SlideShare ist ein Scribd-Unternehmen logo
1 von 8
Downloaden Sie, um offline zu lesen
IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS)
e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 6, Issue 4 (May. – Jun. 2013), PP 05-12
www.iosrjournals.org
www.iosrjournals.org 5 | Page
Chemical Investigations of Some Commercial Samples of Calcium
Based Ayurvedic Drug of Marine Origin: Kapardika Bhasma
Sonali Dhamal, M.P.Wadekar*, B.A.Kulkarni, V.V.Dhapte
Department of Chemistry, Yashwantrao Mohite College, Bharati Vidyapeeth Deemed University,
Pune-411038, Maharashtra, India.
______________________________________________________________________________________
Abstract: Kapardika bhasma is an important Ayurvedic drug of marine origin. Even though it is composed of
mainly of calcium carbonate it exhibits excellent medicinal properties which are not associated with standard
calcium carbonate. In the present study four commercial samples are characterized using techniques like EDX,
SEM, IR, UV,XRD and TG analysis to throw light on their chemical composition and chemical properties .Such
comparative study may help to standardise and to interpret the biological and medicinal properties of such
traditional drug.
Keywords: Calcium carbonate, Kapardika bhasma, TG, SEM, IR, XRD.
I Introduction
Ocean is the biggest natural repository providing a huge number of materials many of which are
pharmaceutically important. Among these, there is a specific group of marine products of animal origin whose
pharmaceutical utility and medicinal importance was recognized long ago by traditional pharmacists. This group
includes five calcium based materials namely Counch [ terbinella rapa ], Counch shell [xan thus pyrum],
Kapardika [ cypraea moneta ], Praval [ coralliun rubrum ] and Pearl [ pinctada margarifiera ].
In Indian systems of medicine a huge number of pharmaceutical preparations are established according to
procedures reported in ancient ayurvedic texts. Kapardika bhasma is one of these drugs which is the subject of
present investigation.
Kapardika Bhasma is a valuable Ayurvedic drug which is used as powerful antacid and many stomach
problems. It is prepare from Kapardika powder. Various methods are reported in Ancient Ayurvedic literature
such as Rasatarangani, Charak Sanhita. These procedures are followed by Ayurvedic pharmacy still today.
Therefore, most of these formulations are considered as traditional medicines and they are not acceptable as
approved drugs on international level. Actually due to their natural and biological origin they possess several
merits as compared to their equivalent drugs in current use. Economically also, they are much cheaper due to
easily available raw material in huge quantity at a lower cost. Hence if their pharmaceutical and biomedical
chemistry is reinvestigated by standardizing synthetic procedures and methods of characterization on the basis
of modern analytical techniques, all these formulations will receive international appreciation and acceptance on
wider scale.
Literature survey reveals that studies on chemical investigations of some Ayurvedic bhasmas of
mineral origin are reported [1-4]
but relatively less work is reported on bhasmas of marine origin. A review on
Kapardika bhasma is reported by Krishna etal [5].
Some structural characterization on Varatika bhasma (i.e.
Kapardika bhasma) is also reported by Devanathan etal [6]
. Some calcium based Ayurvedic bhasmas are
analysed by instrumental neutron activation analysis for major and minor constituent elements by Kumar etal [7]
.
An attempt has been made by them to correlate metallic contents with their medicinal importance. Antacid
activity of some Ayurvedic calcium preparations is studied by Baxi [8].
In the present study Chemical investigations of some commercial samples of Kapardika bhasma are done using
modern techniques such as EDX, SEM, Solid state UV, Solid state IR, TGA and XRD. Such study may throw
light on chemical composition as well as structural properties of Kapardika bhasma and hence the origin of its
medicinal properties. Four samples from reputed pharmacies (K-1, K-2, K-3 and K-4) from different parts of
India are selected for current study in order to understand the current status of these bhasmas.
II Materials and Methods
Kapardika bhasma ( K1, K2, K3, K4) from four reputed pharmacies are collected for the present study.
Standard CaCO3 was purchased from Alderich for comparative purpose. Powder of Kapardika (K) was also
purchased from Ayurvedic pharmacy.
Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine
www.iosrjournals.org 6 | Page
Instrumental Techniques
Calcium carbonate, Kapardika powder and samples of Kapardika bhasma were analysed using EDX
machine (JEOL JSM – 6360A Analytical SEM) for obtaining the relative percentage of constituent elements.
The solid state infrared spectra were recorded in KBr (discs) in the region 4000-450 cm-1 on Perkin Elmer
model 1600 and solid state UV-Visible spectra were recorded in the region (220 – 800 nm) against pure KBr
disc as the reference. The KBr disc was prepared by mixing 1 mg of each sample with 100mg of KBr. Thickness
of the disc was maintained 0.1 mm for each of the sample. The XRD patterns were recorded on a Rigaku
(Geigerflex RB RU 200) X-ray diffractometer using Cu K alpha radiation filtered by a nickel foil over the range
of diffraction angle 3-500
, the wavelength used being 1.542 Aº. Thermograms of the sample are recorded on
Perkin Elmer TG analyser up to 10000
C at a heating rate 100
C per minute in air atmosphere. SEM photographs
of the samples were recorded on machine JEOL JSM – 6360A Analytical SEM.
III Results and Discussion
3.1 EDX-Analysis
The EDX analysis is mainly used to identify the constituent elements and for knowing the relative
percentages of these elements. These results are expressed in terms of bar diagram shown in the Fig-1.
Fig-1 Bar Diagram showing relative percentage of constituent elements of Kapardika bhasmas
Pure and stoichiomertically correct CaCO3 is composed of ~40% Ca and ~60%CO3 but the
commercial sample of CaCO3 of AR grade under study is associated with MgO (0.4%) as the impurity.
Naturally occurring Kapardika powder also contains predominantly calcium, carbon and oxygen. But it is
associated with sodium as a minor constituent. The four samples of Kapardika bhasma are also more
predominantly composed of the mixture of calcium, carbon and oxygen. This important observation is further
supported by IR studies.
3.2 Infrared Spectroscopy
Infrared spectra of Kapardika powder and samples of Kapardika bhasma are compared with standard
CaCO3 because all these samples are mainly composed of CaCO3 as observed from EDX. IR spectra of all the
samples are presented in Fig-2 and important frequencies are summarized in Table-2.
Conclusions from IR Study:
1. The IR spectrum of Kapardika powder shows characteristic peaks in the region 600-750 cm-1
confirming
presence of calcium carbonate [9].
Most of the samples of Kapardika bhasma also show two peaks in the
same region.
2. In Synthetic CaCO3 and in K-1, K-2, K-4 broad bands in region around 3445-3642 cm-1
are observed. They
are either due to O-H from H2O present in the lattice [10]
or from Ca(OH)2 associated with CaCO3
[11]
of
respective samples except that of K-3 sample.
0
10
20
30
40
50
60
70
80
90
K K1 K2 K3 K4
Ca
O
C
Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine
www.iosrjournals.org 7 | Page
Fig -2 Infrared spectra of Kapardika powder and bhasmas.
Table-2 Infrared Frequencies of Kapardika Powder and Kapardika Bhasmas
Sr.
No
Compound Peak-1 Peak-2 Peak-3 Peak4 Peak-5 Peak-
6
Peak-
7
Peak-
8
Peak-
9
Assignmen
t
O-H
(H2O)/
Ca(OH)2
Organi
c mater
Organic
mater
H-O-H CO3
2-
CO3
2-
CO3
2-
1. CaCO3 3445 2887
2872
2512 2360 1795 1403
1422
872 712 668
2 K 3446 2872 2512 2370 1799 1418 875 740
750
----
3 K-1 3642 ---- 2512 2360 1809 1435 910 712
750
----
4 K-2 3447 2875 2512 2344 1799 1436 875 712
750
600
620
5 K-3 ---- ---- 2513 2330 1843 1436 874 712 668
6 K-4 3444
3673
2898 2509 2362 1791 1446 874 726
750
----
3. In case of the Kapardika powder the broad peak around 3446 cm-1
is assignable to lattice water and
associated organic matter [12]
which is further supported by thermal studies. In K-3 sample there is no
indication of water molecule in its structure. In the spectrum of K-1 the peak around 3642cm-1
is sharp which
is rather surprising. The bands around 1795-1809 cm-1
could be assignable to H-O-H of water molecule
from CaCO3
[9]
.
4. The broad peaks around 1422 cm-1
as well as sharp peaks around 872 and 772 cm-1
are due to carbonate ions
(CO3
-2
) from CaCO3
[9]
in all five samples. The possible reasons for the presence of such peaks could be as
follows. The preparation of Kapardika bhasma involves repeated treatment of Kapardika powder with
medicinally important plants like Aloe Vera and repeated calcinations cycles in traditional furnace in an
earthen pots where temperature in the furnace is between 600-9000
C [ 13,14 ].
It is expected that the high
temperature inside the furnace should result the conversion of CaCO3 present in the Kapardika powder into
CaO [15]
involving the reaction- (1) as follows.
CaCO3  CaO + CO2 ---------- ( 1)
But the Kapardika bhasma mainly shows the presence of CaCO3 in the form of calcite along with Ca(OH)2
in some bhasma samples. This observation is consistent with the observations reported by Ketakar etal and
Dubey etal who have done rigorous investigation of Mukta Shouktik bhasma. [13,14]
which is also a calcium
carbonate based Ayurvedic bhasma. The repeated treatment of Aloe vera gel containing enough amount of
water may prevent the decarboation of intermediate product of Kapardika bhasma [16].
Possibility of
decarbonation of Kapardika powder in the form of aragonite and reformation of calcium carbonate in form
of calcite via calcium hydroxide is also reported by Mishra etal and Krishna etal.[5]
Calcium oxide formed
due to calcinations in Reaction (1) has a great affinity for water to give Ca(OH)2 through the reaction (2)
CaO + H2O - Ca(OH)2 -------- (2)
Ca(OH)2 + CO2  CaCO3 ------- (3)
This Ca(OH)2 again reacts with CO2 present in the sealed earthen pot to give again CaCO3 by reaction(3).
The reactions (1), ( 2) and (3) take place simultaneously. But since the reaction is taking place in closed
Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine
www.iosrjournals.org 8 | Page
system reaction (3) could be dominant due to presence of accumulated CO2 in the earthen pot. This
observation is also consistent with the detailed studies done by wadekar etal [2]
on effect of calcinations
cycles on preparation of vanga bhasma where the bhasma contains CaCO3 along with tin oxide.
5. The peaks around 2870-2890 cm-1
are assignable to the asymmetric and symmetric stretching vibrations of
sp3
hybridized C-H bands and the peaks around 2509-2513 cm-1
are attributed to organic matters which
contained hydroxyl matter. [10]
3.3 Electronic Spectroscopy
Solid state UV-Visible spectra of Kapardika powder and samples of Kapardika bhasmas are compared
with standard CaCO3 and Spectra of all the samples are presented in Fig-3 and important wavelengths along
with their tentative assignments are shown in Table-3
.
Table-3 Solid State Electronic Spectra (λ max in nm) of Kapardika powder and Kapardika bhasmas.
Compound Peak-1 Peak-2 Peak-3 Peak-4 Peak-5
Assignments σ-π* σ-π* π-π* π-π* n-π*
CaCO3 --- 239 270 302 , 344 ---
K --- --- 266 340 402
K-1 222 239 270 344 418
K-2 222 239 270 344 399
K-3 --- 239 270 344 538
K-4 224 239 270 344 407
3.4 X- ray powder Diffraction
The XRD patterns of CaCO3, Kapardika powder and four samples of Kapardika bhasma , are
illustrated in Fig- 4. These XRD patterns show that all the samples include CaCO3 as their major component.
These patterns are composed of sharp lines with different intensities. From the nature of these lines it reveals
that all these samples are crystalline in nature. The diffraction peak at (2theta=30.340
A) Kapardika powder and
the diffraction peaks (2 theta=29.78-28.990
A) in all samples of bhasma indicate possibility of calcite phase of
calcium carbonate [10,14].
The Particle size calculated from these XRD patterns using Scherrer Equation are
shown in Table-4 which falls in the range 28 nm to 40 nm indicating their nanometric nature. This size is lower
than the standard CaCO3.
Fig -3 Electronic spectra of Kapardika powder and Kapardika bhasma.
Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine
www.iosrjournals.org 9 | Page
Fig-4 XRD patterns of Kapardika powder and Kapardika bhasmas.
Table- 4 Particle Size of Kapardika and Kapardika bhasmas
Sr. No Name of the
Compound
FWHM Angel 2θ Particle Size
(nm)
1 CaCO3 0.1897 29.5421 43.32
2 K 0.2544 30.3427 32.36
3 K-1 0.2096 29.7876 39.23
4 K-2 0.2929 29.5594 28.06
5 K-3 0.2307 29.7450 35.64
6 K-4 0.2582 28.9998 31.79
3.5 Thermo-gravimetric Analysis
Thermo-gravimetric analysis patterns of Kapardika powder and respective bhasmas are presented in
Fig-5 and the important conclusions are summarized in Table-5 which supports CaCO3 as major component in
them along with small amount of organic matter and water or calcium hydroxide. Weight losses for CO2 and
weight of residues remaining at the end as CaO are matching well with the calculated weights. These results
indicate that Kapardika powder contains 83% CaCO3 and the bhasma samples contain 98-99% CaCO3.
Fig-5 Thermo-gravimetric patterns of Kapardika powder and Kapardika bhasmas
3.6 SEM Studies
The SEM photographs of pure CaCO3, Kapardika powder and samples of Kapardika bhasma at three
magnifications are shown in Fig-6. A comparison of the SEM photographs of Kapardika powder with the SEM
photographs of Kapardika bhasma shows that samples of Kapardika bhasma exhibits remarkable difference in
their morphology. They seems to be composed of lumps or agglomeration which are heterogeneous in nature
consisting of different sizes of crystallites .The conclusions from SEM studies may be summarized as follows:
(i) The Kapardika powder is a mixture of square shaped and rod shaped particles and the particle size ranges in
between 0.5 to 1micron. The reason of such mix particles could be, naturally occurring Kapardika is the hardest
material among all the marine products and it is more difficult to transform it into finely divided powder form .
Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine
www.iosrjournals.org 10 | Page
Due to this reason, special methods for the ayurvedic purification of Kapardika itself and its crude powder are
recommended to transform it into finely divided powder form.
Table-5 Thermal decomposition Steps of Kapardika powder and Kapardika bhasmas.
Compound
with initial
wt
Decomposition
Steps
Temperature
range 0
C
Wt loss
(mg)
Assignments
K
43mg
I 50-140 7.00 Loss due to organic matter and lattice water.
II 700-925 15.10
(15.84)
Loss due to CO2 from CaCO3
Residue as CaO = 21.00 (20.16)mg
K-1
10mg
I 50-460 0.10 Loss due to organic matter
II 460-501 0.40 Loss due to organic matter
III 650-850 3.50
(4.18)
Loss due to CO2 from CaCO3 and from small
amount of Ca(OH)2
Residue as CaO=6.00 (5.32) mg
K-2
40mg
I 50-375 0.30 Loss due to organic matter
II 800-925 17.20
(17.60)
Loss due to CO2 from CaCO3
Residue as CaO=22.5 (22.4) mg
K-3
19.50 mg
I 50-375 0.1 Loss due to organic matter
II 720-900 8.60
(8.53)
Loss due to CO2 from CaCO3
Residue as CaO=12.80 (12.86) mg
K-4
13.00 mg
I 50-540 0.4 Loss due to organic matter
II 725-875 5.60
(5.72)
Loss due to CO2 from CaCO3
Residue as CaO=7.00 (7.20) mg
The values in the parentheses indicate calculated values.
(ii) The K-1 sample of bhasma shows high degree of agglomeration and the particle size ranges between 0.5 to
0.7 micron. These agglomerates appear to be square shaped and porous.
(iii) K-2 sample is composed of porous agglomerates and particle size is ranging from 0.7 to 0.1 micron. The
shape of the particles is circular granules.
(iv) In K-3 also agglomeration is observed and the big particles are covered by small dusty particles as that of
for K-2.The particle size ranges from 0.5 to 1micron.
(v) The K-4 sample shows particles of 0.5 to 0.7 micron with loss of their grain boundaries. Higher degree of
agglomeration is a consequence of repeated calcinations cycles during the preparation of these bhasmas [2].
IV Conclusions
A comparative study of Kapardika powder and four commercial samples of Kapardika bhasma are
carried out using modern instrumental techniques. These samples are mainly composed of calcium carbonate as
indicated by EDX, IR and TGA. TGA is found to be the most useful technique for compositional studies of
these bhasmas. Four samples of Kapardika bhasma resembles with each other with minor differences due to
presence of small quantity of water, calcium hydroxide and organic matter. XRD of the four samples match with
calcite phase of calcium carbonate and indicate nanometric nature of the bhasmas. Such nanometric Size could
be responsible for the excellent therapeutic properties of the bhasmas.Further presence of organic matter as
shown by IR and TG is likely to influence the bioassemibility of the bhasma. SEM analysis reveals
agglomeration of the particles as consequences of repeated calcination cycles subjected during preparation of
these bhasmas. Morphology of these samples is remarkably different from each other as seen from SEM
photographs.
KO – 1 KO – 2 KO – 3
Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine
www.iosrjournals.org 11 | Page
K1 – 1 K1 – 2 K1 – 3
K2 – 1 K2 – 2 K2 – 3
K3 – 1 K3 – 2 K3-3
Fig-6 SEM photographs of Kapardika powder and Kapardika bhasmas K-1,K-2, K-3.
K4 – 1 K4 – 2 K4 – 3
Fig-6 SEM photographs of Kapardika bhasma sample K-4
These findings may help the preparation of standard and reproducible formulation of kapardika bhasma.
Acknowledgements
Authors are thankful to Dr. S.S. Kadam, Vice Chancellor, Bharati Vidyapeeth Deemed University,
Pune, Prof. K.D. Jadhav, Principal, Y.M. College, Pune, for providing necessary facilities and constant
encouragement. Authors are also thankful to Dr. P.S. Khandagale and Dr. P.K. Khanna for their valuable
suggestions.
References
[1] Wadekar M.P., Rode C.V., Bendale Y.N, Patil K.R., Prabhune A.A., Preparation and characterization of a copper based Indian
traditional drug: Tamra bhasma. Journal of pharmaceutical and biomedical analysis, 39,2005,951-955.
[2] Wadekar M.P., Rode C.V., Bendale Y.N., Patil K.R., Gaikwad, Prabhune A.A., Effect of calcinations cycles on the preparation of tin
oxide based traditional drug: Studies on its formation and characterization., Journal of pharmaceutical and biomedical
analysis.,41,2006,1473-1478.
[3] Mrudula Wadekar, Vishwas Gogte, Prasad Khandagale and Asmita Prabhune. Comparative study of some commercial samples of
Naga Bhasma., Ancient Science of Life, 23(4),2004, 45-48.
Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine
www.iosrjournals.org 12 | Page
[4] Mrudula Kulkarni, G.T. Panse, B.A. Kulkarni and Yogesh Bendale. Characterization of Raupya Bhasma by using modern analytical
techniques., Journal of Indian Medicine and Homeopathy, January-March, 2004,37-43.
[5] Kulshrestha Mayanka Krishna, Karbal Kamleshwar Singh., A critical review on Ayurvedic drug Kapardika (Cypraea Moneta Linn),
International research Journal of Pharmacy, 3(10), 2012.
[6] Devanathan R., Rajalakshmi P. P. and Brindha P., Chemical Standardisation studies on Varatika Bhasma, International Journal of
Pharmaceutical research, 2(4), 2010, 12-16.
[7] Kumar A., Nair A. G.C., Reddy A. V. R. and Garg A. N., Availability of essential elements in bhasmas: Analysis of Ayurvedic
metallic preparations by INAA, Journal of Radio-analytical and Nuclear Chemistry, (270)1, 2006, 173-180.
[8] A. J. Baxi and S. A. Vasavada, Antacid activity of some Ayurvedic calcium preparations, Indian J. Pharmacy, 27, 1965,227–230.
[9] Flemming A. Andersen and Ljerka Brecevic, Infrared spectra of amorphous and crystalline calcium carbonate, Acta Chemica
Scandinavica ,45,1991, 1018-1024.
[10] Wenlong Wu, Liping Zhang, Zhijun Yang and Weisheng Hou., Study on microstructure of the Pinctada martensii pearls and its
significance., International Scholarly Research Network ISRN spectroscopy, article ID 756217, 2012 ,9.
[11] FTIR and XRD analysis of mineral and organic matrix during heating of mother pearl from shell of the mollusc pinctada maxima.,
Balmain J., Hannoyer B and Lopez E, Journal of Biomedical material Research, 48(5), 1999,749-754.
[12] Meena Devi, P. Nagendra Prasad and K. Kalirajan., Infrared spectral studies on siddha drug-Pavalaparpam., International journal of
pharma and biosciences, 1(4), 2010, 474-483.
[13] Ketkar A R, Kadam H.M. and Paradkar A.R., Temperature variability during preparation of shouktic bhasma and its consequences,
Indian Drugs. 40(6),2003, 363-365.
[14] Nitin Dubey, Nidhi Dubey, Rajenndra S. Mehta, Ajay K. Saluja and Dinesh Jain., Physiological and pharmacological assessment of
a traditional biomedicine: Mukta shouktic bhasma., Songklanakarin J. Sci, Technol,31(5), 2009,501-510.
[15] Engin, B. Demirtas H., Eken M., Temperature effects on egg shells investigated by XRD, IR and ESR techniques., Radiation physics
and chemistry.,75,2006, 268-277.
[16] Ketkar A R, Borde P. P., Kadam H.M. and Paradkar A.R., Role of Aloe vera juice treatment(bhavana) in preparation of shouktic
bhasma., Indian Drugs.,39(12), 2002, 661-663.

Weitere ähnliche Inhalte

Was ist angesagt?

A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...Alexander Decker
 
Application of Hydrotrophy in HPLC Hydrotrophic Solution, A Novel Cost Effect...
Application of Hydrotrophy in HPLC Hydrotrophic Solution, A Novel Cost Effect...Application of Hydrotrophy in HPLC Hydrotrophic Solution, A Novel Cost Effect...
Application of Hydrotrophy in HPLC Hydrotrophic Solution, A Novel Cost Effect...ijtsrd
 
Determination of cefadroxil antibiotic by an analytical method
Determination of cefadroxil antibiotic by an analytical methodDetermination of cefadroxil antibiotic by an analytical method
Determination of cefadroxil antibiotic by an analytical methodAlexander Decker
 
Analytical view on Mukta shukti Bhasma
Analytical view on Mukta shukti Bhasma  Analytical view on Mukta shukti Bhasma
Analytical view on Mukta shukti Bhasma Mallamma Biradar
 
vardinafil methods of analysis
vardinafil methods of analysisvardinafil methods of analysis
vardinafil methods of analysisLubna Mohammad
 
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...Taghreed Al-Noor
 

Was ist angesagt? (9)

G49033740
G49033740G49033740
G49033740
 
G044028042
G044028042G044028042
G044028042
 
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
 
Application of Hydrotrophy in HPLC Hydrotrophic Solution, A Novel Cost Effect...
Application of Hydrotrophy in HPLC Hydrotrophic Solution, A Novel Cost Effect...Application of Hydrotrophy in HPLC Hydrotrophic Solution, A Novel Cost Effect...
Application of Hydrotrophy in HPLC Hydrotrophic Solution, A Novel Cost Effect...
 
Determination of cefadroxil antibiotic by an analytical method
Determination of cefadroxil antibiotic by an analytical methodDetermination of cefadroxil antibiotic by an analytical method
Determination of cefadroxil antibiotic by an analytical method
 
Analytical view on Mukta shukti Bhasma
Analytical view on Mukta shukti Bhasma  Analytical view on Mukta shukti Bhasma
Analytical view on Mukta shukti Bhasma
 
vardinafil methods of analysis
vardinafil methods of analysisvardinafil methods of analysis
vardinafil methods of analysis
 
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
Synthesis characterization-and-antimicrobial-activities-offeiicoiiniiicuiiand...
 
Application Note: Crystal16 and Co-Crystallization
Application Note:  Crystal16 and Co-CrystallizationApplication Note:  Crystal16 and Co-Crystallization
Application Note: Crystal16 and Co-Crystallization
 

Andere mochten auch

Field Programmable Gate Array for Data Processing in Medical Systems
Field Programmable Gate Array for Data Processing in Medical SystemsField Programmable Gate Array for Data Processing in Medical Systems
Field Programmable Gate Array for Data Processing in Medical SystemsIOSR Journals
 
Wear Analysis of Polytetrafluoroethylene (PTFE) and it’s Composites under Wet...
Wear Analysis of Polytetrafluoroethylene (PTFE) and it’s Composites under Wet...Wear Analysis of Polytetrafluoroethylene (PTFE) and it’s Composites under Wet...
Wear Analysis of Polytetrafluoroethylene (PTFE) and it’s Composites under Wet...IOSR Journals
 
The Prevalence of Alcohol Consumption among Commercial Drivers in Uyo Local G...
The Prevalence of Alcohol Consumption among Commercial Drivers in Uyo Local G...The Prevalence of Alcohol Consumption among Commercial Drivers in Uyo Local G...
The Prevalence of Alcohol Consumption among Commercial Drivers in Uyo Local G...IOSR Journals
 
Comparative Assessment of Two Thermodynamic Cycles of an aero-derivative Mari...
Comparative Assessment of Two Thermodynamic Cycles of an aero-derivative Mari...Comparative Assessment of Two Thermodynamic Cycles of an aero-derivative Mari...
Comparative Assessment of Two Thermodynamic Cycles of an aero-derivative Mari...IOSR Journals
 
Unified V- Model Approach of Re-Engineering to reinforce Web Application Deve...
Unified V- Model Approach of Re-Engineering to reinforce Web Application Deve...Unified V- Model Approach of Re-Engineering to reinforce Web Application Deve...
Unified V- Model Approach of Re-Engineering to reinforce Web Application Deve...IOSR Journals
 
Study on Coupling Model of Methanol Steam Reforming and Simultaneous Hydrogen...
Study on Coupling Model of Methanol Steam Reforming and Simultaneous Hydrogen...Study on Coupling Model of Methanol Steam Reforming and Simultaneous Hydrogen...
Study on Coupling Model of Methanol Steam Reforming and Simultaneous Hydrogen...IOSR Journals
 
Analysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
Analysis of Ketoconazole and Piribedil Using Ion Selective ElectrodesAnalysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
Analysis of Ketoconazole and Piribedil Using Ion Selective ElectrodesIOSR Journals
 
кайртаева жадыра театр - предприниматели
кайртаева жадыра   театр - предпринимателикайртаева жадыра   театр - предприниматели
кайртаева жадыра театр - предпринимателиIOSR Journals
 

Andere mochten auch (20)

D012642240
D012642240D012642240
D012642240
 
T180304125129
T180304125129T180304125129
T180304125129
 
E012612933
E012612933E012612933
E012612933
 
Field Programmable Gate Array for Data Processing in Medical Systems
Field Programmable Gate Array for Data Processing in Medical SystemsField Programmable Gate Array for Data Processing in Medical Systems
Field Programmable Gate Array for Data Processing in Medical Systems
 
Wear Analysis of Polytetrafluoroethylene (PTFE) and it’s Composites under Wet...
Wear Analysis of Polytetrafluoroethylene (PTFE) and it’s Composites under Wet...Wear Analysis of Polytetrafluoroethylene (PTFE) and it’s Composites under Wet...
Wear Analysis of Polytetrafluoroethylene (PTFE) and it’s Composites under Wet...
 
The Prevalence of Alcohol Consumption among Commercial Drivers in Uyo Local G...
The Prevalence of Alcohol Consumption among Commercial Drivers in Uyo Local G...The Prevalence of Alcohol Consumption among Commercial Drivers in Uyo Local G...
The Prevalence of Alcohol Consumption among Commercial Drivers in Uyo Local G...
 
Comparative Assessment of Two Thermodynamic Cycles of an aero-derivative Mari...
Comparative Assessment of Two Thermodynamic Cycles of an aero-derivative Mari...Comparative Assessment of Two Thermodynamic Cycles of an aero-derivative Mari...
Comparative Assessment of Two Thermodynamic Cycles of an aero-derivative Mari...
 
Unified V- Model Approach of Re-Engineering to reinforce Web Application Deve...
Unified V- Model Approach of Re-Engineering to reinforce Web Application Deve...Unified V- Model Approach of Re-Engineering to reinforce Web Application Deve...
Unified V- Model Approach of Re-Engineering to reinforce Web Application Deve...
 
Study on Coupling Model of Methanol Steam Reforming and Simultaneous Hydrogen...
Study on Coupling Model of Methanol Steam Reforming and Simultaneous Hydrogen...Study on Coupling Model of Methanol Steam Reforming and Simultaneous Hydrogen...
Study on Coupling Model of Methanol Steam Reforming and Simultaneous Hydrogen...
 
Analysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
Analysis of Ketoconazole and Piribedil Using Ion Selective ElectrodesAnalysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
Analysis of Ketoconazole and Piribedil Using Ion Selective Electrodes
 
M017369095
M017369095M017369095
M017369095
 
G1803024452
G1803024452G1803024452
G1803024452
 
N017318992
N017318992N017318992
N017318992
 
H017524854
H017524854H017524854
H017524854
 
D010321824
D010321824D010321824
D010321824
 
J010316368
J010316368J010316368
J010316368
 
кайртаева жадыра театр - предприниматели
кайртаева жадыра   театр - предпринимателикайртаева жадыра   театр - предприниматели
кайртаева жадыра театр - предприниматели
 
B012121114
B012121114B012121114
B012121114
 
C1103031822
C1103031822C1103031822
C1103031822
 
A017360104
A017360104A017360104
A017360104
 

Ähnlich wie Chemical Investigations of Some Commercial Samples of Calcium Based Ayurvedic Drug of Marine Origin: Kapardika Bhasma

International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI) International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI) inventionjournals
 
IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)iosrphr_editor
 
Phytochemical Screening of Caralluma lasiantha Isolation of C21 Pregnane Steroid
Phytochemical Screening of Caralluma lasiantha Isolation of C21 Pregnane SteroidPhytochemical Screening of Caralluma lasiantha Isolation of C21 Pregnane Steroid
Phytochemical Screening of Caralluma lasiantha Isolation of C21 Pregnane SteroidRatnakaram Venkata Nadh
 
Aatoxinconcentrationsinchiliesvarydepending.pdf
Aatoxinconcentrationsinchiliesvarydepending.pdfAatoxinconcentrationsinchiliesvarydepending.pdf
Aatoxinconcentrationsinchiliesvarydepending.pdfSubburamu Karthikeyan
 
The Effect of Formic Acid, Hydrogen Peroxyde and Other Conditions on Epoxidiz...
The Effect of Formic Acid, Hydrogen Peroxyde and Other Conditions on Epoxidiz...The Effect of Formic Acid, Hydrogen Peroxyde and Other Conditions on Epoxidiz...
The Effect of Formic Acid, Hydrogen Peroxyde and Other Conditions on Epoxidiz...ijtsrd
 
Synthesis, Characterization and Electro analytical Applications of Nitrogen D...
Synthesis, Characterization and Electro analytical Applications of Nitrogen D...Synthesis, Characterization and Electro analytical Applications of Nitrogen D...
Synthesis, Characterization and Electro analytical Applications of Nitrogen D...IRJET Journal
 
Experimental and theoretical solubility advantage screening of bi-component s...
Experimental and theoretical solubility advantage screening of bi-component s...Experimental and theoretical solubility advantage screening of bi-component s...
Experimental and theoretical solubility advantage screening of bi-component s...Maciej Przybyłek
 
Alkaline Extraction of Cobia (Rachycentroncanadum) Proteins: Physicochemical ...
Alkaline Extraction of Cobia (Rachycentroncanadum) Proteins: Physicochemical ...Alkaline Extraction of Cobia (Rachycentroncanadum) Proteins: Physicochemical ...
Alkaline Extraction of Cobia (Rachycentroncanadum) Proteins: Physicochemical ...IJERA Editor
 
Karim712015IRJPAC16163
Karim712015IRJPAC16163Karim712015IRJPAC16163
Karim712015IRJPAC16163Ankit Singh
 
Synthesis and Characterization of Nano Hydroxyapatite with Poly Vinyl Pyrroli...
Synthesis and Characterization of Nano Hydroxyapatite with Poly Vinyl Pyrroli...Synthesis and Characterization of Nano Hydroxyapatite with Poly Vinyl Pyrroli...
Synthesis and Characterization of Nano Hydroxyapatite with Poly Vinyl Pyrroli...IJERA Editor
 
Bio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe Barbadensis
Bio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe BarbadensisBio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe Barbadensis
Bio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe BarbadensisAssociate Professor in VSB Coimbatore
 
UGC Amit Proposal.docx
UGC Amit Proposal.docxUGC Amit Proposal.docx
UGC Amit Proposal.docxNeerajOjha8
 
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...JapaneseJournalofGas
 
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...JohnJulie1
 
Heavy Metal Analysis from Traditionally used Herb Ceropegia juncea (Roxb.)
Heavy Metal Analysis from Traditionally used Herb Ceropegia juncea (Roxb.)Heavy Metal Analysis from Traditionally used Herb Ceropegia juncea (Roxb.)
Heavy Metal Analysis from Traditionally used Herb Ceropegia juncea (Roxb.)iosrphr_editor
 

Ähnlich wie Chemical Investigations of Some Commercial Samples of Calcium Based Ayurvedic Drug of Marine Origin: Kapardika Bhasma (20)

International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI) International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)
 
ijcrcps
ijcrcpsijcrcps
ijcrcps
 
IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)
 
20320140501007
2032014050100720320140501007
20320140501007
 
Phytochemical Screening of Caralluma lasiantha Isolation of C21 Pregnane Steroid
Phytochemical Screening of Caralluma lasiantha Isolation of C21 Pregnane SteroidPhytochemical Screening of Caralluma lasiantha Isolation of C21 Pregnane Steroid
Phytochemical Screening of Caralluma lasiantha Isolation of C21 Pregnane Steroid
 
Aatoxinconcentrationsinchiliesvarydepending.pdf
Aatoxinconcentrationsinchiliesvarydepending.pdfAatoxinconcentrationsinchiliesvarydepending.pdf
Aatoxinconcentrationsinchiliesvarydepending.pdf
 
The Effect of Formic Acid, Hydrogen Peroxyde and Other Conditions on Epoxidiz...
The Effect of Formic Acid, Hydrogen Peroxyde and Other Conditions on Epoxidiz...The Effect of Formic Acid, Hydrogen Peroxyde and Other Conditions on Epoxidiz...
The Effect of Formic Acid, Hydrogen Peroxyde and Other Conditions on Epoxidiz...
 
Synthesis, Characterization and Electro analytical Applications of Nitrogen D...
Synthesis, Characterization and Electro analytical Applications of Nitrogen D...Synthesis, Characterization and Electro analytical Applications of Nitrogen D...
Synthesis, Characterization and Electro analytical Applications of Nitrogen D...
 
Experimental and theoretical solubility advantage screening of bi-component s...
Experimental and theoretical solubility advantage screening of bi-component s...Experimental and theoretical solubility advantage screening of bi-component s...
Experimental and theoretical solubility advantage screening of bi-component s...
 
Alkaline Extraction of Cobia (Rachycentroncanadum) Proteins: Physicochemical ...
Alkaline Extraction of Cobia (Rachycentroncanadum) Proteins: Physicochemical ...Alkaline Extraction of Cobia (Rachycentroncanadum) Proteins: Physicochemical ...
Alkaline Extraction of Cobia (Rachycentroncanadum) Proteins: Physicochemical ...
 
Karim712015IRJPAC16163
Karim712015IRJPAC16163Karim712015IRJPAC16163
Karim712015IRJPAC16163
 
Synthesis and Characterization of Nano Hydroxyapatite with Poly Vinyl Pyrroli...
Synthesis and Characterization of Nano Hydroxyapatite with Poly Vinyl Pyrroli...Synthesis and Characterization of Nano Hydroxyapatite with Poly Vinyl Pyrroli...
Synthesis and Characterization of Nano Hydroxyapatite with Poly Vinyl Pyrroli...
 
Bio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe Barbadensis
Bio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe BarbadensisBio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe Barbadensis
Bio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe Barbadensis
 
Microwave
MicrowaveMicrowave
Microwave
 
UGC Amit Proposal.docx
UGC Amit Proposal.docxUGC Amit Proposal.docx
UGC Amit Proposal.docx
 
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
 
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
Synthesis, Characterization, Biological Evaluation of Some Heterocyclic Oxaze...
 
Acrylamide in Foods: A Review of the Science and Future Considerations_Lineba...
Acrylamide in Foods: A Review of the Science and Future Considerations_Lineba...Acrylamide in Foods: A Review of the Science and Future Considerations_Lineba...
Acrylamide in Foods: A Review of the Science and Future Considerations_Lineba...
 
JCTBT2
JCTBT2JCTBT2
JCTBT2
 
Heavy Metal Analysis from Traditionally used Herb Ceropegia juncea (Roxb.)
Heavy Metal Analysis from Traditionally used Herb Ceropegia juncea (Roxb.)Heavy Metal Analysis from Traditionally used Herb Ceropegia juncea (Roxb.)
Heavy Metal Analysis from Traditionally used Herb Ceropegia juncea (Roxb.)
 

Mehr von IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Kürzlich hochgeladen

GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxtuking87
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxpriyankatabhane
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Christina Parmionova
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxpriyankatabhane
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clonechaudhary charan shingh university
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsDobusch Leonhard
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPRPirithiRaju
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsCharlene Llagas
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 
Replisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdfReplisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdfAtiaGohar1
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptAmirRaziq1
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxkumarsanjai28051
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 

Kürzlich hochgeladen (20)

GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptx
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptx
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clone
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and Pitfalls
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and Functions
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 
Replisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdfReplisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdf
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.ppt
 
Forensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptxForensic limnology of diatoms by Sanjai.pptx
Forensic limnology of diatoms by Sanjai.pptx
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
 
PLASMODIUM. PPTX
PLASMODIUM. PPTXPLASMODIUM. PPTX
PLASMODIUM. PPTX
 

Chemical Investigations of Some Commercial Samples of Calcium Based Ayurvedic Drug of Marine Origin: Kapardika Bhasma

  • 1. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 6, Issue 4 (May. – Jun. 2013), PP 05-12 www.iosrjournals.org www.iosrjournals.org 5 | Page Chemical Investigations of Some Commercial Samples of Calcium Based Ayurvedic Drug of Marine Origin: Kapardika Bhasma Sonali Dhamal, M.P.Wadekar*, B.A.Kulkarni, V.V.Dhapte Department of Chemistry, Yashwantrao Mohite College, Bharati Vidyapeeth Deemed University, Pune-411038, Maharashtra, India. ______________________________________________________________________________________ Abstract: Kapardika bhasma is an important Ayurvedic drug of marine origin. Even though it is composed of mainly of calcium carbonate it exhibits excellent medicinal properties which are not associated with standard calcium carbonate. In the present study four commercial samples are characterized using techniques like EDX, SEM, IR, UV,XRD and TG analysis to throw light on their chemical composition and chemical properties .Such comparative study may help to standardise and to interpret the biological and medicinal properties of such traditional drug. Keywords: Calcium carbonate, Kapardika bhasma, TG, SEM, IR, XRD. I Introduction Ocean is the biggest natural repository providing a huge number of materials many of which are pharmaceutically important. Among these, there is a specific group of marine products of animal origin whose pharmaceutical utility and medicinal importance was recognized long ago by traditional pharmacists. This group includes five calcium based materials namely Counch [ terbinella rapa ], Counch shell [xan thus pyrum], Kapardika [ cypraea moneta ], Praval [ coralliun rubrum ] and Pearl [ pinctada margarifiera ]. In Indian systems of medicine a huge number of pharmaceutical preparations are established according to procedures reported in ancient ayurvedic texts. Kapardika bhasma is one of these drugs which is the subject of present investigation. Kapardika Bhasma is a valuable Ayurvedic drug which is used as powerful antacid and many stomach problems. It is prepare from Kapardika powder. Various methods are reported in Ancient Ayurvedic literature such as Rasatarangani, Charak Sanhita. These procedures are followed by Ayurvedic pharmacy still today. Therefore, most of these formulations are considered as traditional medicines and they are not acceptable as approved drugs on international level. Actually due to their natural and biological origin they possess several merits as compared to their equivalent drugs in current use. Economically also, they are much cheaper due to easily available raw material in huge quantity at a lower cost. Hence if their pharmaceutical and biomedical chemistry is reinvestigated by standardizing synthetic procedures and methods of characterization on the basis of modern analytical techniques, all these formulations will receive international appreciation and acceptance on wider scale. Literature survey reveals that studies on chemical investigations of some Ayurvedic bhasmas of mineral origin are reported [1-4] but relatively less work is reported on bhasmas of marine origin. A review on Kapardika bhasma is reported by Krishna etal [5]. Some structural characterization on Varatika bhasma (i.e. Kapardika bhasma) is also reported by Devanathan etal [6] . Some calcium based Ayurvedic bhasmas are analysed by instrumental neutron activation analysis for major and minor constituent elements by Kumar etal [7] . An attempt has been made by them to correlate metallic contents with their medicinal importance. Antacid activity of some Ayurvedic calcium preparations is studied by Baxi [8]. In the present study Chemical investigations of some commercial samples of Kapardika bhasma are done using modern techniques such as EDX, SEM, Solid state UV, Solid state IR, TGA and XRD. Such study may throw light on chemical composition as well as structural properties of Kapardika bhasma and hence the origin of its medicinal properties. Four samples from reputed pharmacies (K-1, K-2, K-3 and K-4) from different parts of India are selected for current study in order to understand the current status of these bhasmas. II Materials and Methods Kapardika bhasma ( K1, K2, K3, K4) from four reputed pharmacies are collected for the present study. Standard CaCO3 was purchased from Alderich for comparative purpose. Powder of Kapardika (K) was also purchased from Ayurvedic pharmacy.
  • 2. Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine www.iosrjournals.org 6 | Page Instrumental Techniques Calcium carbonate, Kapardika powder and samples of Kapardika bhasma were analysed using EDX machine (JEOL JSM – 6360A Analytical SEM) for obtaining the relative percentage of constituent elements. The solid state infrared spectra were recorded in KBr (discs) in the region 4000-450 cm-1 on Perkin Elmer model 1600 and solid state UV-Visible spectra were recorded in the region (220 – 800 nm) against pure KBr disc as the reference. The KBr disc was prepared by mixing 1 mg of each sample with 100mg of KBr. Thickness of the disc was maintained 0.1 mm for each of the sample. The XRD patterns were recorded on a Rigaku (Geigerflex RB RU 200) X-ray diffractometer using Cu K alpha radiation filtered by a nickel foil over the range of diffraction angle 3-500 , the wavelength used being 1.542 Aº. Thermograms of the sample are recorded on Perkin Elmer TG analyser up to 10000 C at a heating rate 100 C per minute in air atmosphere. SEM photographs of the samples were recorded on machine JEOL JSM – 6360A Analytical SEM. III Results and Discussion 3.1 EDX-Analysis The EDX analysis is mainly used to identify the constituent elements and for knowing the relative percentages of these elements. These results are expressed in terms of bar diagram shown in the Fig-1. Fig-1 Bar Diagram showing relative percentage of constituent elements of Kapardika bhasmas Pure and stoichiomertically correct CaCO3 is composed of ~40% Ca and ~60%CO3 but the commercial sample of CaCO3 of AR grade under study is associated with MgO (0.4%) as the impurity. Naturally occurring Kapardika powder also contains predominantly calcium, carbon and oxygen. But it is associated with sodium as a minor constituent. The four samples of Kapardika bhasma are also more predominantly composed of the mixture of calcium, carbon and oxygen. This important observation is further supported by IR studies. 3.2 Infrared Spectroscopy Infrared spectra of Kapardika powder and samples of Kapardika bhasma are compared with standard CaCO3 because all these samples are mainly composed of CaCO3 as observed from EDX. IR spectra of all the samples are presented in Fig-2 and important frequencies are summarized in Table-2. Conclusions from IR Study: 1. The IR spectrum of Kapardika powder shows characteristic peaks in the region 600-750 cm-1 confirming presence of calcium carbonate [9]. Most of the samples of Kapardika bhasma also show two peaks in the same region. 2. In Synthetic CaCO3 and in K-1, K-2, K-4 broad bands in region around 3445-3642 cm-1 are observed. They are either due to O-H from H2O present in the lattice [10] or from Ca(OH)2 associated with CaCO3 [11] of respective samples except that of K-3 sample. 0 10 20 30 40 50 60 70 80 90 K K1 K2 K3 K4 Ca O C
  • 3. Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine www.iosrjournals.org 7 | Page Fig -2 Infrared spectra of Kapardika powder and bhasmas. Table-2 Infrared Frequencies of Kapardika Powder and Kapardika Bhasmas Sr. No Compound Peak-1 Peak-2 Peak-3 Peak4 Peak-5 Peak- 6 Peak- 7 Peak- 8 Peak- 9 Assignmen t O-H (H2O)/ Ca(OH)2 Organi c mater Organic mater H-O-H CO3 2- CO3 2- CO3 2- 1. CaCO3 3445 2887 2872 2512 2360 1795 1403 1422 872 712 668 2 K 3446 2872 2512 2370 1799 1418 875 740 750 ---- 3 K-1 3642 ---- 2512 2360 1809 1435 910 712 750 ---- 4 K-2 3447 2875 2512 2344 1799 1436 875 712 750 600 620 5 K-3 ---- ---- 2513 2330 1843 1436 874 712 668 6 K-4 3444 3673 2898 2509 2362 1791 1446 874 726 750 ---- 3. In case of the Kapardika powder the broad peak around 3446 cm-1 is assignable to lattice water and associated organic matter [12] which is further supported by thermal studies. In K-3 sample there is no indication of water molecule in its structure. In the spectrum of K-1 the peak around 3642cm-1 is sharp which is rather surprising. The bands around 1795-1809 cm-1 could be assignable to H-O-H of water molecule from CaCO3 [9] . 4. The broad peaks around 1422 cm-1 as well as sharp peaks around 872 and 772 cm-1 are due to carbonate ions (CO3 -2 ) from CaCO3 [9] in all five samples. The possible reasons for the presence of such peaks could be as follows. The preparation of Kapardika bhasma involves repeated treatment of Kapardika powder with medicinally important plants like Aloe Vera and repeated calcinations cycles in traditional furnace in an earthen pots where temperature in the furnace is between 600-9000 C [ 13,14 ]. It is expected that the high temperature inside the furnace should result the conversion of CaCO3 present in the Kapardika powder into CaO [15] involving the reaction- (1) as follows. CaCO3  CaO + CO2 ---------- ( 1) But the Kapardika bhasma mainly shows the presence of CaCO3 in the form of calcite along with Ca(OH)2 in some bhasma samples. This observation is consistent with the observations reported by Ketakar etal and Dubey etal who have done rigorous investigation of Mukta Shouktik bhasma. [13,14] which is also a calcium carbonate based Ayurvedic bhasma. The repeated treatment of Aloe vera gel containing enough amount of water may prevent the decarboation of intermediate product of Kapardika bhasma [16]. Possibility of decarbonation of Kapardika powder in the form of aragonite and reformation of calcium carbonate in form of calcite via calcium hydroxide is also reported by Mishra etal and Krishna etal.[5] Calcium oxide formed due to calcinations in Reaction (1) has a great affinity for water to give Ca(OH)2 through the reaction (2) CaO + H2O - Ca(OH)2 -------- (2) Ca(OH)2 + CO2  CaCO3 ------- (3) This Ca(OH)2 again reacts with CO2 present in the sealed earthen pot to give again CaCO3 by reaction(3). The reactions (1), ( 2) and (3) take place simultaneously. But since the reaction is taking place in closed
  • 4. Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine www.iosrjournals.org 8 | Page system reaction (3) could be dominant due to presence of accumulated CO2 in the earthen pot. This observation is also consistent with the detailed studies done by wadekar etal [2] on effect of calcinations cycles on preparation of vanga bhasma where the bhasma contains CaCO3 along with tin oxide. 5. The peaks around 2870-2890 cm-1 are assignable to the asymmetric and symmetric stretching vibrations of sp3 hybridized C-H bands and the peaks around 2509-2513 cm-1 are attributed to organic matters which contained hydroxyl matter. [10] 3.3 Electronic Spectroscopy Solid state UV-Visible spectra of Kapardika powder and samples of Kapardika bhasmas are compared with standard CaCO3 and Spectra of all the samples are presented in Fig-3 and important wavelengths along with their tentative assignments are shown in Table-3 . Table-3 Solid State Electronic Spectra (λ max in nm) of Kapardika powder and Kapardika bhasmas. Compound Peak-1 Peak-2 Peak-3 Peak-4 Peak-5 Assignments σ-π* σ-π* π-π* π-π* n-π* CaCO3 --- 239 270 302 , 344 --- K --- --- 266 340 402 K-1 222 239 270 344 418 K-2 222 239 270 344 399 K-3 --- 239 270 344 538 K-4 224 239 270 344 407 3.4 X- ray powder Diffraction The XRD patterns of CaCO3, Kapardika powder and four samples of Kapardika bhasma , are illustrated in Fig- 4. These XRD patterns show that all the samples include CaCO3 as their major component. These patterns are composed of sharp lines with different intensities. From the nature of these lines it reveals that all these samples are crystalline in nature. The diffraction peak at (2theta=30.340 A) Kapardika powder and the diffraction peaks (2 theta=29.78-28.990 A) in all samples of bhasma indicate possibility of calcite phase of calcium carbonate [10,14]. The Particle size calculated from these XRD patterns using Scherrer Equation are shown in Table-4 which falls in the range 28 nm to 40 nm indicating their nanometric nature. This size is lower than the standard CaCO3. Fig -3 Electronic spectra of Kapardika powder and Kapardika bhasma.
  • 5. Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine www.iosrjournals.org 9 | Page Fig-4 XRD patterns of Kapardika powder and Kapardika bhasmas. Table- 4 Particle Size of Kapardika and Kapardika bhasmas Sr. No Name of the Compound FWHM Angel 2θ Particle Size (nm) 1 CaCO3 0.1897 29.5421 43.32 2 K 0.2544 30.3427 32.36 3 K-1 0.2096 29.7876 39.23 4 K-2 0.2929 29.5594 28.06 5 K-3 0.2307 29.7450 35.64 6 K-4 0.2582 28.9998 31.79 3.5 Thermo-gravimetric Analysis Thermo-gravimetric analysis patterns of Kapardika powder and respective bhasmas are presented in Fig-5 and the important conclusions are summarized in Table-5 which supports CaCO3 as major component in them along with small amount of organic matter and water or calcium hydroxide. Weight losses for CO2 and weight of residues remaining at the end as CaO are matching well with the calculated weights. These results indicate that Kapardika powder contains 83% CaCO3 and the bhasma samples contain 98-99% CaCO3. Fig-5 Thermo-gravimetric patterns of Kapardika powder and Kapardika bhasmas 3.6 SEM Studies The SEM photographs of pure CaCO3, Kapardika powder and samples of Kapardika bhasma at three magnifications are shown in Fig-6. A comparison of the SEM photographs of Kapardika powder with the SEM photographs of Kapardika bhasma shows that samples of Kapardika bhasma exhibits remarkable difference in their morphology. They seems to be composed of lumps or agglomeration which are heterogeneous in nature consisting of different sizes of crystallites .The conclusions from SEM studies may be summarized as follows: (i) The Kapardika powder is a mixture of square shaped and rod shaped particles and the particle size ranges in between 0.5 to 1micron. The reason of such mix particles could be, naturally occurring Kapardika is the hardest material among all the marine products and it is more difficult to transform it into finely divided powder form .
  • 6. Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine www.iosrjournals.org 10 | Page Due to this reason, special methods for the ayurvedic purification of Kapardika itself and its crude powder are recommended to transform it into finely divided powder form. Table-5 Thermal decomposition Steps of Kapardika powder and Kapardika bhasmas. Compound with initial wt Decomposition Steps Temperature range 0 C Wt loss (mg) Assignments K 43mg I 50-140 7.00 Loss due to organic matter and lattice water. II 700-925 15.10 (15.84) Loss due to CO2 from CaCO3 Residue as CaO = 21.00 (20.16)mg K-1 10mg I 50-460 0.10 Loss due to organic matter II 460-501 0.40 Loss due to organic matter III 650-850 3.50 (4.18) Loss due to CO2 from CaCO3 and from small amount of Ca(OH)2 Residue as CaO=6.00 (5.32) mg K-2 40mg I 50-375 0.30 Loss due to organic matter II 800-925 17.20 (17.60) Loss due to CO2 from CaCO3 Residue as CaO=22.5 (22.4) mg K-3 19.50 mg I 50-375 0.1 Loss due to organic matter II 720-900 8.60 (8.53) Loss due to CO2 from CaCO3 Residue as CaO=12.80 (12.86) mg K-4 13.00 mg I 50-540 0.4 Loss due to organic matter II 725-875 5.60 (5.72) Loss due to CO2 from CaCO3 Residue as CaO=7.00 (7.20) mg The values in the parentheses indicate calculated values. (ii) The K-1 sample of bhasma shows high degree of agglomeration and the particle size ranges between 0.5 to 0.7 micron. These agglomerates appear to be square shaped and porous. (iii) K-2 sample is composed of porous agglomerates and particle size is ranging from 0.7 to 0.1 micron. The shape of the particles is circular granules. (iv) In K-3 also agglomeration is observed and the big particles are covered by small dusty particles as that of for K-2.The particle size ranges from 0.5 to 1micron. (v) The K-4 sample shows particles of 0.5 to 0.7 micron with loss of their grain boundaries. Higher degree of agglomeration is a consequence of repeated calcinations cycles during the preparation of these bhasmas [2]. IV Conclusions A comparative study of Kapardika powder and four commercial samples of Kapardika bhasma are carried out using modern instrumental techniques. These samples are mainly composed of calcium carbonate as indicated by EDX, IR and TGA. TGA is found to be the most useful technique for compositional studies of these bhasmas. Four samples of Kapardika bhasma resembles with each other with minor differences due to presence of small quantity of water, calcium hydroxide and organic matter. XRD of the four samples match with calcite phase of calcium carbonate and indicate nanometric nature of the bhasmas. Such nanometric Size could be responsible for the excellent therapeutic properties of the bhasmas.Further presence of organic matter as shown by IR and TG is likely to influence the bioassemibility of the bhasma. SEM analysis reveals agglomeration of the particles as consequences of repeated calcination cycles subjected during preparation of these bhasmas. Morphology of these samples is remarkably different from each other as seen from SEM photographs. KO – 1 KO – 2 KO – 3
  • 7. Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine www.iosrjournals.org 11 | Page K1 – 1 K1 – 2 K1 – 3 K2 – 1 K2 – 2 K2 – 3 K3 – 1 K3 – 2 K3-3 Fig-6 SEM photographs of Kapardika powder and Kapardika bhasmas K-1,K-2, K-3. K4 – 1 K4 – 2 K4 – 3 Fig-6 SEM photographs of Kapardika bhasma sample K-4 These findings may help the preparation of standard and reproducible formulation of kapardika bhasma. Acknowledgements Authors are thankful to Dr. S.S. Kadam, Vice Chancellor, Bharati Vidyapeeth Deemed University, Pune, Prof. K.D. Jadhav, Principal, Y.M. College, Pune, for providing necessary facilities and constant encouragement. Authors are also thankful to Dr. P.S. Khandagale and Dr. P.K. Khanna for their valuable suggestions. References [1] Wadekar M.P., Rode C.V., Bendale Y.N, Patil K.R., Prabhune A.A., Preparation and characterization of a copper based Indian traditional drug: Tamra bhasma. Journal of pharmaceutical and biomedical analysis, 39,2005,951-955. [2] Wadekar M.P., Rode C.V., Bendale Y.N., Patil K.R., Gaikwad, Prabhune A.A., Effect of calcinations cycles on the preparation of tin oxide based traditional drug: Studies on its formation and characterization., Journal of pharmaceutical and biomedical analysis.,41,2006,1473-1478. [3] Mrudula Wadekar, Vishwas Gogte, Prasad Khandagale and Asmita Prabhune. Comparative study of some commercial samples of Naga Bhasma., Ancient Science of Life, 23(4),2004, 45-48.
  • 8. Chemical Investigations of some commercial samples of calcium based Ayurvedic Drug of Marine www.iosrjournals.org 12 | Page [4] Mrudula Kulkarni, G.T. Panse, B.A. Kulkarni and Yogesh Bendale. Characterization of Raupya Bhasma by using modern analytical techniques., Journal of Indian Medicine and Homeopathy, January-March, 2004,37-43. [5] Kulshrestha Mayanka Krishna, Karbal Kamleshwar Singh., A critical review on Ayurvedic drug Kapardika (Cypraea Moneta Linn), International research Journal of Pharmacy, 3(10), 2012. [6] Devanathan R., Rajalakshmi P. P. and Brindha P., Chemical Standardisation studies on Varatika Bhasma, International Journal of Pharmaceutical research, 2(4), 2010, 12-16. [7] Kumar A., Nair A. G.C., Reddy A. V. R. and Garg A. N., Availability of essential elements in bhasmas: Analysis of Ayurvedic metallic preparations by INAA, Journal of Radio-analytical and Nuclear Chemistry, (270)1, 2006, 173-180. [8] A. J. Baxi and S. A. Vasavada, Antacid activity of some Ayurvedic calcium preparations, Indian J. Pharmacy, 27, 1965,227–230. [9] Flemming A. Andersen and Ljerka Brecevic, Infrared spectra of amorphous and crystalline calcium carbonate, Acta Chemica Scandinavica ,45,1991, 1018-1024. [10] Wenlong Wu, Liping Zhang, Zhijun Yang and Weisheng Hou., Study on microstructure of the Pinctada martensii pearls and its significance., International Scholarly Research Network ISRN spectroscopy, article ID 756217, 2012 ,9. [11] FTIR and XRD analysis of mineral and organic matrix during heating of mother pearl from shell of the mollusc pinctada maxima., Balmain J., Hannoyer B and Lopez E, Journal of Biomedical material Research, 48(5), 1999,749-754. [12] Meena Devi, P. Nagendra Prasad and K. Kalirajan., Infrared spectral studies on siddha drug-Pavalaparpam., International journal of pharma and biosciences, 1(4), 2010, 474-483. [13] Ketkar A R, Kadam H.M. and Paradkar A.R., Temperature variability during preparation of shouktic bhasma and its consequences, Indian Drugs. 40(6),2003, 363-365. [14] Nitin Dubey, Nidhi Dubey, Rajenndra S. Mehta, Ajay K. Saluja and Dinesh Jain., Physiological and pharmacological assessment of a traditional biomedicine: Mukta shouktic bhasma., Songklanakarin J. Sci, Technol,31(5), 2009,501-510. [15] Engin, B. Demirtas H., Eken M., Temperature effects on egg shells investigated by XRD, IR and ESR techniques., Radiation physics and chemistry.,75,2006, 268-277. [16] Ketkar A R, Borde P. P., Kadam H.M. and Paradkar A.R., Role of Aloe vera juice treatment(bhavana) in preparation of shouktic bhasma., Indian Drugs.,39(12), 2002, 661-663.