SlideShare a Scribd company logo
1 of 8
Download to read offline
Resolving the black-hole information paradox
                                            by treating time on an equal footing with space
                                                                    Hrvoje Nikoli´
                                                                                 c
                                                Theoretical Physics Division, Rudjer Boˇkovi´ Institute,
                                                                                       s    c
arXiv:0905.0538v2 [gr-qc] 15 Jun 2009




                                                        P.O.B. 180, HR-10002 Zagreb, Croatia
                                                                          hrvoje@thphys.irb.hr


                                                                            August 9, 2011


                                                                                 Abstract
                                                 Pure states in quantum field theory can be represented by many-fingered
                                             block-time wave functions, which treat time on an equal footing with space and
                                             make the notions of “time evolution” and “state at a given time” fundamentally
                                             irrelevant. Instead of information destruction resulting from an attempt to use a
                                             “state at a given time” to describe semi-classical black-hole evaporation, the full
                                             many-fingered block-time wave function of the universe conserves information
                                             by describing the correlations of outgoing Hawking particles in the future with
                                             ingoing Hawking particles in the past.


                                        PACS Numbers: 04.70.Dy, 11.10.-z


                                        1    Introduction
                                        The semi-classical description of black-hole evaporation [1] predicts that the final
                                        state after the complete evaporation cannot be represented by a pure state [2]. A
                                        transition from a pure to a non-pure (i.e., mixed) state contradicts unitarity of quan-
                                        tum mechanics and leads also to other pathologies [3]. Many approaches to restore a
                                        pure-state description at late times have been attempted, but none of them seems to
                                        be completely satisfying (for reviews see, e.g., [4]).
                                            To overcome this problem, we start with the observation that all these previous
                                        approaches (with a notable exception in [5]) share one common assumption: that the
                                        quantum state (either pure or mixed) should be a function of time, or more gener-
                                        ally, a functional of the spacelike hypersurface. Indeed, such an assumption is deeply
                                        rooted in our intuitive understanding of the concept of time, according to which uni-
                                        verse evolves with time. Yet, such a view of time does not seem to be compatible

                                                                                     1
Figure 1: Penrose diagram of a completely evaporating black hole. The lines with
arrows represent a Hawking pair of particles.

with the classical theory of relativity (both special and general). The picture of a
“time-evolving” universe seems particularly unappealing when the universe violates
the condition of global hyperbolicity, which, indeed, is the case with completely evap-
orating black holes (see Fig. 1). Instead, one of the main messages of the theory
of relativity is that time should be treated on an equal footing with space. In par-
ticular, it seems natural to adopt the block time (also known under the name block
universe; see, e.g., [6] and references therein) picture of the universe, according to
which the universe does not evolve with time, but is a “static” 4-dimensional object
in which “past”, “presence”, and “future” equally exist. For example, such a view
automatically resolves causal paradoxes associated with closed causal curves [7].
    The basic intuitive idea how the block-time picture of the universe resolves the
black-hole information paradox can be seen from Fig. 1 (see also [5]). From the stan-
dard point of view, only the outgoing particle exists in the far future, while the ingoing
particle is destroyed. Consequently, information encoded in the correlations between
outgoing and ingoing particles is destroyed. On the other hand, from the block-time
point of view the past also exists, so the information is not destroyed because the
outgoing particle in the far future is correlated with the ingoing particle in the past.
The aim of this paper is to put this intuitive idea into a more precise framework. In
the next section we briefly review the main ideas of the general formalism of treating
time in quantum theory on an equal footing with space, while the implications on
Hawking evaporation are discussed in Sec. 3.


2     Treating time in QM on an equal footing with
      space
The first step towards treating time on an equal footing with space in quantum
mechanics (QM) is to extend the probabilistic interpretation of a 1-particle wave
function ψ(x, t) ≡ ψ(x) [8, 9]. Instead of the usual infinitesimal probability of finding


                                            2
particle at the space position x

                                        dP(3) = |ψ(x, t)|2 d3 x,                               (1)

one has the infinitesimal probability of finding particle at the spacetime position x

                                           dP = |ψ(x)|2 d4 x.                                  (2)

The usual probability (1) is then recovered from (2) as a special case, corresponding
to the conditional probability that the particle will be found at x if it is already known
that it is detected at time t. More precisely, since ψ in (1) and (2) do not have the
same normalizations, the variant of (1) that emerges from (2) should be written as
                                                    |ψ(x, t)|2 d3 x
                                        dP(3) =                     ,                          (3)
                                                         Nt
where
                                         Nt =        |ψ(x, t)|2d3 x                            (4)
is the normalization factor. As discussed in [9], such a generalized probabilistic inter-
pretation allows to define the time operator in QM, solves the problem of probabilistic
interpretation of solutions to the Klein-Gordon equation, and provides a better expla-
nation of the standard rule that transition amplitudes should be interpreted in terms
of transition probabilities per unit time.
    The next step is to generalize this to the case of many-particle wave functions. To
treat time on an equal footing with space, one needs to introduce a many-fingered
time wave function [10]. A state describing n particles is described by the many-
fingered time wave function ψ(x1 , t1 , · · · , xn , tn ) ≡ ψ(x1 , . . . , xn ). Consequently, (2)
generalizes to [9]
                           dP = |ψ(x1 , . . . , xn )|2 d4 x1 · · · d4 xn .                    (5)
In particular, if the first particle is detected at t1 , second particle at t2 , etc., then
Eq. (3) generalizes to
                                     |ψ(x1 , t1 , . . . , xn , tn )|2 d3 x1 · · · d3 xn
                       dP(3n) =                                                         ,      (6)
                                                          Nt1 ,...,tn
where
                     Nt1 ,...,tn =      |ψ(x1 , t1 , . . . , xn , tn )|2 d3 x1 · · · d3 xn .   (7)
Indeed, (6) coincides with the usual probabilistic interpretation of the many-fingered
time wave function [10]. The more familiar single-time wave function is a special case
corresponding to the time-coincidence limit

                    ψ(x1 , . . . , xn ; t) = ψ(x1 , t1 , . . . , xn , tn )|t1 =···=tn ≡t .     (8)

In this case (6) reduces to the familiar single-time probabilistic interpretation
                                       |ψ(x1 , . . . , xn ; t)|2 d3 x1 · · · d3 xn
                         dP(3n) =                                                  ,           (9)
                                                           Nt

                                                       3
where Nt is given by (7) at t1 = · · · = tn ≡ t.
   A more difficult step is to generalize this to quantum field theory (QFT), where the
number of particles may be uncertain and may change. The appropriate formalism
has recently been developed in [11]. Instead of repeating the whole analysis, let
us briefly review the final results. In general, a QFT state is described by a wave
function Ψ(x1 , x2 , . . .) that depends on an infinite number of spacetime positions xA ,
A = 1, 2, . . . , ∞. Introducing the notation

                                   x = {x1 , x2 , . . .},                           (10)

a QFT state |Ψ can be represented by the wave function

                                     Ψ(x) = (x|Ψ                                    (11)

satisfying the normalization condition

                                     Dx |Ψ(x)|2 = 1,                                (12)

where                                         ∞
                                    Dx =           d4 xA .                          (13)
                                             A=1

Each state can be expanded as
                                              ∞
                                  Ψ(x) =           ˜
                                                   Ψn (x),                          (14)
                                             n=0

       ˜
where Ψn (x) really depends only on n coordinates xA and represents an n-particle
                                ˜
wave function. The tilde on Ψn denotes that this wave function is not normalized.
For free fields, i.e., when the number of particles does not change, the expansion (14)
can be written in the form                ∞
                                 Ψ(x) =           cn Ψn (x),                        (15)
                                            n=0

where Ψn (x) are normalized n-particle wave functions

                                    Dx |Ψn (x)|2 = 1,                               (16)

and cn are coefficients satisfying the normalization condition
                                       ∞
                                            |cn |2 = 1.                             (17)
                                      n=0

In particular, the vacuum (i.e., the state without particles) is represented by a con-
stant wave function
                                               1
                                    Ψ0 (x) = √ ,                                  (18)
                                                V


                                              4
where V is the volume of the configuration space

                                           V=        Dx.                                       (19)

The probabilistic interpretation of (14) is given by a natural generalization of (5)

                                       DP = |Ψ(x)|2 Dx.                                        (20)
                                                                                  ˜
    By using the techniques developed in [11], the wave functions Ψn (x) can in princi-
ple be calculated for any interacting QFT. These wave functions contain a complete
information about probabilities of particle creation and destruction. Let us briefly
discuss how this probabilistic interpretation works. Let xn,1 , . . . , xn,n denote n co-
                              ˜           ˜
ordinates xA on which Ψn (x) ≡ Ψn (xn,1 , . . . , xn,n ) really depends. (With respect to
other coordinates xA , Ψ   ˜ n (x) is a constant.) If Ψn (xn,1 , . . . , xn,n ) vanishes for x0 = t,
                                                      ˜                                       n,an
then the probability that the system will be found in the n-particle state at time t
               ˜
vanishes. If Ψn (xn,1 , . . . , xn,n ) does not vanish for x0 n = t′ = t, then there is a finite
                                                            n,a
probability that the system will be found in the n-particle state at time t′ . This corre-
sponds to a probabilistic description of particle creation or destruction when t′ > t or
t > t′ , respectively. As shown in [11], for coincidence times the probabilities obtained
this way coincide with those obtained by more conventional single-time methods in
QFT. Thus, the many-fingered time formalism is not really a modification, but only
an extension of the conventional QFT formalism.


3     Implications on unitarity of Hawking evapora-
      tion
Now let us discuss how such a general formulation of QFT enriches our understanding
of Hawking evaporation. Unfortunately, the explicit calculation of Ψ(x) describing
the Hawking evaporation is prohibitively difficult. Nevertheless, some qualitative
features of Ψ(x) can easily be inferred from the standard results [1]. It turns out that
these qualitative features are sufficient to understand how the description of Hawking
evaporation by Ψ(x) resolves the information paradox.
    For simplicity, we assume that the set of all particles can be divided into ingoing
particles that never escape from the horizon and outgoing particles that go to the
future infinity (Fig. 1 shows a pair of such particles). Therefore, all these particles
are described by a wave function of the form

                                      Ψ(x) = Ψ(xin , xout ).                                   (21)

Since the Hawking particles are created in pairs, this wave function can be expanded
as                                         ∞
                          Ψ(xin , xout ) =   ˜
                                             Ψ2n (xin , xout ),                  (22)
                                               n=0
       ˜
where Ψ2n (xin , xout ) really depends on n “ingoing coordinates” xin A and n “outgoing
                                                    ˜
coordinates” xout A . (In fact, the wave functions Ψ2n depend also on xback describing

                                                 5
the background particles of initial black-hole matter, but for the sake of notational
simplicity the dependence on xback is suppressed.) The fact that the state is initially
                                ˜
in the vacuum means that all Ψ2n (xin , xout ) with n ≥ 1 vanish for small values of x0 A
                                                                                       in
and x0 A .
      out
    The wave function (22) is a pure state. It describes the whole system of ingoing
and outgoing particles for all possible values of times of each particle. The correlations
between all these particles can also be described by the density matrix
                     ρ(xin , xout |x′in , x′out ) = Ψ(xin , xout )Ψ∗ (x′in , x′out ),   (23)
which is nothing but a density-matrix representation of the pure state (22). However,
an outside observer cannot detect the inside particles. Consequently, his knowledge is
described by a mixed state obtained by tracing out over unobservable ingoing particles

                      ρout (xout |x′out ) =      Dxin ρ(xin , xout |xin , x′out ).      (24)

(Of course, since now we work in a curved background, the measure (13) is now
modified by the replacement d4 xA → |g(xA )| d4 xA .) Nevertheless, the whole system
is still described by the pure state (23).
     Now we are ready to discuss how our approach resolves the information paradox.
For convenience, we choose the global time coordinate such that equal-time hyper-
surfaces correspond to (undrawn) horizontal lines in Fig. 1. Let us assume that the
complete evaporation ends at time T , after which neither a black hole nor a remnant
is present. From the standard semi-classical analysis [1], we know that ingoing parti-
cles have zero probability of being found at times larger than T . They are destroyed
at the singularity that does not exist for times after the complete evaporation, as
illustrated by Fig. 1. Nevertheless, the pure state (22) is well defined for all values of
x0 A > T . But what happens if we put x0 A > T ? For such values of x0 A the wave
  out                                         in                                 in
function (22) is still well defined, but the value of Ψ turns out to be equal to zero,
because the probability of finding the ingoing particles at x0 A > T is zero. A wave
                                                                   in
function with the value zero does not encode much information, which corresponds
to an apparent loss of information at times larger than T . Still, a wave function with
zero value is still a wave function, so the state is still pure. In fact, since only outgoing
particles are present for times larger than T , there is no much point in considering the
case x0 A > T . To obtain a nontrivial information from (22) at times larger than T ,
         in
one should only put x0 A > T , while times of ingoing particles should be restricted
                         out
to x0 A < T . In that case, the pure state (22) describes how the outgoing particles at
      in
times after the complete evaporation are correlated with the ingoing particles before
the complete evaporation. Such nonlocal correlations cannot be measured by local
observers that cannot travel faster than light, so information seems lost from the
point of view of local observers. Nevertheless, these correlations are still encoded in
the total wave function of the universe, so the principles of QM are not violated – the
wave function of the universe is still pure.
     Thus, we see how treating time on an equal footing with space provides a new,
purely kinematic solution to the black-hole information paradox, without need to un-
derstand the details of dynamics. Essentially, the block-time picture of the universe

                                                    6
makes any time-dependent problem in 3 spacial dimensions analogous to a time-
independent problem in 4 spacial dimensions. Consequently, there can be no funda-
mental problem with non-unitary evolution of the quantum state simply because the
concept of evolution itself does not have any fundamental meaning. Instead, all we
have are correlations among particles at different spacetime positions. Thus, even
if the original Hawking calculation [1] is essentially correct (in the sense that the
black hole eventually evaporates completely and that the outgoing radiation cannot
be described by a pure state), the information is still there, encoded in the correla-
tions between outgoing particles in the future and ingoing particles in the past. From
this point of view, the original Hawking calculation may be essentially correct, but
it is not complete because it only describes correlations among particles at the same
spacelike hypersurface.1
     To conclude, we believe that our results represent a new step towards reconcil-
iation of quantum mechanics (QM) with general relativity (GR). GR suggests that
time should be treated on an equal footing with space, while QM demands unitarity.
We have shown that the former (i.e., treating time on an equal footing with space)
automatically restores the latter (the unitarity).


Acknowledgements
This work was supported by the Ministry of Science of the Republic of Croatia under
Contract No. 098-0982930-2864.


References
 [1] S. Hawking, Commun. Math. Phys. 43 (1975) 199.

 [2] S. Hawking, Phys. Rev. D 14 (1976) 2460.

 [3] T. Banks, M.E. Peskin, L. Susskind, Nucl. Phys. B 244 (1984) 125.

 [4] S.B. Giddings, Phys. Rev. D 46 (1992) 1347;
     J.A. Harvey, A. Strominger, hep-th/9209055;
     J. Preskill, hep-th/9209058;
     D.N. Page, hep-th/9305040;
     S.B. Giddings, hep-th/9412138;
     A. Strominger, hep-th/9501071;
     S.D. Mathur, arXiv:0803.2030;
     S. Hossenfelder, L. Smolin, arXiv:0901.3156.
   1
    The fact that the outgoing and the ingoing particle in Fig. 1 can be connected by a spacelike
hypersurface does not help. The outgoing particle can interact with other outside particles, which
may transfer information to outside particles that cannot be connected with the ingoing particle by
a spacelike hypersurface.




                                                7
[5] J.B. Hartle, Phys. Rev. D 51 (1995) 1800;
     J.B. Hartle, gr-qc/9705022.

 [6] G.F.R. Ellis, Gen. Rel. Grav. 38 (2006) 1797.

 [7] H. Nikoli´, Found. Phys. Lett. 19 (2006) 259.
              c

 [8] E.C.G. St¨ ckelberg, Helv. Phys. Acta 14 (1941) 322;
               u
     E.C.G. St¨ ckelberg, Helv. Phys. Acta 14 (1941) 588;
               u
     L.P. Horwitz, C. Piron, Helv. Phys. Acta 46 (1973) 316;
     A. Kyprianidis, Phys. Rep. 155 (1987) 1;
     J.R. Fanchi, Found. Phys. 23 (1993) 487;
     H. Nikoli´, hep-th/0702060, to appear in Found. Phys.
              c

 [9] H. Nikoli´, Int. J. Quantum Inf. 7 (2009) 595 [arXiv:0811.1905].
              c

[10] S. Tomonaga, Prog. Theor. Phys. 1 (1946) 27.

[11] H. Nikoli´, arXiv:0904.2287.
              c




                                         8

More Related Content

What's hot

Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...Colm Connaughton
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocityRene Kotze
 
Sviluppi modellistici sulla propagazione degli incendi boschivi
Sviluppi modellistici sulla propagazione degli incendi boschiviSviluppi modellistici sulla propagazione degli incendi boschivi
Sviluppi modellistici sulla propagazione degli incendi boschiviCRS4 Research Center in Sardinia
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...SEENET-MTP
 
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Colm Connaughton
 
Gravity as entanglement, and entanglement as gravity
Gravity as entanglement, and entanglement as gravityGravity as entanglement, and entanglement as gravity
Gravity as entanglement, and entanglement as gravityVasil Penchev
 
Oscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregationOscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregationColm Connaughton
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ijrap
 
Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationColm Connaughton
 
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...Colm Connaughton
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...Global HeavyLift Holdings, LLC
 
Quantum information probes
Quantum information probes Quantum information probes
Quantum information probes SM588
 
Likelihood survey-nber-0713101
Likelihood survey-nber-0713101Likelihood survey-nber-0713101
Likelihood survey-nber-0713101NBER
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...msejjournal
 

What's hot (16)

Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocity
 
Sviluppi modellistici sulla propagazione degli incendi boschivi
Sviluppi modellistici sulla propagazione degli incendi boschiviSviluppi modellistici sulla propagazione degli incendi boschivi
Sviluppi modellistici sulla propagazione degli incendi boschivi
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
 
Gravity as entanglement, and entanglement as gravity
Gravity as entanglement, and entanglement as gravityGravity as entanglement, and entanglement as gravity
Gravity as entanglement, and entanglement as gravity
 
Tdbasicsem
TdbasicsemTdbasicsem
Tdbasicsem
 
Oscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregationOscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregation
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
 
Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentation
 
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
The Inverse Smoluchowski Problem, Particles In Turbulence 2011, Potsdam, Marc...
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
 
Quantum information probes
Quantum information probes Quantum information probes
Quantum information probes
 
Likelihood survey-nber-0713101
Likelihood survey-nber-0713101Likelihood survey-nber-0713101
Likelihood survey-nber-0713101
 
Koc5(dba)
Koc5(dba)Koc5(dba)
Koc5(dba)
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
 

Viewers also liked

L'esperimento di Afshar (Prefazione a cura del Prof. Luigi M.Caligiuri) - WWW...
L'esperimento di Afshar (Prefazione a cura del Prof. Luigi M.Caligiuri) - WWW...L'esperimento di Afshar (Prefazione a cura del Prof. Luigi M.Caligiuri) - WWW...
L'esperimento di Afshar (Prefazione a cura del Prof. Luigi M.Caligiuri) - WWW...Fausto Intilla
 
Halvveis til Fremtiden - 5 trender som vil endre Norge
Halvveis til Fremtiden - 5 trender som vil endre NorgeHalvveis til Fremtiden - 5 trender som vil endre Norge
Halvveis til Fremtiden - 5 trender som vil endre NorgeFirst Tuesday Bergen
 
SEO is Dead - Or is it? Content Marketing & SEO Demystified - Internet Retail...
SEO is Dead - Or is it? Content Marketing & SEO Demystified - Internet Retail...SEO is Dead - Or is it? Content Marketing & SEO Demystified - Internet Retail...
SEO is Dead - Or is it? Content Marketing & SEO Demystified - Internet Retail...Search Laboratory
 
Career Goals Assignment
Career Goals AssignmentCareer Goals Assignment
Career Goals Assignmentbrookeneisen
 
Von der Informationstheorie zum konzept der Seele - WWW.OLOSCIENCE.COM
Von der Informationstheorie zum konzept der Seele - WWW.OLOSCIENCE.COMVon der Informationstheorie zum konzept der Seele - WWW.OLOSCIENCE.COM
Von der Informationstheorie zum konzept der Seele - WWW.OLOSCIENCE.COMFausto Intilla
 
Il Caos ...patologico: Dinamica e Natura dei sistemi complessi - WWW.OLOSCIEN...
Il Caos ...patologico: Dinamica e Natura dei sistemi complessi - WWW.OLOSCIEN...Il Caos ...patologico: Dinamica e Natura dei sistemi complessi - WWW.OLOSCIEN...
Il Caos ...patologico: Dinamica e Natura dei sistemi complessi - WWW.OLOSCIEN...Fausto Intilla
 
Brain–machine interfaces: past, present and future - WWW.OLOSCIENCE.COM
Brain–machine interfaces: past, present and future - WWW.OLOSCIENCE.COMBrain–machine interfaces: past, present and future - WWW.OLOSCIENCE.COM
Brain–machine interfaces: past, present and future - WWW.OLOSCIENCE.COMFausto Intilla
 

Viewers also liked (9)

First Tuesday Beat
First Tuesday BeatFirst Tuesday Beat
First Tuesday Beat
 
Random Facts
Random FactsRandom Facts
Random Facts
 
L'esperimento di Afshar (Prefazione a cura del Prof. Luigi M.Caligiuri) - WWW...
L'esperimento di Afshar (Prefazione a cura del Prof. Luigi M.Caligiuri) - WWW...L'esperimento di Afshar (Prefazione a cura del Prof. Luigi M.Caligiuri) - WWW...
L'esperimento di Afshar (Prefazione a cura del Prof. Luigi M.Caligiuri) - WWW...
 
Halvveis til Fremtiden - 5 trender som vil endre Norge
Halvveis til Fremtiden - 5 trender som vil endre NorgeHalvveis til Fremtiden - 5 trender som vil endre Norge
Halvveis til Fremtiden - 5 trender som vil endre Norge
 
SEO is Dead - Or is it? Content Marketing & SEO Demystified - Internet Retail...
SEO is Dead - Or is it? Content Marketing & SEO Demystified - Internet Retail...SEO is Dead - Or is it? Content Marketing & SEO Demystified - Internet Retail...
SEO is Dead - Or is it? Content Marketing & SEO Demystified - Internet Retail...
 
Career Goals Assignment
Career Goals AssignmentCareer Goals Assignment
Career Goals Assignment
 
Von der Informationstheorie zum konzept der Seele - WWW.OLOSCIENCE.COM
Von der Informationstheorie zum konzept der Seele - WWW.OLOSCIENCE.COMVon der Informationstheorie zum konzept der Seele - WWW.OLOSCIENCE.COM
Von der Informationstheorie zum konzept der Seele - WWW.OLOSCIENCE.COM
 
Il Caos ...patologico: Dinamica e Natura dei sistemi complessi - WWW.OLOSCIEN...
Il Caos ...patologico: Dinamica e Natura dei sistemi complessi - WWW.OLOSCIEN...Il Caos ...patologico: Dinamica e Natura dei sistemi complessi - WWW.OLOSCIEN...
Il Caos ...patologico: Dinamica e Natura dei sistemi complessi - WWW.OLOSCIEN...
 
Brain–machine interfaces: past, present and future - WWW.OLOSCIENCE.COM
Brain–machine interfaces: past, present and future - WWW.OLOSCIENCE.COMBrain–machine interfaces: past, present and future - WWW.OLOSCIENCE.COM
Brain–machine interfaces: past, present and future - WWW.OLOSCIENCE.COM
 

Similar to Resolving the black-hole information paradox

1.1 PRINCIPLE OF LEAST ACTION 640-213 MelatosChapter 1.docx
1.1 PRINCIPLE OF LEAST ACTION 640-213 MelatosChapter 1.docx1.1 PRINCIPLE OF LEAST ACTION 640-213 MelatosChapter 1.docx
1.1 PRINCIPLE OF LEAST ACTION 640-213 MelatosChapter 1.docxpaynetawnya
 
Translocations In Space-Time and Simultaneous States of the Universe: Converg...
Translocations In Space-Time and Simultaneous States of the Universe: Converg...Translocations In Space-Time and Simultaneous States of the Universe: Converg...
Translocations In Space-Time and Simultaneous States of the Universe: Converg...Journal of Advances in Physics
 
New constraints on_quantum_gravity_from_x_ray_and_gamma_ray_observations
New constraints on_quantum_gravity_from_x_ray_and_gamma_ray_observationsNew constraints on_quantum_gravity_from_x_ray_and_gamma_ray_observations
New constraints on_quantum_gravity_from_x_ray_and_gamma_ray_observationsSérgio Sacani
 
1979 Optimal diffusions in a random environment
1979 Optimal diffusions in a random environment1979 Optimal diffusions in a random environment
1979 Optimal diffusions in a random environmentBob Marcus
 
A. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
A. Morozov - Black Hole Motion in Entropic Reformulation of General RelativityA. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
A. Morozov - Black Hole Motion in Entropic Reformulation of General RelativitySEENET-MTP
 
Setting Time Aright
Setting Time ArightSetting Time Aright
Setting Time ArightSean Carroll
 
Euclidean Equivalent of Minkowski’s Space-Time Theory and the Corresponding M...
Euclidean Equivalent of Minkowski’s Space-Time Theory and the Corresponding M...Euclidean Equivalent of Minkowski’s Space-Time Theory and the Corresponding M...
Euclidean Equivalent of Minkowski’s Space-Time Theory and the Corresponding M...Premier Publishers
 
Quantum signatures of black hole mass superpositions
Quantum signatures of black hole mass superpositionsQuantum signatures of black hole mass superpositions
Quantum signatures of black hole mass superpositionsSérgio Sacani
 
Quantum field simulator for dynamics in curved spacetime
Quantum field simulator for dynamics in curved spacetimeQuantum field simulator for dynamics in curved spacetime
Quantum field simulator for dynamics in curved spacetimeSérgio Sacani
 
The computational limit_to_quantum_determinism_and_the_black_hole_information...
The computational limit_to_quantum_determinism_and_the_black_hole_information...The computational limit_to_quantum_determinism_and_the_black_hole_information...
The computational limit_to_quantum_determinism_and_the_black_hole_information...Sérgio Sacani
 
Complex Numbers in Quantum Theory
Complex Numbers in Quantum TheoryComplex Numbers in Quantum Theory
Complex Numbers in Quantum TheoryLaurence White
 
Dresden 2014 A tour of some fractional models and the physics behind them
Dresden 2014 A tour of some fractional models and the physics behind themDresden 2014 A tour of some fractional models and the physics behind them
Dresden 2014 A tour of some fractional models and the physics behind themNick Watkins
 
Twins Paradox
Twins Paradox Twins Paradox
Twins Paradox HamidKiabi
 

Similar to Resolving the black-hole information paradox (20)

1.1 PRINCIPLE OF LEAST ACTION 640-213 MelatosChapter 1.docx
1.1 PRINCIPLE OF LEAST ACTION 640-213 MelatosChapter 1.docx1.1 PRINCIPLE OF LEAST ACTION 640-213 MelatosChapter 1.docx
1.1 PRINCIPLE OF LEAST ACTION 640-213 MelatosChapter 1.docx
 
Translocations In Space-Time and Simultaneous States of the Universe: Converg...
Translocations In Space-Time and Simultaneous States of the Universe: Converg...Translocations In Space-Time and Simultaneous States of the Universe: Converg...
Translocations In Space-Time and Simultaneous States of the Universe: Converg...
 
New constraints on_quantum_gravity_from_x_ray_and_gamma_ray_observations
New constraints on_quantum_gravity_from_x_ray_and_gamma_ray_observationsNew constraints on_quantum_gravity_from_x_ray_and_gamma_ray_observations
New constraints on_quantum_gravity_from_x_ray_and_gamma_ray_observations
 
1979 Optimal diffusions in a random environment
1979 Optimal diffusions in a random environment1979 Optimal diffusions in a random environment
1979 Optimal diffusions in a random environment
 
Hadronic1z 1
Hadronic1z  1 Hadronic1z  1
Hadronic1z 1
 
quantum gravity
quantum gravityquantum gravity
quantum gravity
 
Ane Xe 1,2,3,4
Ane Xe 1,2,3,4Ane Xe 1,2,3,4
Ane Xe 1,2,3,4
 
A. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
A. Morozov - Black Hole Motion in Entropic Reformulation of General RelativityA. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
A. Morozov - Black Hole Motion in Entropic Reformulation of General Relativity
 
Setting Time Aright
Setting Time ArightSetting Time Aright
Setting Time Aright
 
Euclidean Equivalent of Minkowski’s Space-Time Theory and the Corresponding M...
Euclidean Equivalent of Minkowski’s Space-Time Theory and the Corresponding M...Euclidean Equivalent of Minkowski’s Space-Time Theory and the Corresponding M...
Euclidean Equivalent of Minkowski’s Space-Time Theory and the Corresponding M...
 
Gradu.Final
Gradu.FinalGradu.Final
Gradu.Final
 
Quantum signatures of black hole mass superpositions
Quantum signatures of black hole mass superpositionsQuantum signatures of black hole mass superpositions
Quantum signatures of black hole mass superpositions
 
Schrodinger eqn
Schrodinger eqnSchrodinger eqn
Schrodinger eqn
 
Quantum field simulator for dynamics in curved spacetime
Quantum field simulator for dynamics in curved spacetimeQuantum field simulator for dynamics in curved spacetime
Quantum field simulator for dynamics in curved spacetime
 
The computational limit_to_quantum_determinism_and_the_black_hole_information...
The computational limit_to_quantum_determinism_and_the_black_hole_information...The computational limit_to_quantum_determinism_and_the_black_hole_information...
The computational limit_to_quantum_determinism_and_the_black_hole_information...
 
Complex Numbers in Quantum Theory
Complex Numbers in Quantum TheoryComplex Numbers in Quantum Theory
Complex Numbers in Quantum Theory
 
Article 1st
Article 1stArticle 1st
Article 1st
 
Dresden 2014 A tour of some fractional models and the physics behind them
Dresden 2014 A tour of some fractional models and the physics behind themDresden 2014 A tour of some fractional models and the physics behind them
Dresden 2014 A tour of some fractional models and the physics behind them
 
Quantum Time
Quantum TimeQuantum Time
Quantum Time
 
Twins Paradox
Twins Paradox Twins Paradox
Twins Paradox
 

More from Fausto Intilla

Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.Fausto Intilla
 
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Fausto Intilla
 
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...Fausto Intilla
 
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...Fausto Intilla
 
Teorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto IntillaTeorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto IntillaFausto Intilla
 
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...Fausto Intilla
 
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.Fausto Intilla
 
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.Fausto Intilla
 
Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!Fausto Intilla
 
Altre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umanaAltre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umanaFausto Intilla
 
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.Fausto Intilla
 
Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.Fausto Intilla
 
Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?Fausto Intilla
 
Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?Fausto Intilla
 
Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.Fausto Intilla
 
Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.Fausto Intilla
 
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...Fausto Intilla
 
Aforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivereAforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivereFausto Intilla
 
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...Fausto Intilla
 
Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.Fausto Intilla
 

More from Fausto Intilla (20)

Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
 
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
 
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
 
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
 
Teorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto IntillaTeorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
 
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
 
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
 
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
 
Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!
 
Altre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umanaAltre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umana
 
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
 
Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.
 
Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?
 
Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?
 
Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.
 
Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.
 
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
 
Aforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivereAforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivere
 
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
 
Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.
 

Recently uploaded

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 

Recently uploaded (20)

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 

Resolving the black-hole information paradox

  • 1. Resolving the black-hole information paradox by treating time on an equal footing with space Hrvoje Nikoli´ c Theoretical Physics Division, Rudjer Boˇkovi´ Institute, s c arXiv:0905.0538v2 [gr-qc] 15 Jun 2009 P.O.B. 180, HR-10002 Zagreb, Croatia hrvoje@thphys.irb.hr August 9, 2011 Abstract Pure states in quantum field theory can be represented by many-fingered block-time wave functions, which treat time on an equal footing with space and make the notions of “time evolution” and “state at a given time” fundamentally irrelevant. Instead of information destruction resulting from an attempt to use a “state at a given time” to describe semi-classical black-hole evaporation, the full many-fingered block-time wave function of the universe conserves information by describing the correlations of outgoing Hawking particles in the future with ingoing Hawking particles in the past. PACS Numbers: 04.70.Dy, 11.10.-z 1 Introduction The semi-classical description of black-hole evaporation [1] predicts that the final state after the complete evaporation cannot be represented by a pure state [2]. A transition from a pure to a non-pure (i.e., mixed) state contradicts unitarity of quan- tum mechanics and leads also to other pathologies [3]. Many approaches to restore a pure-state description at late times have been attempted, but none of them seems to be completely satisfying (for reviews see, e.g., [4]). To overcome this problem, we start with the observation that all these previous approaches (with a notable exception in [5]) share one common assumption: that the quantum state (either pure or mixed) should be a function of time, or more gener- ally, a functional of the spacelike hypersurface. Indeed, such an assumption is deeply rooted in our intuitive understanding of the concept of time, according to which uni- verse evolves with time. Yet, such a view of time does not seem to be compatible 1
  • 2. Figure 1: Penrose diagram of a completely evaporating black hole. The lines with arrows represent a Hawking pair of particles. with the classical theory of relativity (both special and general). The picture of a “time-evolving” universe seems particularly unappealing when the universe violates the condition of global hyperbolicity, which, indeed, is the case with completely evap- orating black holes (see Fig. 1). Instead, one of the main messages of the theory of relativity is that time should be treated on an equal footing with space. In par- ticular, it seems natural to adopt the block time (also known under the name block universe; see, e.g., [6] and references therein) picture of the universe, according to which the universe does not evolve with time, but is a “static” 4-dimensional object in which “past”, “presence”, and “future” equally exist. For example, such a view automatically resolves causal paradoxes associated with closed causal curves [7]. The basic intuitive idea how the block-time picture of the universe resolves the black-hole information paradox can be seen from Fig. 1 (see also [5]). From the stan- dard point of view, only the outgoing particle exists in the far future, while the ingoing particle is destroyed. Consequently, information encoded in the correlations between outgoing and ingoing particles is destroyed. On the other hand, from the block-time point of view the past also exists, so the information is not destroyed because the outgoing particle in the far future is correlated with the ingoing particle in the past. The aim of this paper is to put this intuitive idea into a more precise framework. In the next section we briefly review the main ideas of the general formalism of treating time in quantum theory on an equal footing with space, while the implications on Hawking evaporation are discussed in Sec. 3. 2 Treating time in QM on an equal footing with space The first step towards treating time on an equal footing with space in quantum mechanics (QM) is to extend the probabilistic interpretation of a 1-particle wave function ψ(x, t) ≡ ψ(x) [8, 9]. Instead of the usual infinitesimal probability of finding 2
  • 3. particle at the space position x dP(3) = |ψ(x, t)|2 d3 x, (1) one has the infinitesimal probability of finding particle at the spacetime position x dP = |ψ(x)|2 d4 x. (2) The usual probability (1) is then recovered from (2) as a special case, corresponding to the conditional probability that the particle will be found at x if it is already known that it is detected at time t. More precisely, since ψ in (1) and (2) do not have the same normalizations, the variant of (1) that emerges from (2) should be written as |ψ(x, t)|2 d3 x dP(3) = , (3) Nt where Nt = |ψ(x, t)|2d3 x (4) is the normalization factor. As discussed in [9], such a generalized probabilistic inter- pretation allows to define the time operator in QM, solves the problem of probabilistic interpretation of solutions to the Klein-Gordon equation, and provides a better expla- nation of the standard rule that transition amplitudes should be interpreted in terms of transition probabilities per unit time. The next step is to generalize this to the case of many-particle wave functions. To treat time on an equal footing with space, one needs to introduce a many-fingered time wave function [10]. A state describing n particles is described by the many- fingered time wave function ψ(x1 , t1 , · · · , xn , tn ) ≡ ψ(x1 , . . . , xn ). Consequently, (2) generalizes to [9] dP = |ψ(x1 , . . . , xn )|2 d4 x1 · · · d4 xn . (5) In particular, if the first particle is detected at t1 , second particle at t2 , etc., then Eq. (3) generalizes to |ψ(x1 , t1 , . . . , xn , tn )|2 d3 x1 · · · d3 xn dP(3n) = , (6) Nt1 ,...,tn where Nt1 ,...,tn = |ψ(x1 , t1 , . . . , xn , tn )|2 d3 x1 · · · d3 xn . (7) Indeed, (6) coincides with the usual probabilistic interpretation of the many-fingered time wave function [10]. The more familiar single-time wave function is a special case corresponding to the time-coincidence limit ψ(x1 , . . . , xn ; t) = ψ(x1 , t1 , . . . , xn , tn )|t1 =···=tn ≡t . (8) In this case (6) reduces to the familiar single-time probabilistic interpretation |ψ(x1 , . . . , xn ; t)|2 d3 x1 · · · d3 xn dP(3n) = , (9) Nt 3
  • 4. where Nt is given by (7) at t1 = · · · = tn ≡ t. A more difficult step is to generalize this to quantum field theory (QFT), where the number of particles may be uncertain and may change. The appropriate formalism has recently been developed in [11]. Instead of repeating the whole analysis, let us briefly review the final results. In general, a QFT state is described by a wave function Ψ(x1 , x2 , . . .) that depends on an infinite number of spacetime positions xA , A = 1, 2, . . . , ∞. Introducing the notation x = {x1 , x2 , . . .}, (10) a QFT state |Ψ can be represented by the wave function Ψ(x) = (x|Ψ (11) satisfying the normalization condition Dx |Ψ(x)|2 = 1, (12) where ∞ Dx = d4 xA . (13) A=1 Each state can be expanded as ∞ Ψ(x) = ˜ Ψn (x), (14) n=0 ˜ where Ψn (x) really depends only on n coordinates xA and represents an n-particle ˜ wave function. The tilde on Ψn denotes that this wave function is not normalized. For free fields, i.e., when the number of particles does not change, the expansion (14) can be written in the form ∞ Ψ(x) = cn Ψn (x), (15) n=0 where Ψn (x) are normalized n-particle wave functions Dx |Ψn (x)|2 = 1, (16) and cn are coefficients satisfying the normalization condition ∞ |cn |2 = 1. (17) n=0 In particular, the vacuum (i.e., the state without particles) is represented by a con- stant wave function 1 Ψ0 (x) = √ , (18) V 4
  • 5. where V is the volume of the configuration space V= Dx. (19) The probabilistic interpretation of (14) is given by a natural generalization of (5) DP = |Ψ(x)|2 Dx. (20) ˜ By using the techniques developed in [11], the wave functions Ψn (x) can in princi- ple be calculated for any interacting QFT. These wave functions contain a complete information about probabilities of particle creation and destruction. Let us briefly discuss how this probabilistic interpretation works. Let xn,1 , . . . , xn,n denote n co- ˜ ˜ ordinates xA on which Ψn (x) ≡ Ψn (xn,1 , . . . , xn,n ) really depends. (With respect to other coordinates xA , Ψ ˜ n (x) is a constant.) If Ψn (xn,1 , . . . , xn,n ) vanishes for x0 = t, ˜ n,an then the probability that the system will be found in the n-particle state at time t ˜ vanishes. If Ψn (xn,1 , . . . , xn,n ) does not vanish for x0 n = t′ = t, then there is a finite n,a probability that the system will be found in the n-particle state at time t′ . This corre- sponds to a probabilistic description of particle creation or destruction when t′ > t or t > t′ , respectively. As shown in [11], for coincidence times the probabilities obtained this way coincide with those obtained by more conventional single-time methods in QFT. Thus, the many-fingered time formalism is not really a modification, but only an extension of the conventional QFT formalism. 3 Implications on unitarity of Hawking evapora- tion Now let us discuss how such a general formulation of QFT enriches our understanding of Hawking evaporation. Unfortunately, the explicit calculation of Ψ(x) describing the Hawking evaporation is prohibitively difficult. Nevertheless, some qualitative features of Ψ(x) can easily be inferred from the standard results [1]. It turns out that these qualitative features are sufficient to understand how the description of Hawking evaporation by Ψ(x) resolves the information paradox. For simplicity, we assume that the set of all particles can be divided into ingoing particles that never escape from the horizon and outgoing particles that go to the future infinity (Fig. 1 shows a pair of such particles). Therefore, all these particles are described by a wave function of the form Ψ(x) = Ψ(xin , xout ). (21) Since the Hawking particles are created in pairs, this wave function can be expanded as ∞ Ψ(xin , xout ) = ˜ Ψ2n (xin , xout ), (22) n=0 ˜ where Ψ2n (xin , xout ) really depends on n “ingoing coordinates” xin A and n “outgoing ˜ coordinates” xout A . (In fact, the wave functions Ψ2n depend also on xback describing 5
  • 6. the background particles of initial black-hole matter, but for the sake of notational simplicity the dependence on xback is suppressed.) The fact that the state is initially ˜ in the vacuum means that all Ψ2n (xin , xout ) with n ≥ 1 vanish for small values of x0 A in and x0 A . out The wave function (22) is a pure state. It describes the whole system of ingoing and outgoing particles for all possible values of times of each particle. The correlations between all these particles can also be described by the density matrix ρ(xin , xout |x′in , x′out ) = Ψ(xin , xout )Ψ∗ (x′in , x′out ), (23) which is nothing but a density-matrix representation of the pure state (22). However, an outside observer cannot detect the inside particles. Consequently, his knowledge is described by a mixed state obtained by tracing out over unobservable ingoing particles ρout (xout |x′out ) = Dxin ρ(xin , xout |xin , x′out ). (24) (Of course, since now we work in a curved background, the measure (13) is now modified by the replacement d4 xA → |g(xA )| d4 xA .) Nevertheless, the whole system is still described by the pure state (23). Now we are ready to discuss how our approach resolves the information paradox. For convenience, we choose the global time coordinate such that equal-time hyper- surfaces correspond to (undrawn) horizontal lines in Fig. 1. Let us assume that the complete evaporation ends at time T , after which neither a black hole nor a remnant is present. From the standard semi-classical analysis [1], we know that ingoing parti- cles have zero probability of being found at times larger than T . They are destroyed at the singularity that does not exist for times after the complete evaporation, as illustrated by Fig. 1. Nevertheless, the pure state (22) is well defined for all values of x0 A > T . But what happens if we put x0 A > T ? For such values of x0 A the wave out in in function (22) is still well defined, but the value of Ψ turns out to be equal to zero, because the probability of finding the ingoing particles at x0 A > T is zero. A wave in function with the value zero does not encode much information, which corresponds to an apparent loss of information at times larger than T . Still, a wave function with zero value is still a wave function, so the state is still pure. In fact, since only outgoing particles are present for times larger than T , there is no much point in considering the case x0 A > T . To obtain a nontrivial information from (22) at times larger than T , in one should only put x0 A > T , while times of ingoing particles should be restricted out to x0 A < T . In that case, the pure state (22) describes how the outgoing particles at in times after the complete evaporation are correlated with the ingoing particles before the complete evaporation. Such nonlocal correlations cannot be measured by local observers that cannot travel faster than light, so information seems lost from the point of view of local observers. Nevertheless, these correlations are still encoded in the total wave function of the universe, so the principles of QM are not violated – the wave function of the universe is still pure. Thus, we see how treating time on an equal footing with space provides a new, purely kinematic solution to the black-hole information paradox, without need to un- derstand the details of dynamics. Essentially, the block-time picture of the universe 6
  • 7. makes any time-dependent problem in 3 spacial dimensions analogous to a time- independent problem in 4 spacial dimensions. Consequently, there can be no funda- mental problem with non-unitary evolution of the quantum state simply because the concept of evolution itself does not have any fundamental meaning. Instead, all we have are correlations among particles at different spacetime positions. Thus, even if the original Hawking calculation [1] is essentially correct (in the sense that the black hole eventually evaporates completely and that the outgoing radiation cannot be described by a pure state), the information is still there, encoded in the correla- tions between outgoing particles in the future and ingoing particles in the past. From this point of view, the original Hawking calculation may be essentially correct, but it is not complete because it only describes correlations among particles at the same spacelike hypersurface.1 To conclude, we believe that our results represent a new step towards reconcil- iation of quantum mechanics (QM) with general relativity (GR). GR suggests that time should be treated on an equal footing with space, while QM demands unitarity. We have shown that the former (i.e., treating time on an equal footing with space) automatically restores the latter (the unitarity). Acknowledgements This work was supported by the Ministry of Science of the Republic of Croatia under Contract No. 098-0982930-2864. References [1] S. Hawking, Commun. Math. Phys. 43 (1975) 199. [2] S. Hawking, Phys. Rev. D 14 (1976) 2460. [3] T. Banks, M.E. Peskin, L. Susskind, Nucl. Phys. B 244 (1984) 125. [4] S.B. Giddings, Phys. Rev. D 46 (1992) 1347; J.A. Harvey, A. Strominger, hep-th/9209055; J. Preskill, hep-th/9209058; D.N. Page, hep-th/9305040; S.B. Giddings, hep-th/9412138; A. Strominger, hep-th/9501071; S.D. Mathur, arXiv:0803.2030; S. Hossenfelder, L. Smolin, arXiv:0901.3156. 1 The fact that the outgoing and the ingoing particle in Fig. 1 can be connected by a spacelike hypersurface does not help. The outgoing particle can interact with other outside particles, which may transfer information to outside particles that cannot be connected with the ingoing particle by a spacelike hypersurface. 7
  • 8. [5] J.B. Hartle, Phys. Rev. D 51 (1995) 1800; J.B. Hartle, gr-qc/9705022. [6] G.F.R. Ellis, Gen. Rel. Grav. 38 (2006) 1797. [7] H. Nikoli´, Found. Phys. Lett. 19 (2006) 259. c [8] E.C.G. St¨ ckelberg, Helv. Phys. Acta 14 (1941) 322; u E.C.G. St¨ ckelberg, Helv. Phys. Acta 14 (1941) 588; u L.P. Horwitz, C. Piron, Helv. Phys. Acta 46 (1973) 316; A. Kyprianidis, Phys. Rep. 155 (1987) 1; J.R. Fanchi, Found. Phys. 23 (1993) 487; H. Nikoli´, hep-th/0702060, to appear in Found. Phys. c [9] H. Nikoli´, Int. J. Quantum Inf. 7 (2009) 595 [arXiv:0811.1905]. c [10] S. Tomonaga, Prog. Theor. Phys. 1 (1946) 27. [11] H. Nikoli´, arXiv:0904.2287. c 8