf cc ππ −−
)2sin()2cos( tftf ππ +−
11/14/2012 64
0 10 1
1 01 0
1 11 1
)2sin( tfcπ−
)2sin( tfcπ+
)2sin( tfcπ+)2cos( tfcπ−
)2cos( tfcπ+
)2cos( tfcπ+
)2sin()2cos( tftf cc ππ +−
)2sin()2cos( tftf cc ππ −+
)2sin()2cos( tftf cc ππ ++
QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES
DIBIT CODEDIBIT CODE
0 00 0 )1352sin(2)2sin()2cos( o
−=−− tftftf ccc πππ
PROOF:PROOF:
YXYXYX sincoscossin)sin( −=−
)1352sin(2 tfcπ =− o
11/14/2012 65
)2cos()2sin(
)2cos(
2
2
)2sin(
2
2
)135sin()2cos(2)135cos()2sin(2
)1352sin(2
tftf
tftf
tftf
tf
cc
cc
cc
c
ππ
ππ
ππ
π
−−
=−−
=−
=−
0 0 ==>0 0 ==> --135 degrees135 degrees
QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES
DIBIT CODEDIBIT CODE
0 10 1 )452sin(2)2sin()2cos( o
−=+− tftftf ccc πππ
PROOF:PROOF:
YXYXYX sincoscossin)sin( −=−
)452sin(2 tfcπ =− o
11/14/2012 66
)2cos()2sin(
)2cos(
2
2
)2sin(
2
2
)45sin()2cos(2)45cos()2sin(2
)452sin(2
tftf
tftf
tftf
tf
cc
cc
cc
c
ππ
ππ
ππ
π
−
=−
=−
=−
0 1 ==>0 1 ==> --45 degrees45 degrees
QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES
DIBIT CODEDIBIT CODE
1 01 0 )1352sin(2)2sin()2cos( o
+=− tftftf ccc πππ
PROOF:PROOF:
YXYXYX sincoscossin)sin( +=+
)1352sin(2 tfcπ =+ o
11/14/2012 67
)2cos()2sin(
)2cos(
2
2
)2sin(
2
2
)135sin()2cos(2)135cos()2sin(2
)1352sin(2
tftf
tftf
tftf
tf
cc
cc
cc
c
ππ
ππ
ππ
π
+−
=+−
=+
=+
1 0 ==> +135 degrees1 0 ==> +135 degrees
QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES
DIBIT CODEDIBIT CODE
1 11 1 )452sin(2)2sin()2cos( o
+=+ tftftf ccc πππ
PROOF:PROOF:
YXYXYX sincoscossin)sin( +=+
)452sin(2 tfcπ =+ o
11/14/2012 68
)2cos()2sin(
)2cos(
2
2
)2sin(
2
2
)45sin()2cos(2)45cos()2sin(2
)452sin(2
tftf
tftf
tftf
tf
cc
cc
cc
c
ππ
ππ
ππ
π
++
=++
=+
=+
1 1 ==> +45 degrees1 1 ==> +45 degrees
QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES
11/14/2012 69
QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES
11/14/2012 70
OUTPUT PHASE VERSUS TIME FOR QPSK MODULATOROUTPUT PHASE VERSUS TIME FOR QPSK MODULATOR
QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES
V I QPSK, M T TRONG 4 KH NĂNG NGÕ RAV I QPSK, M T TRONG 4 KH NĂNG NGÕ RA
PHASORS CÓ CÙNG BIÊN ð .PHASORS CÓ CÙNG BIÊN ð .
11/14/2012 71
VÌ TH , THÔNG TIN NH PHÂN PH I ðƯ C MÃ HÓAVÌ TH , THÔNG TIN NH PHÂN PH I ðƯ C MÃ HÓA
HOÀN TOÀN TRONG PHA C A TÍNHOÀN TOÀN TRONG PHA C A TÍN Hi UHi U NGÕ RANGÕ RA
QPSK GENERATIONQPSK GENERATION
tbtb tbtb
1 f
BIT RATE BEFORE SPLITTER =BIT RATE BEFORE SPLITTER = b
b
f
t
=
1
II
QQ
tbtb tbtb
SERIALSERIAL
PARALLELPARALLEL
I or QI or Q
(SERIAL)(SERIAL)
11/14/2012 72
22
1 b
b
r
f
t
f ==
bt
REPETITION RATE BEFORE SPLITTERREPETITION RATE BEFORE SPLITTER
BIT RATE AFTER SPLITTER =BIT RATE AFTER SPLITTER =
22
1 b
b
f
t
=
REPETITION RATE AFTER SPLITTERREPETITION RATE AFTER SPLITTER
44
1 b
b
r
f
t
f ==
(SERIAL)(SERIAL)
(SERIAL)(SERIAL)
(PARALLEL)(PARALLEL)
(PARALLEL)(PARALLEL)
BANDWITH CONSIDERATION OF QPSKBANDWITH CONSIDERATION OF QPSK
[ ][ ])2sin()2sin()( tftftv rcqpsk ππ=
≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY
REPETITION RATE (FUNDAMENTALREPETITION RATE (FUNDAMENTAL
FREQUENCY OF I or Q CHANNEL BITS)FREQUENCY OF I or Q CHANNEL BITS)
IT IS 1/4 THE BIT RATEIT IS 1/4 THE BIT RATE4
b
r
f
f =
11/14/2012 73
IT IS 1/4 THE BIT RATEIT IS 1/4 THE BIT RATE
)cos(
2
1
)cos(
2
1
))(sin(sin YXYXYX +−−=
[ ] [ ]tfftfftv rcrcpsk )(2cos
2
1
)(2cos
2
1
)( +−−= ππ
LOWER SIDE FREQUENCYLOWER SIDE FREQUENCY UPPER SIDE FREQUENCYUPPER SIDE FREQUENCY
rc ff +rc ff − f
B
BANDWITH CONSIDERATION OF BPSKBANDWITH CONSIDERATION OF BPSK
LSBLSB USBUSB
4
b
r
f
f =
4
b
r
f
f =
11/14/2012 74
rc ff +rc ff − cf
24
22
bb
r
ff
fB ===
LSFLSF USFUSF
DSBDSB--SC MODULATIONSC MODULATION
EXAMPLEEXAMPLE
V I BV I B ði Uði U CH QPSK V I T N S SÓNG MANGCH QPSK V I T N S SÓNG MANG
LÀ 70 MHz VÀ T C ð BIT NGÕ VÀO LÀ 10 Mbps,LÀ 70 MHz VÀ T C ð BIT NGÕ VÀO LÀ 10 Mbps,
XÁC ð NH a) THE LSF b) USF c) B d) BAUD RATEXÁC ð NH a) THE LSF b) USF c) B d) BAUD RATE
MHzfc 70=
rb
b
r ff
f
f 4;
4
==
MHzfb 10=
11/14/2012 75
4
MHz
MHz
fr 5.2
4
10
==
MHzffLSF rc 5.675.270 =−=−=
MHzffUSF rc 5.725.270 =+=+=
MHz
f
B
b
5
2
==
MHz70
MHz5
EXAMPLEEXAMPLE
LSBLSB USBUSB
MHz5.2MHz5.2
MHz5.72MHz5.67
11/14/2012 76
MHz70 MHz5.72MHz5.67
LSFLSF USFUSF
BAUD RATE = 1/2 BIT RATE = 5 MEGABAUDBAUD RATE = 1/2 BIT RATE = 5 MEGABAUD
QPSK RECEIVERQPSK RECEIVER
INPUT QPSKINPUT QPSK
SIGNALSIGNAL
PRODUCT MODULATORPRODUCT MODULATOR
11/14/2012 77
PRODUCT MODULATORPRODUCT MODULATOR
QPSK DETECTIONQPSK DETECTION
[ ] )(sinsincos2 tttI ccc ωωω −=
=)(tvmLOGICAL 0:LOGICAL 0:
))(sin(2 ttvI cm ω=
)2sin()2cos( tftf cc ππ −+
[ ]tttI ccc ωωω 2
sinsincos2 −=
11/14/2012 78
tttI ccccc )sin()sin()2cos1( ωωωωω −+++−−=
[ ]tttI ccc ωωω sinsincos2 −=
ttI cc ωω 2sin2cos1 ++−=
BLOCKED BY LPFBLOCKED BY LPF
LOGICAL 0LOGICAL 0
QPSK DETECTIONQPSK DETECTION
[ ] )(cossincos2 tttQ ccc ωωω −=
=)(tvmLOGICAL 1:LOGICAL 1:
))(cos(2 ttvQ cm ω=
)2sin()2cos( tftf cc ππ −+
[ ]tttQ ccc ωωω cossincos2 2
−=
11/14/2012 79
tttQ ccccc )sin()sin()2cos1( ωωωωω −−+−+=
[ ]tttQ ccc ωωω cossincos2 −=
ttQ cc ωω 2sin2cos1 −+=
BLOCKED BY LPFBLOCKED BY LPF
LOGICAL 1LOGICAL 1
8-PHASE
SHIFT
11/14/2012 80
SHIFT
KEYING
EIGHT PHASE SHIFT KEYING (8EIGHT PHASE SHIFT KEYING (8--PSK)PSK)
•• D NG MÃ MD NG MÃ M--ARYARY V I M = 8, N = 3V I M = 8, N = 3
•• 8 PHA NGÕ RA CÓ TH CÓ8 PHA NGÕ RA CÓ TH CÓ
•• DD Li ULi U NGÕ VÀO NH PHÂN K T H P THÀNHNGÕ VÀO NH PHÂN K T H P THÀNH
NHÓM 3 BIT (N = 3) G I LÀNHÓM 3 BIT (N = 3) G I LÀ TRIBITSTRIBITS
•• TRIBITTRIBIT CODE: 000 = PHASE 1, 001 = PHASE 2, 010 = PHASE 3CODE: 000 = PHASE 1, 001 = PHASE 2, 010 = PHASE 3
011 = PHASE 4, 100 = PHASE 5, 101 = PHASE 6011 = PHASE 4, 100 = PHASE 5, 101 = PHASE 6
110 = PHASE 7, 111 = PHASE 8110 = PHASE 7, 111 = PHASE 8
11/14/2012 81
110 = PHASE 7, 111 = PHASE 8110 = PHASE 7, 111 = PHASE 8
•• 1 SYMBOL = 1 PHASE = 3 BITS1 SYMBOL = 1 PHASE = 3 BITS
BAUD RATE = 1/3BAUD RATE = 1/3 BIT RATEBIT RATE
(SYMBOLS PER SEC)(SYMBOLS PER SEC) ((BITS PER SECBITS PER SEC))
88--PSK MODULATORPSK MODULATOR
BIT SPLITTERBIT SPLITTER
(SERIAL TO(SERIAL TO
PARALLEL)PARALLEL)
22--input DACinput DAC
PULSE AMPLITUDE MODULATEDPULSE AMPLITUDE MODULATED
SIGNAL (4 LEVELS)SIGNAL (4 LEVELS)
11/14/2012 82
3
bf 22--input DACinput DAC
PULSE AMPLITUDE MODULATEDPULSE AMPLITUDE MODULATED
SIGNAL (4 LEVELS)SIGNAL (4 LEVELS)
88--PSK MODULATORPSK MODULATOR
I CHANNELI CHANNEL
TRUTH TABLETRUTH TABLE
Q CHANNELQ CHANNEL
TRUTH TABLETRUTH TABLE
PAM SIGNALPAM SIGNAL
(4 LEVELS)(4 LEVELS)
11/14/2012 83
•• I, Q DETERMINE POLARITY; 0 =I, Q DETERMINE POLARITY; 0 = -- , 1 = +, 1 = +
•• DETERMINE THE LEVEL; 1 = 1.307v, 0 = 0.541vDETERMINE THE LEVEL; 1 = 1.307v, 0 = 0.541v
•• 2 LEVELS + 2 POLARITIES GIVE 4 CONDITIONS2 LEVELS + 2 POLARITIES GIVE 4 CONDITIONS
CC ,
88--PSK GENERATION: TRIBIT = 000PSK GENERATION: TRIBIT = 000
000000
00
00
-- 0.541v0.541v
)2sin(541.0 tfcπ−
11/14/2012 84
00
11 -- 1.307v1.307v
NOTE: BECAUSE NOT THE SAME, INOTE: BECAUSE NOT THE SAME, I--CHANNELCHANNEL
PAM WILL NEVER EQUAL QPAM WILL NEVER EQUAL Q--CHANNEL PAMCHANNEL PAM
CC ,
)2cos(307.1 tfcπ−
88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES
TRIBIT CODE: 000TRIBIT CODE: 000
)5.112sin(41.1)cos(307.1)sin(541.0 o
−=−− ttt ccc ωωω
PROOF:PROOF: YXYXYX sincoscossin)sin( −=−
)5.1122sin(41.1 tfcπ =− o
11/14/2012 85
)2cos(307.1)2sin(541.0
)2cos()924(.41.1)2sin()383.(41.1
)5.112sin()2cos(41.1)5.112cos()2sin(41.1
)5.1122sin(41.1
tftf
tftf
tftf
tf
cc
cc
cc
c
ππ
ππ
ππ
π
−−
=−−
=−
=−
0 0 0 ==>0 0 0 ==> --112.5 degrees112.5 degrees
88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES
TRIBIT CODE BETWEENTRIBIT CODE BETWEEN
ADJACENT PHASESADJACENT PHASES
FOLLOWS THEFOLLOWS THE
GRAYCODEGRAYCODE
(RESULTS IN ONLY(RESULTS IN ONLY
A SINGLE BIT ERRORA SINGLE BIT ERROR
FOR UNDESIRED PHASEFOR UNDESIRED PHASE
SHIFTS)SHIFTS)
11/14/2012 86
88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES
•• V I QPSK: 4 PHA NGÕ RA (+45, +135,V I QPSK: 4 PHA NGÕ RA (+45, +135, --45,45, --135)135)
PHÂNPHÂN Bi TBi T Gi AGi A CÁC PHASORCÁC PHASOR Li NLi N K LÀK LÀ
360/4 = 90 degrees.360/4 = 90 degrees.
•• V I 8V I 8--PSK: 8 PHA NGÕ RA. PHÂNPSK: 8 PHA NGÕ RA. PHÂN Bi TBi T Gi AGi A CÁCCÁC
11/14/2012 87
•• V I 8V I 8--PSK: 8 PHA NGÕ RA. PHÂNPSK: 8 PHA NGÕ RA. PHÂN Bi TBi T Gi AGi A CÁCCÁC
PHA LÀ 360/8 = 45 degrees. M T TÍNPHA LÀ 360/8 = 45 degrees. M T TÍN Hi UHi U 88--PSK CÓ THPSK CÓ TH
CH U S D CH PHA +/CH U S D CH PHA +/-- 22.5 degrees TRONG QUÁ TRÌNH22.5 degrees TRONG QUÁ TRÌNH
TRUY N VÀ V NTRUY N VÀ V N GiGi TÍNH TOÀN V N.TÍNH TOÀN V N.
88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES
•• V I 8V I 8--PSK, M I PHASOR CÓ BIÊN ð B NG NHAUPSK, M I PHASOR CÓ BIÊN ð B NG NHAU
(1.41v)(1.41v)
11/14/2012 88
•• THÔNG TIN MÃ TRIBIT CH ðƯ C CH A TRONGTHÔNG TIN MÃ TRIBIT CH ðƯ C CH A TRONG
PHA C A TÍNPHA C A TÍN Hi UHi U
88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES
11/14/2012 89
OUTPUT PHASE VERSUS TIME FOR 8OUTPUT PHASE VERSUS TIME FOR 8--PSK MODULATORPSK MODULATOR
tbtb tbtb
1 f
BIT RATE BEFORE SPLITTER =BIT RATE BEFORE SPLITTER = b
b
f
t
=
1
II
QQ
tbtb tbtb
SERIALSERIAL
PARALLELPARALLEL
I or Q or CI or Q or C
(SERIAL)(SERIAL)
CC
BANDWITH CONSIDERATION OF 8BANDWITH CONSIDERATION OF 8--PSKPSK
11/14/2012 90
22
1 b
b
r
f
t
f ==
bt
REPETITION RATE BEFORE SPLITTERREPETITION RATE BEFORE SPLITTER
BIT RATE AFTER SPLITTER =BIT RATE AFTER SPLITTER =
33
1 b
b
f
t
=
REPETITION RATE AFTER SPLITTERREPETITION RATE AFTER SPLITTER
6)3(2
1 b
b
r
f
t
f ==
(SERIAL)(SERIAL)
(SERIAL)(SERIAL)
(PARALLEL)(PARALLEL)
(PARALLEL)(PARALLEL)
BANDWITH CONSIDERATION OF 8BANDWITH CONSIDERATION OF 8--PSKPSK
11/14/2012 91
3
bf
6
b
r
f
f =
88--PSK GENERATION: BAUD RATEPSK GENERATION: BAUD RATE
•• V I 8V I 8--PSK, CÓ 1 THAY ð I PHA T I NGÕ RA M I 3PSK, CÓ 1 THAY ð I PHA T I NGÕ RA M I 3
BIT VÀO.BIT VÀO.
(A GROUP OF THREE BITS = 1 PHASE = 1 SYMBOL)(A GROUP OF THREE BITS = 1 PHASE = 1 SYMBOL)
11/14/2012 92
VÌ TH , THE BAUD RATE = 1/3 BIT RATE =VÌ TH , THE BAUD RATE = 1/3 BIT RATE =
3
bf
BANDWITH CONSIDERATION OF 8BANDWITH CONSIDERATION OF 8--PSKPSK
[ ][ ])2sin()2sin()(8 tfXtftv rcpsk ππ=
≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY
REPETITION RATE (FUNDAMENTALREPETITION RATE (FUNDAMENTAL
FREQUENCY OF I or Q or C CHANNEL BITS)FREQUENCY OF I or Q or C CHANNEL BITS)
IT IS 1/6 THE BIT RATEIT IS 1/6 THE BIT RATE6
b
r
f
f =
X = +/X = +/-- 1.307 OR +/1.307 OR +/-- 0.5410.541
11/14/2012 93
IT IS 1/6 THE BIT RATEIT IS 1/6 THE BIT RATE6
)cos(
2
1
)cos(
2
1
))(sin(sin YXYXYX +−−=
[ ] [ ]tff
X
tff
X
tv rcrcpsk )(2cos
2
)(2cos
2
)( +−−= ππ
LOWER SIDE FREQUENCYLOWER SIDE FREQUENCY UPPER SIDE FREQUENCYUPPER SIDE FREQUENCY
rc ff +rc ff − f
B
BANDWITH CONSIDERATION OF 8BANDWITH CONSIDERATION OF 8--PSKPSK
LSBLSB USBUSB
6
b
r
f
f =
6
b
r
f
f =
11/14/2012 94
rc ff +rc ff − cf
36
22
bb
r
ff
fB ===
LSFLSF USFUSF
DSBDSB--SC MODULATIONSC MODULATION
EXAMPLEEXAMPLE
V I BV I B ði Uði U CH CÓ T N S SÓNG MANG LÀ 70 MHzCH CÓ T N S SÓNG MANG LÀ 70 MHz
VÀ T C ð BIT NGÕ VÀO LÀ 10 Mbps,VÀ T C ð BIT NGÕ VÀO LÀ 10 Mbps,
XÁC ð NH a) THE LSF b) USF c) B d) BAUD RATEXÁC ð NH a) THE LSF b) USF c) B d) BAUD RATE
MHzfc 70=
rb
b
r ff
f
f 6;
6
==
MHzfb 10=
11/14/2012 95
6
MHz
MHz
fr 667.1
6
10
==
MHzffLSF rc 333.68667.170 =−=−=
MHzffUSF rc 667.71667.170 =+=+=
MHz
f
B
b
33.3
3
==
MHz70
MHz33.3
EXAMPLEEXAMPLE
LSBLSB USBUSB
MHz667.1MHz667.1
MHz667.71MHz333.68
11/14/2012 96
MHz70 MHz667.71MHz333.68
LSFLSF USFUSF
BAUD RATE = 1/3 BIT RATE = 3.33 MEGABAUDBAUD RATE = 1/3 BIT RATE = 3.33 MEGABAUD
88--PSK RECEIVERPSK RECEIVER
11/14/2012 97
16-PHASE
SHIFT
11/14/2012 98
SHIFT
KEYING
SIXTEEN PHASE SHIFT KEYING (16SIXTEEN PHASE SHIFT KEYING (16--PSK)PSK)
•• D NG MÃ HÓA MD NG MÃ HÓA M--ARYARY V I M = 16, N = 4V I M = 16, N = 4
•• 16 PHA TÍN16 PHA TÍN Hi UHi U NGÕ RANGÕ RA
•• DD Li ULi U NH PHÂN NGÕ VÀO ðƯ C NHÓM THÀNHNH PHÂN NGÕ VÀO ðƯ C NHÓM THÀNH
NHÓM 4 BIT (N = 4) G I LÀNHÓM 4 BIT (N = 4) G I LÀ QUADBITSQUADBITS
•• QUADBITQUADBIT CODE: 0000 = PHASE 1 ……….. 1111 = PHASE 16,CODE: 0000 = PHASE 1 ……….. 1111 = PHASE 16,
•• 1 SYMBOL = 1 PHASE = 4 BITS1 SYMBOL = 1 PHASE = 4 BITS
11/14/2012 99
•• 1 SYMBOL = 1 PHASE = 4 BITS1 SYMBOL = 1 PHASE = 4 BITS
BAUD RATE = 1/4BAUD RATE = 1/4 BIT RATEBIT RATE
(SYMBOLS PER SEC)(SYMBOLS PER SEC) ((BITS PER SECBITS PER SEC))
•• V I 16V I 16--PSK, CÁC GÓC PHA ðƯ C PHÂNPSK, CÁC GÓC PHA ðƯ C PHÂN Bi TBi T LÀLÀ
360/16 = 22.5 degrees. ð CÓ TH360/16 = 22.5 degrees. ð CÓ TH GiGi TOÀN V N,TOÀN V N,
D CH PHA max = +/D CH PHA max = +/-- 11.25 degrees11.25 degrees
1616--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES
11/14/2012 100

Weitere ähnliche Inhalte

Empfohlen

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Empfohlen (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

4 digital communications_vn_compatibility_mode__9411

  • 1. COMMUNICATIONS SYSTEMSCOMMUNICATIONS SYSTEMS University of Natural Sciences- HCMC Faculty of Electronics and Telecommunications 11/14/2012 1 Digital CommunicationsDigital Communications
  • 2. H TH NG TRUY N THÔNG S • TRUY N THÔNG S – H TH NG S TH C S : CÁC XUNG S (i.e. NRZ, AMI, MANCHESTER,HDB3) TRUY N QUA CÁP ð NG/QUANG (KHÔNG SÓNG MANG TƯƠNG T ). THÔNG TIN CÓ TH BAO G M S VÀ TƯƠNG T (C N A/D và D/A). H TH NG TRUY N THÔNG S 11/14/2012 2 CÓ TH BAO G M S VÀ TƯƠNG T (C N A/D và D/A). • CAO T N S (DIGITAL RADIO): SÓNG MANG TƯƠNG T ðƯ C ðI U CH D NG S (i.e. PAM, QAM, ASK, PSK, FSK, PWM). TRUY N THÔNG QUA CÁP ð NG HO C CÁP QUANG HAY KHÔNG GIAN
  • 3. DUNG LƯ NG KÊNH TRUY N/THÔNG TIN HARTLEY’S LAW (BELL LABS) DUNG LƯ NG KÊNH TRUY N LÀ HÀM TUY N TÍNH: ðO XEM CÓ BAO NHIÊU THÔNG TIN (i.e. S M U ð C L P) CÓ TH TRUY N QUA M T KÊNH TRUY N TRONG M T ðƠN V TH I GIAN 11/14/2012 3 DUNG LƯ NG KÊNH TRUY N LÀ HÀM TUY N TÍNH: txBC ∝ C: DUNG LƯ NG KÊNH TRUY N B: BĂNG THÔNG (Hz) t: TH I GIAN TRUY N (secs)
  • 4. V I 1 KÊNH TRUY N CÓ NHI U, T S TÍN Hi U TRÊN NHI U (S/N) LÀ T S C A CÔNG SU T TÍN HI U TRÊN CÔNG SU T NHI U, ðƯ C ðO ð U THU M I QUAN H C A BĂNG THÔNG VÀ DUNG LƯ NG KÊNH             = PowerNoise PowerSignal NS dB log10)/( 11/14/2012 4 )1(log 2 N S BC += C: DUNG LƯ NG KÊNH TRUY N (bps) / BIT RATE B: BĂNG THÔNG (Hz) S/N: T S TÍN HI U TRÊN NHI U )1(log 2 N S C B + =  SHANNON’S THEOREM (BELL LABS)
  • 5. DUNG LƯ NG KÊNH VÍ D DÙNG 1 KÊNH THO I ð TRUY N D Li U S QUA MODEM. B = 3100Hz, S/N = 30 dB = ratio of 1000:1 bps N S BC 894,30)10001(log3100)1(log 22 =+=+= 11/14/2012 5 T C ð BIT NÀY CH LÀ T I ðA THEO LÝ THUY T. NÓ KHÔNG TH ð T ð N V I MÃ HÓA NH PHÂN. • GI NGUYÊN CÁC GIÁ TR KHÁC, TĂNG BĂNG THÔNG S TĂNG T C ð D LI U.
  • 6. BAUD RATE Vs BIT RATE BIT RATE = S LƯ NG BIT M I GIÂY (BIT = MOST BASIC SYMBOL) BAUD RATE = S LƯ NG M U (SYMBOLS) M I PER SECOND. USING MULTI-LEVEL ENCODING SCHEMES ARE NEEDED TO ACHIEVE THE SHANNON LIMIT. TRANSMISSION OF M SIGNAL SYMBOLS, N BITS EACH. N M 2= 11/14/2012 6 • EXAMPLE: 2-LEVEL BINARY SYSTEM: M = 2, N = 1. ONE SIGNAL SYMBOL = 1 BIT. TRANSMISSION OF 1 SIGNAL SYMBOL = TRANSMISSION OF 1 BIT. (BAUD RATE = BIT RATE) • EXAMPLE: 16-QAM. M = 16, N = 4. ONE SIGNAL SYMBOL = 4 BITS. TRANSMISSION OF 1 SIGNAL SYMBOL = TRANSMISSION OF 4 BITS. THUS, 9600 BPS = 2400 BAUDS.
  • 7. COMMUNICATIONS SYSTEMS EXAMPLES DIGITAL TRANSMISSIONDIGITAL TRANSMISSION NO ANALOG CARRIERNO ANALOG CARRIER TRUE DIGITAL SYSTEM:TRUE DIGITAL SYSTEM: 11/14/2012 7 DIGITAL TRANSMISSIONDIGITAL TRANSMISSION DIGITAL RADIODIGITAL RADIO ANALOG CARRIERANALOG CARRIER
  • 8. CAO T N S (DIGITAL RADIO):CAO T N S (DIGITAL RADIO): •• THÔNG TIN CÓ TH LÀ TƯƠNG TTHÔNG TIN CÓ TH LÀ TƯƠNG T Ho CHo C SS 11/14/2012 8 •• ði Uði U CH SCH S :: •• TÍNTÍN Hi UHi U ði Uði U CH D NG SCH D NG S •• SÓNG MANG D NG TƯƠNG TSÓNG MANG D NG TƯƠNG T
  • 9. H TH NG CAO T N SH TH NG CAO T N S 11/14/2012 9 ENCODERENCODER PHASE LOCKED LOOPPHASE LOCKED LOOP CLOCKS HAVE TO BE SYNCHRONIZEDCLOCKS HAVE TO BE SYNCHRONIZED
  • 10. DIGITAL MODULATION SCHEMES •• ði Uði U CH BIÊN ð S / ONCH BIÊN ð S / ON--OFFOFF KEYING (KEYING (OOKOOK) / AMPLITUDE SHIFT KEYING () / AMPLITUDE SHIFT KEYING (ASKASK)) •• FREQUENCY SHIFT KEYING (FREQUENCY SHIFT KEYING (FSKFSK)) •• BINARY FSK (BINARY FSK (BFSKBFSK)) •• CONTINUOUSCONTINUOUS--PHASE FSK (PHASE FSK (CPCP--FSKFSK)) •• PHASEPHASE SHIFT KEYING (SHIFT KEYING (PSKPSK)) •• BINARY PSK (BINARY PSK (BPSKBPSK)) 11/14/2012 10 •• BINARY PSK (BINARY PSK (BPSKBPSK)) •• QUATERNARY PSK (QUATERNARY PSK (QPSKQPSK)) •• EIGHTEIGHT--PHASE PSK (PHASE PSK (88--PSKPSK)) •• QUADRATURE AMPLITUDE MODULATION (QUADRATURE AMPLITUDE MODULATION (QAMQAM)) •• EIGHT QAM (EIGHT QAM (88--QAMQAM)) •• SIXTEEN QAM (SIXTEEN QAM (1616--QAMQAM)) •• DIFFERENTIAL PHASE SHIFT KEYING (DIFFERENTIAL PHASE SHIFT KEYING (DPSK, DBPSKDPSK, DBPSK))
  • 11. ðI U CH BIÊN ð 11/14/2012 11 S
  • 12. ðI U CH BIÊN ð S (OOK, ASK)ðI U CH BIÊN ð S (OOK, ASK) •• K THU T ðI U CH S ðƠN GI N NH TK THU T ðI U CH S ðƠN GI N NH T •• LÀ SÓNG LIÊN T C (CM), SINCELÀ SÓNG LIÊN T C (CM), SINCE SÓNG MANG TRUY N (‘1’) CÓ BIÊN ð , T N SSÓNG MANG TRUY N (‘1’) CÓ BIÊN ð , T N S VÀ PHA C ð NHVÀ PHA C ð NH •• DSBDSB--FC AM WAVE: TÍN HI U ðI U CH NGÕ VÀOFC AM WAVE: TÍN HI U ðI U CH NGÕ VÀO 11/14/2012 12 •• DSBDSB--FC AM WAVE: TÍN HI U ðI U CH NGÕ VÀOFC AM WAVE: TÍN HI U ðI U CH NGÕ VÀO LÀ D NG NH PHÂNLÀ D NG NH PHÂN •• K THU T ðI U CH CHI PHÍ TH P, CH T LƯ NGK THU T ðI U CH CHI PHÍ TH P, CH T LƯ NG TH P, HI U SU T TH PTH P, HI U SU T TH P •• HI M KHI ðƯ C S D NG TRONG H TH NG HI UHI M KHI ðƯ C S D NG TRONG H TH NG HI U SU T VÀ DUNG LƯ NG CAOSU T VÀ DUNG LƯ NG CAO
  • 13. ðI U CH BIÊN ð SðI U CH BIÊN ð S BINARY INPUTBINARY INPUT (BASEBAND SIGNAL)(BASEBAND SIGNAL)tbtb tbtb 11/14/2012 13 ONON--OFF KEYINGOFF KEYING MODULATIONMODULATION (OOK, ASK)(OOK, ASK) tb = BIT TIMEtb = BIT TIME 1/tb = fb=BIT RATE1/tb = fb=BIT RATE
  • 14. DIGITALAMPLITUDE MODULATIONDIGITALAMPLITUDE MODULATION [ ] )cos( 2 )(1)( t V tvtv c c mam ω+=  =+ 1log1 icalV )cos( 2 )()cos( 2 )( t V tvt V tv c c mc c am ωω += 11/14/2012 14    =− =+ = 0log1 1log1 )( icalV icalV tvm    = inputical inputicaltV tv cc am 0log;0 1log);cos( )( ω NORMALIZEDNORMALIZED INPUT SIGNALINPUT SIGNAL
  • 15. DIGITALAMPLITUDE MODULATIONDIGITALAMPLITUDE MODULATION )(ωM INPUT SIGNAL DSB-FC bt/10bt/1− b b f t = 1 11/14/2012 15 )(ωϑDSB DSB-FC MODULATED SIGNAL cω b c t 1 −ω 0 b c t 1 +ω BB bfB 2=
  • 17. FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK) •• K THU T ðI U CH S ðƠN GI NK THU T ðI U CH S ðƠN GI N •• K THU T ðI U CH CHI PHÍ TH P, HI U SU T TH PK THU T ðI U CH CHI PHÍ TH P, HI U SU T TH P •• BFSK TƯƠNG T NHƯ FM (CONSTANT AMPLITUDE/BFSK TƯƠNG T NHƯ FM (CONSTANT AMPLITUDE/ PHASE) NGO I TR TÍN HI U ðI U CH LÀ NH PHÂNPHASE) NGO I TR TÍN HI U ðI U CH LÀ NH PHÂN (THAY ð I GI A 2 M C RIÊNG BI T)(THAY ð I GI A 2 M C RIÊNG BI T) 11/14/2012 17 (THAY ð I GI A 2 M C RIÊNG BI T)(THAY ð I GI A 2 M C RIÊNG BI T) •• BFSK HI M KHI ðƯ C S D NG TRONG H TH NGBFSK HI M KHI ðƯ C S D NG TRONG H TH NG S HI U SU T CAO. S D NG H N CH TRONGS HI U SU T CAO. S D NG H N CH TRONG MODEM B T ð NG B HI U SU T TH P, CHI PHÍMODEM B T ð NG B HI U SU T TH P, CHI PHÍ TH P DÙNG ð TRUY N D LI U QUA ðƯ NG DÂYTH P DÙNG ð TRUY N D LI U QUA ðƯ NG DÂY THO I TƯƠNG T .THO I TƯƠNG T .
  • 18. FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK) { }[ ]tftvfVtv mccfsk ∆+= )(2cos)( π ≡ ≡∆ ≡ c c V f f T N S SÓNG MANG TRUNG TÂMT N S SÓNG MANG TRUNG TÂM ð L CH T N S ð NHð L CH T N S ð NH BIÊN ð SÓNG MANG ð NHBIÊN ð SÓNG MANG ð NH 11/14/2012 18    =− =+ = 0log1 1log1 )( icalV icalV tvm NORMALIZEDNORMALIZED INPUT SIGNALINPUT SIGNAL { }[ ] { }[ ]   ∆− ∆+ = inputicaltffV inputicaltffV tv cc cc fsk 0log;2cos 1log;2cos )( π π
  • 19. FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK) •• V I BPSK, T N S SÓNG MANG B D CH B I TÍNV I BPSK, T N S SÓNG MANG B D CH B I TÍN Hi UHi U NHNH PHÂN NGÕ VÀOPHÂN NGÕ VÀO fcm ff ∆+≡• MARKMARK FREQUENCY = T N S NGÕ RA V IFREQUENCY = T N S NGÕ RA V I LOGIC 1 NGÕ VÀOLOGIC 1 NGÕ VÀO (SHIFT UP)(SHIFT UP) 11/14/2012 19 LOGIC 1 NGÕ VÀOLOGIC 1 NGÕ VÀO SPACESPACE FREQUENCY = T N S NGÕ RA V IFREQUENCY = T N S NGÕ RA V I LOGIC 0 NGÕ VÀOLOGIC 0 NGÕ VÀO fcs ff ∆−≡• (SHIFT DOWN)(SHIFT DOWN) sm ff ,• GIÁ TR D A VÀO THI T K H TH NGGIÁ TR D A VÀO THI T K H TH NG
  • 20. FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK) f∆f∆ f∆2 11/14/2012 20 fcm ff ∆+=fcs ff ∆−= cf 2 sm f ff − =∆ LOGICAL 0LOGICAL 0 (SPACE)(SPACE) LOGICAL 1LOGICAL 1 (MARK)(MARK)
  • 21. FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK) 2 tb2 tb tb = BIT TIMEtb = BIT TIME 1/tb = fb=BIT RATE1/tb = fb=BIT RATE 11/14/2012 21 1/2tb =1/2tb =
  • 22. FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK) •• V I BFSK, T C ð NGÕ RA B NG T C ð NGÕ VÀOV I BFSK, T C ð NGÕ RA B NG T C ð NGÕ VÀO (T N S NGÕ RA THAY ð I M I L N M C LOGIC(T N S NGÕ RA THAY ð I M I L N M C LOGIC NGÕ VÀO THAY ð I)NGÕ VÀO THAY ð I) •• V I BFSK, T C ð BIT B NG V I T C ð BAUDV I BFSK, T C ð BIT B NG V I T C ð BAUD (A SIGNAL SYMBOL = A BIT)(A SIGNAL SYMBOL = A BIT) 11/14/2012 22 (A SIGNAL SYMBOL = A BIT)(A SIGNAL SYMBOL = A BIT) •• BB ði Uði U CH FSK THƯ NG LÀ 1 VCO V I 1 T N SCH FSK THƯ NG LÀ 1 VCO V I 1 T N S TRUNG TÂM:TRUNG TÂM: 2 sm osc ff f − = mosc ffinput →:'1' sosc ffinput →:'0'}
  • 24. FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK) )(ωI INPUT SIGNAL MODULATED SIGNAL 0 bt/1bt/1− b b f t = 1 11/14/2012 24 )(ωϑ MODULATED SIGNAL mf0 sf cf b m t f 1 +b s t f 1 − SIN X/XSIN X/X (PULSED SINUSOIDAL WAVES)(PULSED SINUSOIDAL WAVES) BB
  • 25. FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK) 22 2)( )()( b bsm bsbm ffB fffB ffffB +∆= +−= −−+= 11/14/2012 25 )(2 bffB +∆= )(2 bffB +∆= BĂNG THÔNG T I THI U C A TÍNBĂNG THÔNG T I THI U C A TÍN Hi UHi U FSK:FSK:
  • 26. BFSKBFSK -- MODULATION INDEXMODULATION INDEX af f∆ =β THE REPETITION RATETHE REPETITION RATE bf f∆ = 2 β22 1 b b a f t f == b sm b f ff f f − = ∆ =∴ 2 β ff − SEPERATION INSEPERATION IN MARK AND SPACEMARK AND SPACE FREQUENCIESFREQUENCIES 11/14/2012 26 bsm b sm fff f ff =−⇒= − =• 1;1β 2 5.;5. b sm b sm f ff f ff =−⇒= − =• β bsm b sm fff f ff 22;2 =−⇒= − =• β
  • 27. FREQUENCY SHIFT KEYING (FSK, BFSK)FREQUENCY SHIFT KEYING (FSK, BFSK) bsm fff >− •• WIDEWIDE--BAND FSK:BAND FSK: •• H SH S ði Uði U CH :CH : b sm b sm a f ff f ff f f h − = − = ∆ = 2 2 11/14/2012 27 bsm fff >− •• NARROWNARROW--BAND FSK:BAND FSK: bsm fff <−
  • 28. FSK EXAMPLEFSK EXAMPLE CHO TÍNCHO TÍN Hi UHi U FSK V I MARK FREQUENCY LÀ 51 kHz, SPACEFSK V I MARK FREQUENCY LÀ 51 kHz, SPACE FREQUENCY LÀ 49 kHz, VÀ T C ð BIT NGÕ VÀO LÀ 2 Kbps:FREQUENCY LÀ 49 kHz, VÀ T C ð BIT NGÕ VÀO LÀ 2 Kbps: ••ð L CH T N ð NHð L CH T N ð NH 2 sm f ff − =∆ kHz kHzkHz s f 1 2 4951 = − =∆ •• BĂNG THÔNG T I THI UBĂNG THÔNG T I THI U 11/14/2012 28 •• BĂNG THÔNG T I THI UBĂNG THÔNG T I THI U )(2 bffB +∆= kHzkHzkHzB 6)21(2 =+= •• T C ð BAUDT C ð BAUD WITH BFSK, THE BIT RATE EQUALS THE BAUD RATEWITH BFSK, THE BIT RATE EQUALS THE BAUD RATE BAUD RATE = 2 kbpsBAUD RATE = 2 kbps
  • 29. NONCOHERENT FSK RECEIVERNONCOHERENT FSK RECEIVER KHÔNG CÓ T N S ðƯ C THÊM VÀO TRONG QUÁ TRÌNH GI I ðI U CHKHÔNG CÓ T N S ðƯ C THÊM VÀO TRONG QUÁ TRÌNH GI I ðI U CH ð ð NG B C V PHA, T N S HAY C HAI V I TÍN HI U VÀO FSKð ð NG B C V PHA, T N S HAY C HAI V I TÍN HI U VÀO FSK 11/14/2012 29 00 OROR 11
  • 30. COHERENT FSK RECEIVERCOHERENT FSK RECEIVER TÍNTÍN Hi UHi U VÀO FSK ðƯ C NHÂN V I SÓNG MANG ðƯ C KHÔI PH CVÀO FSK ðƯ C NHÂN V I SÓNG MANG ðƯ C KHÔI PH C CHÍNH XÁC V T N S VÀ PHA NHƯ C A B TRUY NCHÍNH XÁC V T N S VÀ PHA NHƯ C A B TRUY N 11/14/2012 30 00 OROR 11 Hi MHi M KHI S D NG K THU T: LÀ KHÔNG TH C T ð TÁI T O M T CÁI LOCALKHI S D NG K THU T: LÀ KHÔNG TH C T ð TÁI T O M T CÁI LOCAL REFERENCE CÓ TH LIÊN K T C MARK AND SPACE FREQUENCIESREFERENCE CÓ TH LIÊN K T C MARK AND SPACE FREQUENCIES
  • 31. PLLPLL--BASED FSK RECEIVERBASED FSK RECEIVER FREQUENCY VARIESFREQUENCY VARIES BETWEEN MARK AND SPACEBETWEEN MARK AND SPACE FREQUENCIESFREQUENCIES FOLLOWS THE FREQUENCYFOLLOWS THE FREQUENCY SHIFTSHIFT 11/14/2012 31 00 OROR 11 2 sm osc ff f − =
  • 32. CONTINUOUSCONTINUOUS --PHASE (CPPHASE (CP--FSK)FSK) •• CPCP--FSK IS BFSK V I MARK AND SPACEFSK IS BFSK V I MARK AND SPACE FREQUENCIES ðƯ C ð NG B T C ð BIT NHFREQUENCIES ðƯ C ð NG B T C ð BIT NH PHÂN NGÕ VÀOPHÂN NGÕ VÀO •• sm ff , ðƯ C CH N SAO CHO CHÚNGðƯ C CH N SAO CHO CHÚNG PHÂN BI T V I T N S TRUNG TÂM B NGPHÂN BI T V I T N S TRUNG TÂM B NG S L L N C A ½ T C ð BITS L L N C A ½ T C ð BIT 11/14/2012 32       = 2 b mm f nf •• ðI U NÀY B O ð M S CHUY N PHA SUÔN SðI U NÀY B O ð M S CHUY N PHA SUÔN S TÍN HI U NGÕ RA KHI THAY ð I GI A 2TÍN HI U NGÕ RA KHI THAY ð I GI A 2 T N ST N S     = 2 b ss f nf    ≠ sm sm nn oddnoddn ; S L L N C A ½ T C ð BITS L L N C A ½ T C ð BIT
  • 33. NONNON--CONTINUOUS FSK WAVEFORM EXAMPLECONTINUOUS FSK WAVEFORM EXAMPLE 11 00 11 00 11/14/2012 33
  • 34. CONTINUOUSCONTINUOUS--PHASE FSK WAVEFORM EXAMPLEPHASE FSK WAVEFORM EXAMPLE mstb 1= kHz ms fb 1 1 1 == 11/14/2012 34 FSKFSK SELECTSELECT nnm = 7m = 7 SELECTSELECT nns = 3s = 3 3500 Hz3500 Hz7777 3500 Hz3500 Hz
  • 35. CONTINUOUSCONTINUOUS--PHASE FSK WAVEFORMPHASE FSK WAVEFORM IN THE CPIN THE CP--FSK EXAMPLE:FSK EXAMPLE: 1500;3500 4 3;7;1000 == =−∴ === m sm smb HzfsHzf and nn nnHzf 11/14/2012 35 )2(22000 1500;3500 ===−∴ == βbsm m fHzff HzfsHzf Hz ff f sm 1000 2 2000 2 == − =∆ Hzfffff smosc 2500=∆+=∆−=
  • 36. CONTINUOUS FSKCONTINUOUS FSK -- (CP(CP--FSK)FSK) f∆f∆ f∆2 Hzfb 1000= 1000 Hz1000 Hz 1000 Hz1000 Hz 11/14/2012 36 fcm ff ∆+=fcs ff ∆−= cf 2 sm f ff − =∆LOGICAL 0LOGICAL 0 (SPACE)(SPACE) LOGICAL 1LOGICAL 1 (MARK)(MARK) Ns = 3; 1500 HzNs = 3; 1500 Hz 2500 Hz2500 Hz Nm = 7; 3500 HzNm = 7; 3500 Hz 1000 Hz1000 Hz 1000 Hz1000 Hz
  • 37. MINIMUM CPMINIMUM CP--FSKFSK -- MSKMSK PHÂN BI T T I THI U C A MARK AND SPACEPHÂN BI T T I THI U C A MARK AND SPACE FREQUENCIES X Y RA KHIFREQUENCIES X Y RA KHI b ss b sm f nf f nf =+= 2 ; 2 )2( 2+= sm nn 11/14/2012 37 1=⇒=− βbsm fff H S ðI U CH LÀ 1 VÀ CHÚNG TA G I MSK NÀYH S ðI U CH LÀ 1 VÀ CHÚNG TA G I MSK NÀY b b sm f f ff ==−∴ 2 2 22
  • 38. CONTINUOUSCONTINUOUS--PHASE MSK WAVEFORMPHASE MSK WAVEFORM mstb 1= kHz ms fb 1 1 1 == 11/14/2012 38 MSKMSK SELECT n = 5SELECT n = 5 SELECT n = 3SELECT n = 3
  • 41. PHASE SHIFT KEYING (PSK, BPSK)PHASE SHIFT KEYING (PSK, BPSK) •• CŨNG ðƯ C G I LÀ PHASE REVERSAL KEYING (PRK)CŨNG ðƯ C G I LÀ PHASE REVERSAL KEYING (PRK) VÀ BIPHASE MODULATIONVÀ BIPHASE MODULATION •• BPSK THÌ TƯƠNG T NHƯ PM (BIÊN ð VÀ T N SBPSK THÌ TƯƠNG T NHƯ PM (BIÊN ð VÀ T N S KHÔNG ð I) NGO I TR TÍNKHÔNG ð I) NGO I TR TÍN Hi UHi U ði Uði U CH LÀ NHCH LÀ NH PHÂN (PHÂNPHÂN (PHÂN Bi TBi T Gi AGi A 2 M C RIÊNG2 M C RIÊNG Bi TBi T)) 11/14/2012 41 •• V I BPSK 2 PHA NGÕ RA CÓ TH T O B I 1 T N SV I BPSK 2 PHA NGÕ RA CÓ TH T O B I 1 T N S SÓNG MANG. PHA C A TÍNSÓNG MANG. PHA C A TÍN Hi UHi U SÓNG MANG NGÕSÓNG MANG NGÕ RA L CH NHAU 180RA L CH NHAU 18000 ðð Bi UBi U Di NDi N M C LOGIC 0 VÀ 1M C LOGIC 0 VÀ 1 •• BPSK LÀ 1 D NG C A DSBBPSK LÀ 1 D NG C A DSB--SCSC
  • 42. BPSK TRANSMITTERBPSK TRANSMITTER PHASE REVERSING SWITCHPHASE REVERSING SWITCH (PRODUCT MODULATOR)(PRODUCT MODULATOR) CARRIER IS EITHERCARRIER IS EITHER IN PHASE (‘1’ INPUT)IN PHASE (‘1’ INPUT) LOGICAL 0,LOGICAL 0, UNIPOLARUNIPOLAR BIPOLARBIPOLAR tbtb 11/14/2012 42 IN PHASE (‘1’ INPUT)IN PHASE (‘1’ INPUT) OR 180 degrees OUT OFOR 180 degrees OUT OF PHASE (‘0’ INPUT)PHASE (‘0’ INPUT) CARRIER FREQUENCYCARRIER FREQUENCY LOGICAL 0,LOGICAL 0, LOGICAL 1LOGICAL 1 INPUTINPUT OUTPUT RATE OFOUTPUT RATE OF CHANGE (BAUD) =CHANGE (BAUD) = INPUT RATE OF CHANGEINPUT RATE OF CHANGE ((bpsbps).). SYMBOL = BITSYMBOL = BIT
  • 43. BPSK BALANCED RING MODULATORBPSK BALANCED RING MODULATOR 11/14/2012 43 DIGITAL VOLTAGE INPUT >>> PEAK CARRIER VOLTAGEDIGITAL VOLTAGE INPUT >>> PEAK CARRIER VOLTAGE IN ORDER TO CONTROL D1IN ORDER TO CONTROL D1--D4 DIODE STATESD4 DIODE STATES
  • 44. BPSK BALANCED RING MODULATORBPSK BALANCED RING MODULATOR LOGICAL 1 INPUTLOGICAL 1 INPUT 11/14/2012 44 OUTPUTOUTPUT SIGNAL IS INSIGNAL IS IN PHASEPHASE
  • 45. BPSK BALANCED RING MODULATORBPSK BALANCED RING MODULATOR LOGICAL 0 INPUTLOGICAL 0 INPUT 11/14/2012 45 OUTPUTOUTPUT SIGNAL ISSIGNAL IS 180 degrees OUT180 degrees OUT OF PHASEOF PHASE
  • 46. BPSK BALANCED RING MODULATORBPSK BALANCED RING MODULATOR TRUTH TABLETRUTH TABLE PHASOR DIAGRAMPHASOR DIAGRAM 11/14/2012 46 PHASOR DIAGRAMPHASOR DIAGRAM CONSTELLATION DIAGRAMCONSTELLATION DIAGRAM (SIGNAL STATE(SIGNAL STATE--SPACE DIAGRAM)SPACE DIAGRAM) ONLY THE RELATIVE PEAKSONLY THE RELATIVE PEAKS OF THE PHASORS ARE SHOWNOF THE PHASORS ARE SHOWN
  • 47. BPSK GENERATIONBPSK GENERATION [ ])2sin()()( tftvtv cmpsk π= ≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY  =+ 1log1 icalVNORMALIZEDNORMALIZED ≡)(tvm INPUT BINARY SIGNALINPUT BINARY SIGNAL 11/14/2012 47    =− =+ = 0log1 1log1 )( icalV icalV tvm NORMALIZEDNORMALIZED INPUT SIGNALINPUT SIGNAL (UNIPOLAR TO(UNIPOLAR TO BIPOLAR SIGNAL)BIPOLAR SIGNAL)    − + = inputicalt inputicalt tv c c psk 0log;sin 1log;sin )( ω ω IN PHASEIN PHASE OUT OFOUT OF PHASEPHASE
  • 48. BPSK MODULATOR OUTPUT SIGNALBPSK MODULATOR OUTPUT SIGNAL 11/14/2012 48
  • 49. BANDWITH CONSIDERATION OF BPSKBANDWITH CONSIDERATION OF BPSK [ ][ ])2sin()2sin()( tftftv acpsk ππ= ≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY REPETITION RATE (FUNDAMENTALREPETITION RATE (FUNDAMENTAL FREQUENCY OF BINARY INPUT)FREQUENCY OF BINARY INPUT) IT IS 1/2 THE BIT RATEIT IS 1/2 THE BIT RATE ≡== 22 1 b b a f t f 11/14/2012 49 IT IS 1/2 THE BIT RATEIT IS 1/2 THE BIT RATEb )cos( 2 1 )cos( 2 1 ))(sin(sin YXYXYX +−−= [ ] [ ]tfftfftv acacpsk )(2cos 2 1 )(2cos 2 1 )( +−−= ππ LOWER SIDE FREQUENCYLOWER SIDE FREQUENCY UPPER SIDE FREQUENCYUPPER SIDE FREQUENCY
  • 50. ff +ff − f B BANDWITH CONSIDERATION OF BPSKBANDWITH CONSIDERATION OF BPSK LSBLSB USBUSB 2 b a f f = 2 b a f f = 11/14/2012 50 ac ff +ac ff − cf b b a f f fB === 2 22 LSFLSF USFUSF DSBDSB--SC MODULATIONSC MODULATION
  • 51. EXAMPLEEXAMPLE FOR A BPSK MODULATOR WITH A CARRIERFOR A BPSK MODULATOR WITH A CARRIER FREQUENCY OF 70 MHz AND AN INPUT BIT RATE OFFREQUENCY OF 70 MHz AND AN INPUT BIT RATE OF 10 Mbps, DETERMINE a) THE LSF b) USF c) B d) BAUD RATE10 Mbps, DETERMINE a) THE LSF b) USF c) B d) BAUD RATE MHzfc 70= ab b a ff f f 2; 2 == MHzfb 10= 11/14/2012 51 aba 2 MHz MHz fa 5 2 10 == MHzffLSF ac 65570 =−=−= MHzffUSF ac 75570 =+=+= MHzfB b 10==
  • 52. MHz70 MHz10 EXAMPLEEXAMPLE LSBLSB USBUSB MHz5MHz5 MHz75MHz65 11/14/2012 52 MHz70 MHz75MHz65 LSFLSF USFUSF BAUD RATE = BIT RATE = 10 MEGABAUDBAUD RATE = BIT RATE = 10 MEGABAUD
  • 53. BPSK RECEIVERBPSK RECEIVER ++ INPUT BPSKINPUT BPSK SIGNALSIGNAL PRODUCTPRODUCT MODULATORMODULATOR 22 11/14/2012 53 FREQUENCY AND PHASEFREQUENCY AND PHASE SYNCHRONIZED TO ORIGINALSYNCHRONIZED TO ORIGINAL TRANSMIT CARRIERTRANSMIT CARRIER SYNCHRONIZED TOSYNCHRONIZED TO BIT RATEBIT RATE
  • 54. BPSK DETECTIONBPSK DETECTION ttttv ccc ωωω 2 mod sin2))(sin(sin2)( == ttv cm ωsin)( += XX 2cos 2 1 2 1 sin2 −= LOGICAL 1:LOGICAL 1: ))(sin(2)(mod ttvtv cm ω=     −= ttv cω2cos 11 2)(mod 11/14/2012 54 XX 2cos 22 sin −=  −= ttv cω2cos 22 2)(mod ttv cω2cos1)(mod −= BLOCKED BY LPFBLOCKED BY LPF V1)( =tvout LOGICAL 1:LOGICAL 1:
  • 55. BPSK DETECTIONBPSK DETECTION ttttv ccc ωωω 2 mod sin2))(sinsin(2)( −=−= ttv cm ωsin)( −= XX 2cos 2 1 2 1 sin2 −= LOGICAL 0:LOGICAL 0: ))(sin(2)(mod ttvtv cm ω=     −−= ttv cω2cos 11 2)(mod 11/14/2012 55 XX 2cos 22 sin −=  −−= ttv cω2cos 22 2)(mod ttv cω2cos1)(mod +−= BLOCKED BY LPFBLOCKED BY LPF V1)( −=tvout LOGICAL 0LOGICAL 0
  • 56. MM--ARYARY ENCODINGENCODING •• M LÀ M T S TH P PHÂNM LÀ M T S TH P PHÂN Bi UBi U Di NDi N S LƯ NGS LƯ NG K T H P CÓ TH CHO 1 S BIT NH PHÂN CHOK T H P CÓ TH CHO 1 S BIT NH PHÂN CHO TRƯ C (N)TRƯ C (N) •• ði Uði U CH S BFSK VÀ BPSK MÃ HÓA 1 BIT ðƠNCH S BFSK VÀ BPSK MÃ HÓA 1 BIT ðƠN VÀ CÓ TH CÓ 2 CÁCH K T H P NGÕVÀ CÓ TH CÓ 2 CÁCH K T H P NGÕ (N = 1, 0 AND 1 INPUTS)(N = 1, 0 AND 1 INPUTS) 11/14/2012 56 (N = 1, 0 AND 1 INPUTS)(N = 1, 0 AND 1 INPUTS) •• EXAMPLE: H TH NG PSK V I 4 PHA NGÕ RA LÀEXAMPLE: H TH NG PSK V I 4 PHA NGÕ RA LÀ H TH NG MH TH NG M--ARYARY V I M = 4V I M = 4 •• BINARY LÀ MBINARY LÀ M--ARYARY V I M = 2V I M = 2 •• BPSK: M = 2, N = 1BPSK: M = 2, N = 1
  • 57. MM--ARYARY ENCODING: M & N RELATIONSHIPENCODING: M & N RELATIONSHIP MN M N 2log 2 = = V I BFSK/BPSK, 1 BIT ðƯ C MÃ HÓA:V I BFSK/BPSK, 1 BIT ðƯ C MÃ HÓA: T NG QUÁTT NG QUÁT N = 1N = 1 11/14/2012 57 N = 1N = 1 M = 2M = 2 EXAMPLE:EXAMPLE: N U NGÕ VÀO BAO G M 2 BIT, ðƯ C MÃ HÓA V IN U NGÕ VÀO BAO G M 2 BIT, ðƯ C MÃ HÓA V I NHAU VÀ SAU ðÓ ðƯ CNHAU VÀ SAU ðÓ ðƯ C ði Uði U CH CÙNG 1 SÓNGCH CÙNG 1 SÓNG MANG, THÌ: N = 2, M = 4MANG, THÌ: N = 2, M = 4
  • 58. MINIMUM MMINIMUM M--ARYARY REQUIRED BANDWITHREQUIRED BANDWITH N f M f B bb == 2log 11/14/2012 58 N LÀ S LƯ NG BIT NRZ MÃ HÓAN LÀ S LƯ NG BIT NRZ MÃ HÓA
  • 59. QUATERNARY PHASE SHIFT KEYING (QPSK)QUATERNARY PHASE SHIFT KEYING (QPSK) •• CŨNG ðƯ C G I LÀ QUADRATURE PSKCŨNG ðƯ C G I LÀ QUADRATURE PSK •• M T D NG KHÁC C A PMM T D NG KHÁC C A PM •• QPSK LÀ 1 K THU T MÃ HÓA MQPSK LÀ 1 K THU T MÃ HÓA M--ARYARY V I M = 4V I M = 4 11/14/2012 59 •• V I QPSK, 4 PHA NGÕ RA ðƯ C TH CV I QPSK, 4 PHA NGÕ RA ðƯ C TH C Hi NHi N V IV I 1 SÓNG MANG1 SÓNG MANG •• N = 2 (2 BITS) VÌ:N = 2 (2 BITS) VÌ: 4log2log 22 =⇒= MN
  • 60. QUATERNARY PHASE SHIFT KEYING (QPSK)QUATERNARY PHASE SHIFT KEYING (QPSK) •• DD Li ULi U NH PHÂN NGÕ VÀO ðƯ C K T H PNH PHÂN NGÕ VÀO ðƯ C K T H P THÀNH NHÓM 2 BIT G I LÀTHÀNH NHÓM 2 BIT G I LÀ DIBITSDIBITS •• DIBITDIBIT CODE: 00 = PHASE 1, 01 = PHASE 2,CODE: 00 = PHASE 1, 01 = PHASE 2, 10 = PHASE 3, 11 = PHASE 410 = PHASE 3, 11 = PHASE 4 11/14/2012 60 •• 1 SYMBOL = 1 PHASE = 2 BITS1 SYMBOL = 1 PHASE = 2 BITS BAUD RATE = 1/2BAUD RATE = 1/2 BIT RATEBIT RATE (SYMBOLS PER SEC)(SYMBOLS PER SEC) ((BITS PER SECBITS PER SEC))
  • 61. QPSK MODULATORQPSK MODULATOR DIBITSDIBITS SERIALSERIAL TOTO PARALLELPARALLEL IINN--PHASEPHASE TWOTWO OUTPUTOUTPUT PHASESPHASES PRODUCT MODULATORPRODUCT MODULATOR bfRateBit = 11/14/2012 61 OUTOUT--OFOF PHASEPHASE TWOTWO OUTPUTOUTPUT PHASESPHASESPRODUCT MODULATORPRODUCT MODULATOR 2 bf RateBit =
  • 62. QPSK GENERATION: I CHANNEL OUTPUT PHASESQPSK GENERATION: I CHANNEL OUTPUT PHASES [ ])2sin()()( tftvtv cmqpsk π= ≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY  =+ 1log1 icalVNORMALIZEDNORMALIZED ≡)(tvm INPUT BINARY SIGNALINPUT BINARY SIGNAL 11/14/2012 62    =− =+ = 0log1 1log1 )( icalV icalV tvm NORMALIZEDNORMALIZED INPUT SIGNALINPUT SIGNAL (UNIPOLAR TO(UNIPOLAR TO BIPOLAR SIGNAL)BIPOLAR SIGNAL)    − + = inputicalt inputicalt tv c c qpsk 0log;sin 1log;sin )( ω ω IN PHASEIN PHASE OUT OFOUT OF PHASEPHASE
  • 63. QPSK GENERATION: Q CHANNEL OUTPUT PHASESQPSK GENERATION: Q CHANNEL OUTPUT PHASES [ ])2cos()()( tftvtv cmqpsk π= ≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY  =+ 1log1 icalVNORMALIZEDNORMALIZED ≡)(tvm INPUT BINARY SIGNALINPUT BINARY SIGNAL 11/14/2012 63    =− =+ = 0log1 1log1 )( icalV icalV tvm NORMALIZEDNORMALIZED INPUT SIGNALINPUT SIGNAL (UNIPOLAR TO(UNIPOLAR TO BIPOLAR SIGNAL)BIPOLAR SIGNAL)    − + = inputicalt inputicalt tv c c qpsk 0log;cos 1log;cos )( ω ω IN PHASEIN PHASE OUT OFOUT OF PHASEPHASE
  • 64. QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES DIBITDIBIT CODECODE Q CHANNEL I CHANNEL SUMMER OUTPUTQ CHANNEL I CHANNEL SUMMER OUTPUT 0 00 0 0 10 1 )2sin( tfcπ−)2cos( tfcπ− )2sin( tfπ+)2cos( tfπ− )2sin()2cos( tftf cc ππ −− )2sin()2cos( tftf ππ +− 11/14/2012 64 0 10 1 1 01 0 1 11 1 )2sin( tfcπ− )2sin( tfcπ+ )2sin( tfcπ+)2cos( tfcπ− )2cos( tfcπ+ )2cos( tfcπ+ )2sin()2cos( tftf cc ππ +− )2sin()2cos( tftf cc ππ −+ )2sin()2cos( tftf cc ππ ++
  • 65. QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES DIBIT CODEDIBIT CODE 0 00 0 )1352sin(2)2sin()2cos( o −=−− tftftf ccc πππ PROOF:PROOF: YXYXYX sincoscossin)sin( −=− )1352sin(2 tfcπ =− o 11/14/2012 65 )2cos()2sin( )2cos( 2 2 )2sin( 2 2 )135sin()2cos(2)135cos()2sin(2 )1352sin(2 tftf tftf tftf tf cc cc cc c ππ ππ ππ π −− =−− =− =− 0 0 ==>0 0 ==> --135 degrees135 degrees
  • 66. QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES DIBIT CODEDIBIT CODE 0 10 1 )452sin(2)2sin()2cos( o −=+− tftftf ccc πππ PROOF:PROOF: YXYXYX sincoscossin)sin( −=− )452sin(2 tfcπ =− o 11/14/2012 66 )2cos()2sin( )2cos( 2 2 )2sin( 2 2 )45sin()2cos(2)45cos()2sin(2 )452sin(2 tftf tftf tftf tf cc cc cc c ππ ππ ππ π − =− =− =− 0 1 ==>0 1 ==> --45 degrees45 degrees
  • 67. QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES DIBIT CODEDIBIT CODE 1 01 0 )1352sin(2)2sin()2cos( o +=− tftftf ccc πππ PROOF:PROOF: YXYXYX sincoscossin)sin( +=+ )1352sin(2 tfcπ =+ o 11/14/2012 67 )2cos()2sin( )2cos( 2 2 )2sin( 2 2 )135sin()2cos(2)135cos()2sin(2 )1352sin(2 tftf tftf tftf tf cc cc cc c ππ ππ ππ π +− =+− =+ =+ 1 0 ==> +135 degrees1 0 ==> +135 degrees
  • 68. QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES DIBIT CODEDIBIT CODE 1 11 1 )452sin(2)2sin()2cos( o +=+ tftftf ccc πππ PROOF:PROOF: YXYXYX sincoscossin)sin( +=+ )452sin(2 tfcπ =+ o 11/14/2012 68 )2cos()2sin( )2cos( 2 2 )2sin( 2 2 )45sin()2cos(2)45cos()2sin(2 )452sin(2 tftf tftf tftf tf cc cc cc c ππ ππ ππ π ++ =++ =+ =+ 1 1 ==> +45 degrees1 1 ==> +45 degrees
  • 69. QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES 11/14/2012 69
  • 70. QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES 11/14/2012 70 OUTPUT PHASE VERSUS TIME FOR QPSK MODULATOROUTPUT PHASE VERSUS TIME FOR QPSK MODULATOR
  • 71. QPSK GENERATION: OUTPUT PHASESQPSK GENERATION: OUTPUT PHASES V I QPSK, M T TRONG 4 KH NĂNG NGÕ RAV I QPSK, M T TRONG 4 KH NĂNG NGÕ RA PHASORS CÓ CÙNG BIÊN ð .PHASORS CÓ CÙNG BIÊN ð . 11/14/2012 71 VÌ TH , THÔNG TIN NH PHÂN PH I ðƯ C MÃ HÓAVÌ TH , THÔNG TIN NH PHÂN PH I ðƯ C MÃ HÓA HOÀN TOÀN TRONG PHA C A TÍNHOÀN TOÀN TRONG PHA C A TÍN Hi UHi U NGÕ RANGÕ RA
  • 72. QPSK GENERATIONQPSK GENERATION tbtb tbtb 1 f BIT RATE BEFORE SPLITTER =BIT RATE BEFORE SPLITTER = b b f t = 1 II QQ tbtb tbtb SERIALSERIAL PARALLELPARALLEL I or QI or Q (SERIAL)(SERIAL) 11/14/2012 72 22 1 b b r f t f == bt REPETITION RATE BEFORE SPLITTERREPETITION RATE BEFORE SPLITTER BIT RATE AFTER SPLITTER =BIT RATE AFTER SPLITTER = 22 1 b b f t = REPETITION RATE AFTER SPLITTERREPETITION RATE AFTER SPLITTER 44 1 b b r f t f == (SERIAL)(SERIAL) (SERIAL)(SERIAL) (PARALLEL)(PARALLEL) (PARALLEL)(PARALLEL)
  • 73. BANDWITH CONSIDERATION OF QPSKBANDWITH CONSIDERATION OF QPSK [ ][ ])2sin()2sin()( tftftv rcqpsk ππ= ≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY REPETITION RATE (FUNDAMENTALREPETITION RATE (FUNDAMENTAL FREQUENCY OF I or Q CHANNEL BITS)FREQUENCY OF I or Q CHANNEL BITS) IT IS 1/4 THE BIT RATEIT IS 1/4 THE BIT RATE4 b r f f = 11/14/2012 73 IT IS 1/4 THE BIT RATEIT IS 1/4 THE BIT RATE )cos( 2 1 )cos( 2 1 ))(sin(sin YXYXYX +−−= [ ] [ ]tfftfftv rcrcpsk )(2cos 2 1 )(2cos 2 1 )( +−−= ππ LOWER SIDE FREQUENCYLOWER SIDE FREQUENCY UPPER SIDE FREQUENCYUPPER SIDE FREQUENCY
  • 74. rc ff +rc ff − f B BANDWITH CONSIDERATION OF BPSKBANDWITH CONSIDERATION OF BPSK LSBLSB USBUSB 4 b r f f = 4 b r f f = 11/14/2012 74 rc ff +rc ff − cf 24 22 bb r ff fB === LSFLSF USFUSF DSBDSB--SC MODULATIONSC MODULATION
  • 75. EXAMPLEEXAMPLE V I BV I B ði Uði U CH QPSK V I T N S SÓNG MANGCH QPSK V I T N S SÓNG MANG LÀ 70 MHz VÀ T C ð BIT NGÕ VÀO LÀ 10 Mbps,LÀ 70 MHz VÀ T C ð BIT NGÕ VÀO LÀ 10 Mbps, XÁC ð NH a) THE LSF b) USF c) B d) BAUD RATEXÁC ð NH a) THE LSF b) USF c) B d) BAUD RATE MHzfc 70= rb b r ff f f 4; 4 == MHzfb 10= 11/14/2012 75 4 MHz MHz fr 5.2 4 10 == MHzffLSF rc 5.675.270 =−=−= MHzffUSF rc 5.725.270 =+=+= MHz f B b 5 2 ==
  • 76. MHz70 MHz5 EXAMPLEEXAMPLE LSBLSB USBUSB MHz5.2MHz5.2 MHz5.72MHz5.67 11/14/2012 76 MHz70 MHz5.72MHz5.67 LSFLSF USFUSF BAUD RATE = 1/2 BIT RATE = 5 MEGABAUDBAUD RATE = 1/2 BIT RATE = 5 MEGABAUD
  • 77. QPSK RECEIVERQPSK RECEIVER INPUT QPSKINPUT QPSK SIGNALSIGNAL PRODUCT MODULATORPRODUCT MODULATOR 11/14/2012 77 PRODUCT MODULATORPRODUCT MODULATOR
  • 78. QPSK DETECTIONQPSK DETECTION [ ] )(sinsincos2 tttI ccc ωωω −= =)(tvmLOGICAL 0:LOGICAL 0: ))(sin(2 ttvI cm ω= )2sin()2cos( tftf cc ππ −+ [ ]tttI ccc ωωω 2 sinsincos2 −= 11/14/2012 78 tttI ccccc )sin()sin()2cos1( ωωωωω −+++−−= [ ]tttI ccc ωωω sinsincos2 −= ttI cc ωω 2sin2cos1 ++−= BLOCKED BY LPFBLOCKED BY LPF LOGICAL 0LOGICAL 0
  • 79. QPSK DETECTIONQPSK DETECTION [ ] )(cossincos2 tttQ ccc ωωω −= =)(tvmLOGICAL 1:LOGICAL 1: ))(cos(2 ttvQ cm ω= )2sin()2cos( tftf cc ππ −+ [ ]tttQ ccc ωωω cossincos2 2 −= 11/14/2012 79 tttQ ccccc )sin()sin()2cos1( ωωωωω −−+−+= [ ]tttQ ccc ωωω cossincos2 −= ttQ cc ωω 2sin2cos1 −+= BLOCKED BY LPFBLOCKED BY LPF LOGICAL 1LOGICAL 1
  • 81. EIGHT PHASE SHIFT KEYING (8EIGHT PHASE SHIFT KEYING (8--PSK)PSK) •• D NG MÃ MD NG MÃ M--ARYARY V I M = 8, N = 3V I M = 8, N = 3 •• 8 PHA NGÕ RA CÓ TH CÓ8 PHA NGÕ RA CÓ TH CÓ •• DD Li ULi U NGÕ VÀO NH PHÂN K T H P THÀNHNGÕ VÀO NH PHÂN K T H P THÀNH NHÓM 3 BIT (N = 3) G I LÀNHÓM 3 BIT (N = 3) G I LÀ TRIBITSTRIBITS •• TRIBITTRIBIT CODE: 000 = PHASE 1, 001 = PHASE 2, 010 = PHASE 3CODE: 000 = PHASE 1, 001 = PHASE 2, 010 = PHASE 3 011 = PHASE 4, 100 = PHASE 5, 101 = PHASE 6011 = PHASE 4, 100 = PHASE 5, 101 = PHASE 6 110 = PHASE 7, 111 = PHASE 8110 = PHASE 7, 111 = PHASE 8 11/14/2012 81 110 = PHASE 7, 111 = PHASE 8110 = PHASE 7, 111 = PHASE 8 •• 1 SYMBOL = 1 PHASE = 3 BITS1 SYMBOL = 1 PHASE = 3 BITS BAUD RATE = 1/3BAUD RATE = 1/3 BIT RATEBIT RATE (SYMBOLS PER SEC)(SYMBOLS PER SEC) ((BITS PER SECBITS PER SEC))
  • 82. 88--PSK MODULATORPSK MODULATOR BIT SPLITTERBIT SPLITTER (SERIAL TO(SERIAL TO PARALLEL)PARALLEL) 22--input DACinput DAC PULSE AMPLITUDE MODULATEDPULSE AMPLITUDE MODULATED SIGNAL (4 LEVELS)SIGNAL (4 LEVELS) 11/14/2012 82 3 bf 22--input DACinput DAC PULSE AMPLITUDE MODULATEDPULSE AMPLITUDE MODULATED SIGNAL (4 LEVELS)SIGNAL (4 LEVELS)
  • 83. 88--PSK MODULATORPSK MODULATOR I CHANNELI CHANNEL TRUTH TABLETRUTH TABLE Q CHANNELQ CHANNEL TRUTH TABLETRUTH TABLE PAM SIGNALPAM SIGNAL (4 LEVELS)(4 LEVELS) 11/14/2012 83 •• I, Q DETERMINE POLARITY; 0 =I, Q DETERMINE POLARITY; 0 = -- , 1 = +, 1 = + •• DETERMINE THE LEVEL; 1 = 1.307v, 0 = 0.541vDETERMINE THE LEVEL; 1 = 1.307v, 0 = 0.541v •• 2 LEVELS + 2 POLARITIES GIVE 4 CONDITIONS2 LEVELS + 2 POLARITIES GIVE 4 CONDITIONS CC ,
  • 84. 88--PSK GENERATION: TRIBIT = 000PSK GENERATION: TRIBIT = 000 000000 00 00 -- 0.541v0.541v )2sin(541.0 tfcπ− 11/14/2012 84 00 11 -- 1.307v1.307v NOTE: BECAUSE NOT THE SAME, INOTE: BECAUSE NOT THE SAME, I--CHANNELCHANNEL PAM WILL NEVER EQUAL QPAM WILL NEVER EQUAL Q--CHANNEL PAMCHANNEL PAM CC , )2cos(307.1 tfcπ−
  • 85. 88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES TRIBIT CODE: 000TRIBIT CODE: 000 )5.112sin(41.1)cos(307.1)sin(541.0 o −=−− ttt ccc ωωω PROOF:PROOF: YXYXYX sincoscossin)sin( −=− )5.1122sin(41.1 tfcπ =− o 11/14/2012 85 )2cos(307.1)2sin(541.0 )2cos()924(.41.1)2sin()383.(41.1 )5.112sin()2cos(41.1)5.112cos()2sin(41.1 )5.1122sin(41.1 tftf tftf tftf tf cc cc cc c ππ ππ ππ π −− =−− =− =− 0 0 0 ==>0 0 0 ==> --112.5 degrees112.5 degrees
  • 86. 88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES TRIBIT CODE BETWEENTRIBIT CODE BETWEEN ADJACENT PHASESADJACENT PHASES FOLLOWS THEFOLLOWS THE GRAYCODEGRAYCODE (RESULTS IN ONLY(RESULTS IN ONLY A SINGLE BIT ERRORA SINGLE BIT ERROR FOR UNDESIRED PHASEFOR UNDESIRED PHASE SHIFTS)SHIFTS) 11/14/2012 86
  • 87. 88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES •• V I QPSK: 4 PHA NGÕ RA (+45, +135,V I QPSK: 4 PHA NGÕ RA (+45, +135, --45,45, --135)135) PHÂNPHÂN Bi TBi T Gi AGi A CÁC PHASORCÁC PHASOR Li NLi N K LÀK LÀ 360/4 = 90 degrees.360/4 = 90 degrees. •• V I 8V I 8--PSK: 8 PHA NGÕ RA. PHÂNPSK: 8 PHA NGÕ RA. PHÂN Bi TBi T Gi AGi A CÁCCÁC 11/14/2012 87 •• V I 8V I 8--PSK: 8 PHA NGÕ RA. PHÂNPSK: 8 PHA NGÕ RA. PHÂN Bi TBi T Gi AGi A CÁCCÁC PHA LÀ 360/8 = 45 degrees. M T TÍNPHA LÀ 360/8 = 45 degrees. M T TÍN Hi UHi U 88--PSK CÓ THPSK CÓ TH CH U S D CH PHA +/CH U S D CH PHA +/-- 22.5 degrees TRONG QUÁ TRÌNH22.5 degrees TRONG QUÁ TRÌNH TRUY N VÀ V NTRUY N VÀ V N GiGi TÍNH TOÀN V N.TÍNH TOÀN V N.
  • 88. 88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES •• V I 8V I 8--PSK, M I PHASOR CÓ BIÊN ð B NG NHAUPSK, M I PHASOR CÓ BIÊN ð B NG NHAU (1.41v)(1.41v) 11/14/2012 88 •• THÔNG TIN MÃ TRIBIT CH ðƯ C CH A TRONGTHÔNG TIN MÃ TRIBIT CH ðƯ C CH A TRONG PHA C A TÍNPHA C A TÍN Hi UHi U
  • 89. 88--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES 11/14/2012 89 OUTPUT PHASE VERSUS TIME FOR 8OUTPUT PHASE VERSUS TIME FOR 8--PSK MODULATORPSK MODULATOR
  • 90. tbtb tbtb 1 f BIT RATE BEFORE SPLITTER =BIT RATE BEFORE SPLITTER = b b f t = 1 II QQ tbtb tbtb SERIALSERIAL PARALLELPARALLEL I or Q or CI or Q or C (SERIAL)(SERIAL) CC BANDWITH CONSIDERATION OF 8BANDWITH CONSIDERATION OF 8--PSKPSK 11/14/2012 90 22 1 b b r f t f == bt REPETITION RATE BEFORE SPLITTERREPETITION RATE BEFORE SPLITTER BIT RATE AFTER SPLITTER =BIT RATE AFTER SPLITTER = 33 1 b b f t = REPETITION RATE AFTER SPLITTERREPETITION RATE AFTER SPLITTER 6)3(2 1 b b r f t f == (SERIAL)(SERIAL) (SERIAL)(SERIAL) (PARALLEL)(PARALLEL) (PARALLEL)(PARALLEL)
  • 91. BANDWITH CONSIDERATION OF 8BANDWITH CONSIDERATION OF 8--PSKPSK 11/14/2012 91 3 bf 6 b r f f =
  • 92. 88--PSK GENERATION: BAUD RATEPSK GENERATION: BAUD RATE •• V I 8V I 8--PSK, CÓ 1 THAY ð I PHA T I NGÕ RA M I 3PSK, CÓ 1 THAY ð I PHA T I NGÕ RA M I 3 BIT VÀO.BIT VÀO. (A GROUP OF THREE BITS = 1 PHASE = 1 SYMBOL)(A GROUP OF THREE BITS = 1 PHASE = 1 SYMBOL) 11/14/2012 92 VÌ TH , THE BAUD RATE = 1/3 BIT RATE =VÌ TH , THE BAUD RATE = 1/3 BIT RATE = 3 bf
  • 93. BANDWITH CONSIDERATION OF 8BANDWITH CONSIDERATION OF 8--PSKPSK [ ][ ])2sin()2sin()(8 tfXtftv rcpsk ππ= ≡cf REFERENCE CARRIER FREQUENCYREFERENCE CARRIER FREQUENCY REPETITION RATE (FUNDAMENTALREPETITION RATE (FUNDAMENTAL FREQUENCY OF I or Q or C CHANNEL BITS)FREQUENCY OF I or Q or C CHANNEL BITS) IT IS 1/6 THE BIT RATEIT IS 1/6 THE BIT RATE6 b r f f = X = +/X = +/-- 1.307 OR +/1.307 OR +/-- 0.5410.541 11/14/2012 93 IT IS 1/6 THE BIT RATEIT IS 1/6 THE BIT RATE6 )cos( 2 1 )cos( 2 1 ))(sin(sin YXYXYX +−−= [ ] [ ]tff X tff X tv rcrcpsk )(2cos 2 )(2cos 2 )( +−−= ππ LOWER SIDE FREQUENCYLOWER SIDE FREQUENCY UPPER SIDE FREQUENCYUPPER SIDE FREQUENCY
  • 94. rc ff +rc ff − f B BANDWITH CONSIDERATION OF 8BANDWITH CONSIDERATION OF 8--PSKPSK LSBLSB USBUSB 6 b r f f = 6 b r f f = 11/14/2012 94 rc ff +rc ff − cf 36 22 bb r ff fB === LSFLSF USFUSF DSBDSB--SC MODULATIONSC MODULATION
  • 95. EXAMPLEEXAMPLE V I BV I B ði Uði U CH CÓ T N S SÓNG MANG LÀ 70 MHzCH CÓ T N S SÓNG MANG LÀ 70 MHz VÀ T C ð BIT NGÕ VÀO LÀ 10 Mbps,VÀ T C ð BIT NGÕ VÀO LÀ 10 Mbps, XÁC ð NH a) THE LSF b) USF c) B d) BAUD RATEXÁC ð NH a) THE LSF b) USF c) B d) BAUD RATE MHzfc 70= rb b r ff f f 6; 6 == MHzfb 10= 11/14/2012 95 6 MHz MHz fr 667.1 6 10 == MHzffLSF rc 333.68667.170 =−=−= MHzffUSF rc 667.71667.170 =+=+= MHz f B b 33.3 3 ==
  • 96. MHz70 MHz33.3 EXAMPLEEXAMPLE LSBLSB USBUSB MHz667.1MHz667.1 MHz667.71MHz333.68 11/14/2012 96 MHz70 MHz667.71MHz333.68 LSFLSF USFUSF BAUD RATE = 1/3 BIT RATE = 3.33 MEGABAUDBAUD RATE = 1/3 BIT RATE = 3.33 MEGABAUD
  • 99. SIXTEEN PHASE SHIFT KEYING (16SIXTEEN PHASE SHIFT KEYING (16--PSK)PSK) •• D NG MÃ HÓA MD NG MÃ HÓA M--ARYARY V I M = 16, N = 4V I M = 16, N = 4 •• 16 PHA TÍN16 PHA TÍN Hi UHi U NGÕ RANGÕ RA •• DD Li ULi U NH PHÂN NGÕ VÀO ðƯ C NHÓM THÀNHNH PHÂN NGÕ VÀO ðƯ C NHÓM THÀNH NHÓM 4 BIT (N = 4) G I LÀNHÓM 4 BIT (N = 4) G I LÀ QUADBITSQUADBITS •• QUADBITQUADBIT CODE: 0000 = PHASE 1 ……….. 1111 = PHASE 16,CODE: 0000 = PHASE 1 ……….. 1111 = PHASE 16, •• 1 SYMBOL = 1 PHASE = 4 BITS1 SYMBOL = 1 PHASE = 4 BITS 11/14/2012 99 •• 1 SYMBOL = 1 PHASE = 4 BITS1 SYMBOL = 1 PHASE = 4 BITS BAUD RATE = 1/4BAUD RATE = 1/4 BIT RATEBIT RATE (SYMBOLS PER SEC)(SYMBOLS PER SEC) ((BITS PER SECBITS PER SEC)) •• V I 16V I 16--PSK, CÁC GÓC PHA ðƯ C PHÂNPSK, CÁC GÓC PHA ðƯ C PHÂN Bi TBi T LÀLÀ 360/16 = 22.5 degrees. ð CÓ TH360/16 = 22.5 degrees. ð CÓ TH GiGi TOÀN V N,TOÀN V N, D CH PHA max = +/D CH PHA max = +/-- 11.25 degrees11.25 degrees
  • 100. 1616--PSK GENERATION: OUTPUT PHASESPSK GENERATION: OUTPUT PHASES 11/14/2012 100