SlideShare a Scribd company logo
1 of 8
Download to read offline
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 04, Issue 04 (April. 2014), ||V6|| PP 57-64
International organization of Scientific Research 57 | P a g e
Evaluation of combustion characteristic of charcoal from
different tropical wood species
Ijagbemi Christiana. Oa
, PhD ,Adepo S. Olusegunb
andAdemolaKazeem Sc
.
a,c
Department of Mechanical Engineering, Federal University of Technology, Akure, Nigeria
b
Department of Mechanical Engineering Technology, Rufus Giwa Polytechnic, Owo, Nigeria
Abstract: - The combustion characteristics of charcoal produced from wood offcuts of some selected tropical
wood species (Iroko, Obeche, Oak, Afara, and Mahogany) were evaluated. The woods offcuts were collected
from different saw-mills in Ibadan metropolis, Nigeria and were converted into charcoal using a portable steel
kiln. Physicalproperties such as density and proximate analysis i.e. percentage moisture content (PMC),
percentage volatile matter (PVM), percentage ash content (PAC), percentage fixed carbon (PFC) and heating
values (HV), of the produced charcoal were determined using the American Standard Testing Method (ASTM
D1102-56). Analysis of wood and production of charcoal were carried out at the Forestry Research Institute of
Nigeria Jericho Ibadan, Oyo State while determination of densities and the proximate analysis tests on the
charcoal samples were carried out at the Forestry and Wood Department Laboratory, Federal University of
Technology, Akure.
Keywords: - Characteristic, Charcoal, Percentage, Evaluation
I. INTRODUCTION
Traditionally, energy in the form of firewood, twigs and charcoal have been the major sources of
renewable energy for many developing countries. Although Africa accounts for 12% of the global population, it
consumes only 4% of global energy. The high and rapid demand for wood fuel consumption is considered as a
major contributing factor to the fuel wood crisis in Nigeria[1]. The demand for fuel wood is expected to have
risen to about 213.4 × 103
metric tonnes, while the supply would have decreased to about 2.84 × 102
metric
tonnes by the year 2030. For this reason, a transition to a sustainable energy system is urgently needed in the
developing countries such as Nigeria. One of such energy sources is wood waste or sawmill residue. Wood
offcut constitutes one of the most abundant waste or residue in wood industries. It was estimated that wood
waste generated in the country in 1998 was 1.72 million/m3
out of which wood off cuts was15 %.
Charcoal made from materials such as wood offcut and partially decomposed plant waste can be an
alternate source of domestic and industrial energy to briquettes, firewood, gas, coal and electricity. Presently,
the major source of energy to the rural community is fuelwood because other sources of energy (electricity, gas
and kerosene) are either not available or grossly inadequate where available and they are beyond the reach of the
masses. Depending on the type of wood offcut used to make charcoal, they burn cleaner in cook stoves than
briquettes and firewood. Charcoal production from wood offcuts thereby turns wood waste materials into fuel
source whichwould serve as an alternative to non-renewable energy resources.
. However, inefficient wood conversion and low biomass recovery from the timber process in Nigerian forest
industry have led to the prevalence of wood wastes around sawmills, thereby constituting a visual blight to the
local environment and a breeding ground for wood decaying organisms. But, these hills of wood off cut could
be converted into charcoal for fuel energy supply. [2] Charcoal made from wood off cut can reduce forest
degradation and deforestation to mitigate these problems. According to [3], one of the promising solutions to the
problems of unutilized agricultural residues and wood waste is the application of charcoal production
technology by knowing which wood specie has the highest heating value and low ash content.
[4] and [5] described the desirable criteria for quality wood charcoal as having low moisture content,
relatively easy to cut, easy to handle, easy to ignite and burn with high calorific value/heating value, producing
very little or no smoke without toxic fumes and neither spits nor sparks. They retain grain of the wood; it has jet
black colour with shining luster; it is sonorous with metallic ring and does not soil the finger. These criteria are
found in many tropical woodspecies and other woody species. [5]examined some Acacia wood species for their
potential of charcoal production and gross heat of combustion. The results obtained indicated that charcoal from
Acacia wood species had density ranges from 0.563 to 0.90 gcm−3
, with heating value of 32.39 MJkg−1
,
percentage fixed carbon of 84.70% and low ash and volatile matter of 3.35% and 11.95% respectively. The
results obtained were more or less close to the desirable criteria for quality charcoal. [6]suggested apparent
density of 0.4 to 0.9 gcm−3
for efficiency of quality charcoal.
Evaluation of combustion characteristic of charcoal from different tropical wood species
International organization of Scientific Research 58 | P a g e
[7] reported a density of 0.621 and 0.623 gcm−3
for charcoal produced from wood of six years old A.
amplecipsandA. karroo respectively, the two charcoal samples used had gross heat of combustion values of
7,032 Calg−1
and 6,865 Calg−1
respectively, percentage volatile matter of 28.23% and 29.11% respectively,
moisture content values of 5.53% and 5.38%, ash content values of 5.37% and 6.42% respectively and fixed
carbon values of 60.87% and 56.92 % respectively. According to [8], calorific properties of the charcoal
produced showed that charcoals from tropical wood species are very suitable for charcoal production. The
efficiency from the use of different wood for charcoal production has been demonstrated by many researchers,
charcoal produced from Afezelia Africana had the best physical and combustion properties when compared with
those produced from Meliciaelcelsa and Acacia salicina which had lower combustion properties. According to
the research, a heating value of 31,460 kJ/kg, percentage fixed carbon of 86%, ash content of 6.2% and volatile
matter of 9.4% were obtained for charcoal produced from Afezeliaafricana[8].
[5], produced charcoal from Acacia asak and Acacia negrii and obtained relatively high calorific values that
ranged between 6,763 Calg−1
and 6,865 Calg−1
, with low ash content of between 3.22 – 5.2%; relatively high
volatile matter values that ranged between 27.55% and 31.56% with fixed carbon content between 57.89% and
62.63%. The results showed that charcoal produced from Acacia wood species have higher calorific values than
those produced using soft wood species such as spruce. This may be due to the density of wood species used,
which is higher than that of spruce or any other soft woods species.
[9],reported aheating value of23.43MJ/kg for charcoal produced from Mangiferaindica. According to DIN
51731, a minimum value of 17,500 kJ/kg must be obtained before a biomass material can be regarded as having
adequate calorific value. The percentage ash content,and moisture content values obtained by [9], for
Mangiferaindica are 7.26% and 8.06% respectively.[10]obtainedpercentage volatile matter values of 73.5 and
78.2% for charcoal produced from Elaeisguineensis. This was due to low carbonizationtemperature during its
conversion to charcoal and this made the charcoal easier to ignite although burn with much smoke. [10]also
obtained relatively low fixed carbon content values that ranged between 11.9% and 16.4%; ash content values of
between 4.33 and 7.26% and heating value of 21,420 kJ/kg to 23,431 kJ/kg.
[11] obtained apparent density values of 0.292 and 0.325 gcm−3
respectivelyon charcoal produced from Acacia
stenopylla and Acacia seyal, and also recorded fixed carbon content values of 59.83% and 58.76%; volatile
matter values of 27.28% and 28.08%; high ash content values of 5.7% and 7.02% and gross heat of combustion
values of 6,746 Calg−1
and 6,590 Calg−1
respectively.
II. CHARACTERISTICS
2.1 Charcoal Density
The densities of the charcoal samples were determined using water displacement method. Density was
calculated from the ratio of the mass to the volume of the charcoal in accordance with the method used
by[12].The densities were calculated using equation (1),
ρ =
mc
vw
(1)
where
ρ = Density
mc = Mass of charcoal sample (g)
vw = Volume of water displaced(cm−3
)
2.2 Percentage Moisture Content of Charcoal Samples
The charcoal samples were weighed and then placed in oven for 24 hours at 103 ℃, The PMC was estimated
using,
100% 


C
CC
D
DW
MC (2)
where,
CW Air dried weight of charcoal
CD Oven dried weight of charcoal at103 ℃
MC = Moisture content.
2.3 Percentage Volatile Matter of Charcoal Samples (PVM)
The percentage volatile matter, PVM, was calculated using,
Evaluation of combustion characteristic of charcoal from different tropical wood species
International organization of Scientific Research 59 | P a g e
VMo
0 =
od
sfod
M
MM 
(3)
where
odM
= Mass of oven dried sample of charcoal (g)
sfM = Mass of sample after 10min in furnace at 550 ℃ (g)
2.4 Determination of Percentage Ash Content of Charcoal Samples (PAC)
Percentage ash content was calculated as a proportion of the dried weight of the ash residue in furnace to the
oven-dried weight of charcoal specimen. This was determined using,
% Ash content = 100
)(
)(
.

gM
gM
do
ar
(4)
where
raM . = Mass of ash residue (g)
odM
= Mass of oven dried sample (g).
2.5 Percentage Fixed Carbon of the Charcoal Samples (PFC)
The percentage fixed carbon, PFC was calculated by subtracting the sum of percentage volatile matter
(PVM) and percentage ash content (PAC) from 100. The carbon content is usually estimated as a "difference",
i.e., all the other constituents are deducted from 100 as percentages and the remainder is assumed to be the
percentage of pure or fixed carbon [13]. This was determined using,
).(100 0
0
0
0
0
0 CAVMFC  (5)
where
VM = % Volatile matter
AC% = % Ash content
FC% = % Fixed carbon
2.6 HEATING VALUE (HV)
The calorific value (or heating value) is the standard measure of the energy content of a fuel.The Heating Value
of the tropical hard wood charcoal samples were calculated using equation (6) below[4],
HV = 2.326(147.6C + 144V)(6)
where
C=the percentage fixed carbon and
V= the percentage volatile matter.
III. PERFORMANCE EVALUATION OF CHARCOAL SAMPLES
The evaluation of combustion properties of the various charcoal samples produced was carried out through
water boiling test. The procedure used in the calculations of the parameters was based on the approach used by
[14].
3.1 BurnRate (F)
The burn rates (F) corrected for moisture content of the various tropical wood charcoal in cook stove were
calculated using the formula below,
F (kg/h) =
𝟏
𝒕
.
𝟏𝟎𝟎(𝑾 𝒊− 𝑾 𝒇)
(𝟏𝟎𝟎 +𝑴)
(7)
where
F = Burning Rate (kg/h)
𝑊𝑖 = Initial weight of the fuel before burning (kg)
𝑊𝑓 = Weight of fuel after burning (kg)
M = Moisture content of the fuel
Evaluation of combustion characteristic of charcoal from different tropical wood species
International organization of Scientific Research 60 | P a g e
t = Total time taken for burning fuel
3.2 Time Spent in Cooking Per Kilogram of Cooked Food
𝑻 𝒔 =
𝐓𝐨𝐭𝐚𝐥 𝐭𝐢𝐦𝐞 𝐬𝐩𝐞𝐧𝐭 𝐢𝐧 𝐜𝐨𝐨𝐤𝐢𝐧𝐠
𝐓𝐨𝐭𝐚𝐥 𝐰𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐜𝐨𝐨𝐤𝐞𝐝 𝐟𝐨𝐨𝐝
(hr/kg) (8)
where
Ts = Timespent
IV. RESULTS AND DISCUSSION
Charcoal from different wood species used for these analyses had densities ranged between 0.453 ±
0.038 𝑔𝑐𝑚−3(Afara specie) and 0.620±0.046 gcm−3(0beche specie)(𝑃<0.05). The densitiesof charcoal
produced from Iroko, Oakand Mahogany wood had density values of 0.5567±0.042 gcm−3
,
0.5300±0.035 gcm−3
and 0.4567±0.032 𝑔𝑐𝑚−3
respectively, as shown in Fig.1(a). Charcoal produced from
Afarawood had the least density (0.4533 ± 0.038 gcm−3
) among the various charcoal samples used while
Obeche wood specie had the highest density value. According to [6], these variations may be due to the
differences in the age of trees species and/or the environmental conditions as a result of using different
maximum final temperatures during carbonization process. However, density values reported in this study met
at least in part, the criteria suggested by [7].
Significant differences in heating values were found among charcoal samples used(P < 0.05). The
highest value was obtained from charcoal of Afara wood(3.3236 × 104
± 171.932 kJkg−1
), with a close
heating value proportions with charcoal fromObeche wood (3.3038 × 104
± 169.604 kJkg−1
) and Oak
wood (3.2956 × 104
± 430.128 kJkg−1
) while Mahogany wood had heating value of (3.2230 × 104
±
337.054 kJkg−1) andIrokowood had the least heating value of (3.2149 ×104±248.974 kJkg−1). These are as
shown in Fig. 1(b). The varying heating values observed was as results of low ash content and high fixed carbon
content in charcoal which are associated with high lignin content in the wood used [15].Afara wood had the
highest lignin content while Iroko wood specie had the least lignin content among the wood samples used to
produced charcoal. This fact is related to the higher resistance to thermal degradation of lignin, when compared
to holocelluloses, mainly due to the increasing number of C–C and C=C present in its structure and also because
lignin has higher percentage of elemental carbon and low oxygen, when compared with other chemical
components of wood [15]. The results obtained for heating values in this study are higher than the values
obtained by [6], for charcoal from acacia tree species. This may also be due to differences in ages of trees used
for charcoal production and the peak temperatures during the carbonization process. However, the heating
values reported in this study met at least in part, the criteria suggested by [7] for wood charcoal.
Chemical properties of charcoal showed significant differences among the various species of charcoal used for
these analyses. Charcoal produced from Oak wood has significantly the highest moisture content value of
(4.823 ± 0.954%),charcoal from Irokowoodspecie had 3.820 ± 0.931 % ,charcoal from Mahogany wood
specie had (3.733±1.106%); charcoal from Obechewoodspecie had (2.663±0.448%) while charcoal from Afara
wood had the lowest moisture content of (2.110±0.661%). (P<0.05). Charcoal that had lower moisture content
gave often-higher gross heat of combustion or heating values. This is because high moisture content lowers the
calorific or heating value of charcoal [13]. This seems true when charcoal from Oak specieshad the highest
moisture content value of (4.823±0.954 %) but had a lower heating valueof(3.2956 × 104
± 430.128 kjkg−1
);
this was due to the water absorbing nature of oak tree and low level of halocelluloses in oak wood [8], while
charcoal from Afara wood which had the lowest percentage moisture content value had the highest heating
value of 3.3236 × 104
± 171.932 𝑘𝑗𝑘𝑔−1
.Fig.2(a) shows the variations in percentage moisture content of
various charcoal samples used. The values of moisture content of charcoal produced from different tropical
wood species used for these analyses fall within the desirable criteria by [13] in which 7 % is the higher limit for
moisture content.
Percentage volatile matter in charcoal from Obechewoodspecie presented distinctly the highest
proportion (11.00±0.5000%) compared to others. Charcoal from Afara wood, Iroko and Oak wood had close
percentage volatile matter proportions of (7.833±1.155%), (7.833±1.607%) and (7.167±2.082%) respectively,
with Afara and Iroko species producing similar values of percentage volatile matter. Charcoal from Mahogany
wood presented the lowest value of percentage volatile matter (5.000±0.866%). (P<0.05). Fig. 2(b) shows the
variations among various charcoal samples used. The volatile matter in charcoal can vary from a high of 40% or
more down to 5% or less [13]. According to [16] regarding quality of charcoal, lower levels of volatiles in
charcoal is associated with high level of lignin and low level of extractives in wood. This was responsible for
Obeche wood specie which had more wood extractives among the various wood samples selected for the
production of charcoal and Mahogany wood had the least. High volatile charcoal is easy to ignite but may burn
with a smoky flame while low volatile charcoal is difficult to light and burns very cleanly. However, high
Evaluation of combustion characteristic of charcoal from different tropical wood species
International organization of Scientific Research 61 | P a g e
volatile charcoal is preferable for some purposes such as barbecue, while other utilizations as chemical
purification and metal manufacture need charcoal with low percentage volatile matter content.
There is significant difference in proportion of fixed carbon among charcoal samples used and the
greatest proportion of fixed carbon was inAfara specie (89.167±1.258%) which had close fixed carbon content
values with charcoal samples from Mahogany specie and Oak specie (89.000±0.500%) and (89.000±2.291%)
respectively.Charcoal from Iroko specie had fixed carbon content value of 86.000 ± 0.866 while the lowest
was that of Obeche specie (85.500±0.500%). (P<0.05) .The variation in percentage fixed carbon content is
shown in Fig. 5.3(a). The fixed carbon content of charcoal ranges from a low of about 50% to a high of around
95 % [13], thus charcoal consists mainly of carbon. Charcoal produced from Afarawoodwhich had the highest
heating value also had the highest percentage fixed carbon content value except that of Obeche which had a
higher heating value and the lowest percentage fixed carbon in this present study. According to [15] on quality
of charcoal, better chemical properties of charcoal such as higher level of fixed carbon is also associated with
high levels of lignin and low level of holocelluloses and extractives in wood. Proportion of fixed carbon content
can be controlled through the maximum temperature and its residence time during the carbonization process
[17]. Increasing the fixed carbon content of charcoal in such a way is associated always with decrease in
charcoal yield.
The percentage Ash content in various wood charcoal used for these analyses were significantly
different (P<0.05). Charcoal from Iroko wood (6.167±0.764 %) had the highest value and a close proportion of
ash content value with charcoal from Mahogany wood (6.000±1.000%), while charcoal from Oak, Obeche and
Afara wood species had ash content proportions of (3.833±1.258%), (3.500±0.500%) and (3.000±0.500%)
respectively. The variation in percentage ash content of charcoal samples used is shown in Fig.3(b). The present
study showed that charcoal samples with lower ash content value has invariably higher heating values, with
Afara specie having the least ash content value while Iroko specie had highest ash content value. Charcoal
sample from Afara wood produced least amount of ash because of its higher level of lignin and low mineral
matter compared to charcoal from other wood species. According to [18], presence of high mineral matter
components in wood is not desirable, because they are not degraded during carbonization and they remain in
charcoal as an undesirable residue (ash) which also contributes to the reduction of charcoal heating value. Ash
content of charcoal varies from about 0.5% to more than 5% depending on the species of wood used to produce
the charcoal. Good quality lump charcoal typically has an ash content of about 3% [13].
Regression analysis was used to establish linear regression model from the values of correlation coefficient. The
plot of the best straight line fit is shown in Fig.4, and the linear equation is:
𝐘 = 𝟑𝟒𝟐𝟑𝟖 − 𝟑𝟑𝟔. 𝟖𝟖𝐗; 𝐑 𝟐
= 𝟎. 𝟗𝟗𝟗 (9)
where
Y= Heating Value,
X= percentage Ash content
The linear regression model developed shows an increase in heating value as the percentage ash
content of the charcoal samples decreases, Fig.4.
V. CONCLUSION AND RECOMMENDATION
This research work was carried out to evaluate the physical and combustion characteristics of
charcoalproduced from wood offcuts of some selected tropical wood species. The combustion characteristics of
charcoal used in this study was influenced by the properties of wood that was used. The quality of the charcoal
that was produced using wood offcuts of Afara wood was higher than those of other species. It has the lowest
percentage moisture content, ash content and highest heating value and it is followed by charcoal produced from
obeche wood offcut. There was little variation in the qualities of charcoal from other wood species used in this
study. However, all species of wood offcut used possess good combustion properties and had a high range of
heating values.
The production and uses of charcoal from wood offcuts should be given wide publicity in Nigeria due to the
imminent wood shortage and scarcity of other non-renewable energy sources.
REFERENCES
[1] Himraj, D,Environmental management, Vol. 19 (3),1993, 283-288.
[2] Wilaipon, P. American Journal of Applied Science. Vol. 4(2007), 995-998.
[3] Ogunsanwo, O. Y, Effective Management of Wood Waste for Sustainable Wood Utilization in
Nigeria,27th Annual Conference of Forestry Association of Nigeria Abuja, FCT 17-21, Sept., 2001,
pp225-234.
[4] Bailey, R.T. and Blankenhorn, P.R, Wood science, 15(1), (1984), pp19-18
Evaluation of combustion characteristic of charcoal from different tropical wood species
International organization of Scientific Research 62 | P a g e
[5] Hines, D.A. and Eckman, K., Indigenous Multipurpose Trees of Tanzania: Uses and EconomicBenefits
for People,FO: Misc/93/9 Working Paper, FAO, Rome, (1993)
[6] Megahed, M. M.; M. L. El-Osta; H. A. Abou-Gazia and A. M. El-Baha, Properties of plantation
grownleguminous species and their relation to utilization in Egypt. Menofiya Journal of
AgriculturalResearch23 (6), (1998), 1729-1751.
[7] Food and Agriculture Organization of the United Nations- FAO,Charcoal for domestic and industrialuse.
FAO, Rome, (1962).
[8] Stimely, G. L. and Blankenhorn, P. R, Effects of species, specimen size and heating rate on charcoalyield
and fuel properties. Wood and Fiber Sciences 17(4), (1985), 477-489.
[9] Massey, E. E. and Prima, S. D, The demand for charcoal in Dares Salaam Tanzania: An economicand
environmental assessment. PREM report.(2005)
[10] Antal, M. J, Process for charcoal production from woody and herbaceous plant materials, US pat,(1995),
5435& 983.
[11] Aref, I. M., El-Juhany, L. I. and HegazyS. S Comparison of the growth and biomass production
ofsixAcacia species in Riyadh, Saudi Arabia after four years of irrigated cultivation. Journal of Arid
Environments 54 (4),(2003), 783-792.
[12] Rabier, F., Temmerman, M., Bohm, T., Hartmann, H., Rathbauer, J. and Fernandez, M, Particledensity
determination of pellets and charcoal. Journal ofBiomass and Bioenergy.30,(2006), 954– 963
[13] Food and Agriculture Organization of the United Nations- FAO, Industrial charcoal making,
FAOForestry Paper No. 63, FAO, Rome.(1985)
[14] Ahuja, D. R., Joshi, V., Smith, K. R. and Venkataranman, C, Thermal Performance and Emission
Characteristics of Unvented Biomass – Burning Cookstoves; A Proposed Standard Method for Evaluation
of Biomass, . (1987), 12.
[15] Santos, R. C., Carneiro, A. D. and Castro, A. F, Correlation of quality parameters of wood and charcoal
of clones of eucalyptus,” Forest Sciences, No. 90, (2011) 221–230.
[16] Oliveira, E, Correlations between quality parameters of Eucalyptus grandis (Whill ex-Maiden) woodand
charcoal, Technical Bulletin SIF 2, (1990).
[17] Hindi, S. S, Charcoal properties as affected by raw material and charcoaling parameters. M.Sc.Thesis,
Alexandria University, Egypt,(1994)
[18] Tsoumis, G., Science and Technology of Wood: Structure, Properties, Utilization, Van Nostr and Rein
old, New York, NY, USA.(1991)
Evaluation of combustion characteristic of charcoal from different tropical wood species
International organization of Scientific Research 63 | P a g e
Figure 1.1: Variation in Density (a), Variation in Heating Values (b) of Charcoal Samples used.
Figure 2: Variation in Percentage Moisture Content (a), Variation in Percentage Volatile Matter (b), of Charcoal
Samples used.
Evaluation of combustion characteristic of charcoal from different tropical wood species
International organization of Scientific Research 64 | P a g e
Figure 3: Variation in Percentage Fixed Carbon Content (a), Variation in Percentage Ash Content (b) of
Charcoal Samples used.
Figure 4: Linear Regression Graph of Heating Values and %Ash

More Related Content

What's hot

Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...IJSRD
 
Carbon Stock Estimation in Standing Tree of Chir Pine and Banj Oak Pure Fores...
Carbon Stock Estimation in Standing Tree of Chir Pine and Banj Oak Pure Fores...Carbon Stock Estimation in Standing Tree of Chir Pine and Banj Oak Pure Fores...
Carbon Stock Estimation in Standing Tree of Chir Pine and Banj Oak Pure Fores...science journals
 
An evaluation of the energy consumption and co2 emission
An evaluation of the energy consumption and co2 emissionAn evaluation of the energy consumption and co2 emission
An evaluation of the energy consumption and co2 emissionAlexander Decker
 
Techno-economic analysis of wood pyrolysis in Sweden: Master_Thesis_Presentation
Techno-economic analysis of wood pyrolysis in Sweden: Master_Thesis_PresentationTechno-economic analysis of wood pyrolysis in Sweden: Master_Thesis_Presentation
Techno-economic analysis of wood pyrolysis in Sweden: Master_Thesis_PresentationAwais Salman
 
Study of Combustion Characteristics of Fuel Briquettes
Study of Combustion Characteristics of Fuel BriquettesStudy of Combustion Characteristics of Fuel Briquettes
Study of Combustion Characteristics of Fuel Briquettesijceronline
 
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...BIBHUTI BHUSAN SAMANTARAY
 
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...AJSERJournal
 
Assessment of biomass and carbon sequestration potentials of standing Pongami...
Assessment of biomass and carbon sequestration potentials of standing Pongami...Assessment of biomass and carbon sequestration potentials of standing Pongami...
Assessment of biomass and carbon sequestration potentials of standing Pongami...Surendra Bam
 
PROXIMATE ANALYSIS OF THE PROPERTIES OF SOME SOUTHWESTERN NIGERIA SAWDUST OF ...
PROXIMATE ANALYSIS OF THE PROPERTIES OF SOME SOUTHWESTERN NIGERIA SAWDUST OF ...PROXIMATE ANALYSIS OF THE PROPERTIES OF SOME SOUTHWESTERN NIGERIA SAWDUST OF ...
PROXIMATE ANALYSIS OF THE PROPERTIES OF SOME SOUTHWESTERN NIGERIA SAWDUST OF ...IAEME Publication
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Wood properties of detarium senegalense, a lesser used tropical timber growin...
Wood properties of detarium senegalense, a lesser used tropical timber growin...Wood properties of detarium senegalense, a lesser used tropical timber growin...
Wood properties of detarium senegalense, a lesser used tropical timber growin...Alexander Decker
 
Investigation of Mechanical Properties in Polyester and Phenyl-ester Composit...
Investigation of Mechanical Properties in Polyester and Phenyl-ester Composit...Investigation of Mechanical Properties in Polyester and Phenyl-ester Composit...
Investigation of Mechanical Properties in Polyester and Phenyl-ester Composit...IJERA Editor
 
Article infub2015 heig-vd-april2015
Article infub2015 heig-vd-april2015Article infub2015 heig-vd-april2015
Article infub2015 heig-vd-april2015Jean-Bernard Michel
 

What's hot (16)

204 vikram
204 vikram204 vikram
204 vikram
 
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
 
Carbon Stock Estimation in Standing Tree of Chir Pine and Banj Oak Pure Fores...
Carbon Stock Estimation in Standing Tree of Chir Pine and Banj Oak Pure Fores...Carbon Stock Estimation in Standing Tree of Chir Pine and Banj Oak Pure Fores...
Carbon Stock Estimation in Standing Tree of Chir Pine and Banj Oak Pure Fores...
 
An evaluation of the energy consumption and co2 emission
An evaluation of the energy consumption and co2 emissionAn evaluation of the energy consumption and co2 emission
An evaluation of the energy consumption and co2 emission
 
Techno-economic analysis of wood pyrolysis in Sweden: Master_Thesis_Presentation
Techno-economic analysis of wood pyrolysis in Sweden: Master_Thesis_PresentationTechno-economic analysis of wood pyrolysis in Sweden: Master_Thesis_Presentation
Techno-economic analysis of wood pyrolysis in Sweden: Master_Thesis_Presentation
 
The greenhouse footprint of wood production in NSW - Fabiano Ximenes
The greenhouse footprint of wood production in NSW - Fabiano XimenesThe greenhouse footprint of wood production in NSW - Fabiano Ximenes
The greenhouse footprint of wood production in NSW - Fabiano Ximenes
 
Study of Combustion Characteristics of Fuel Briquettes
Study of Combustion Characteristics of Fuel BriquettesStudy of Combustion Characteristics of Fuel Briquettes
Study of Combustion Characteristics of Fuel Briquettes
 
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
PREPARATION OF BRIQUETTE IN AN INNOVATIVE AND COST EFFECTIVE WAY AND ITS TEST...
 
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
 
Assessment of biomass and carbon sequestration potentials of standing Pongami...
Assessment of biomass and carbon sequestration potentials of standing Pongami...Assessment of biomass and carbon sequestration potentials of standing Pongami...
Assessment of biomass and carbon sequestration potentials of standing Pongami...
 
PROXIMATE ANALYSIS OF THE PROPERTIES OF SOME SOUTHWESTERN NIGERIA SAWDUST OF ...
PROXIMATE ANALYSIS OF THE PROPERTIES OF SOME SOUTHWESTERN NIGERIA SAWDUST OF ...PROXIMATE ANALYSIS OF THE PROPERTIES OF SOME SOUTHWESTERN NIGERIA SAWDUST OF ...
PROXIMATE ANALYSIS OF THE PROPERTIES OF SOME SOUTHWESTERN NIGERIA SAWDUST OF ...
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Broshuor PIFL
Broshuor PIFLBroshuor PIFL
Broshuor PIFL
 
Wood properties of detarium senegalense, a lesser used tropical timber growin...
Wood properties of detarium senegalense, a lesser used tropical timber growin...Wood properties of detarium senegalense, a lesser used tropical timber growin...
Wood properties of detarium senegalense, a lesser used tropical timber growin...
 
Investigation of Mechanical Properties in Polyester and Phenyl-ester Composit...
Investigation of Mechanical Properties in Polyester and Phenyl-ester Composit...Investigation of Mechanical Properties in Polyester and Phenyl-ester Composit...
Investigation of Mechanical Properties in Polyester and Phenyl-ester Composit...
 
Article infub2015 heig-vd-april2015
Article infub2015 heig-vd-april2015Article infub2015 heig-vd-april2015
Article infub2015 heig-vd-april2015
 

Similar to I04465764

Characterizing Erythrophleum Suaveolens Charcoal as a Viable Alternative Fuel...
Characterizing Erythrophleum Suaveolens Charcoal as a Viable Alternative Fuel...Characterizing Erythrophleum Suaveolens Charcoal as a Viable Alternative Fuel...
Characterizing Erythrophleum Suaveolens Charcoal as a Viable Alternative Fuel...IOSR Journals
 
Effects of Varying Particle Size On Mechanical and Combustion Characteristics...
Effects of Varying Particle Size On Mechanical and Combustion Characteristics...Effects of Varying Particle Size On Mechanical and Combustion Characteristics...
Effects of Varying Particle Size On Mechanical and Combustion Characteristics...inventionjournals
 
Impacts Of Seemai Karuvelam (Prosopis Juliflora) Charcoal Heap Units In Rama...
Impacts Of Seemai Karuvelam (Prosopis Juliflora) Charcoal Heap Units In  Rama...Impacts Of Seemai Karuvelam (Prosopis Juliflora) Charcoal Heap Units In  Rama...
Impacts Of Seemai Karuvelam (Prosopis Juliflora) Charcoal Heap Units In Rama...PARAMASIVANCHELLIAH
 
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...AJSERJournal
 
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...IJSRD
 
cinnamon for Biomass.pdf
cinnamon for Biomass.pdfcinnamon for Biomass.pdf
cinnamon for Biomass.pdfHuynhVu29
 
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...CrimsonpublishersMCDA
 
Comparative study of products of pyrolysis of cow
Comparative study of products of pyrolysis of cowComparative study of products of pyrolysis of cow
Comparative study of products of pyrolysis of cowAlexander Decker
 
Generation of Syngas using Anacardium Occidentale
Generation of Syngas using Anacardium OccidentaleGeneration of Syngas using Anacardium Occidentale
Generation of Syngas using Anacardium Occidentaleijtsrd
 
Socioeconomic_and_Environmental_Impacts.pdf
Socioeconomic_and_Environmental_Impacts.pdfSocioeconomic_and_Environmental_Impacts.pdf
Socioeconomic_and_Environmental_Impacts.pdfGaiChiokchan1
 
8 leaching of trace elements in enugu coal effect of acid concentration
8 leaching of trace elements in enugu coal  effect of acid concentration8 leaching of trace elements in enugu coal  effect of acid concentration
8 leaching of trace elements in enugu coal effect of acid concentrationINFOGAIN PUBLICATION
 
Cooking fuel briquettes for sustainable communities in Kenya
Cooking fuel briquettes for sustainable communities in Kenya Cooking fuel briquettes for sustainable communities in Kenya
Cooking fuel briquettes for sustainable communities in Kenya World Agroforestry (ICRAF)
 
Optimising Treatment System for Kenaf (Hibiscus cannabinus) Particleboard wit...
Optimising Treatment System for Kenaf (Hibiscus cannabinus) Particleboard wit...Optimising Treatment System for Kenaf (Hibiscus cannabinus) Particleboard wit...
Optimising Treatment System for Kenaf (Hibiscus cannabinus) Particleboard wit...izran kamal
 
POTENTIAL ANALYSIS OF POWER GENERATION BY NON WOODY BIOMASS AND COAL BIOMASS ...
POTENTIAL ANALYSIS OF POWER GENERATION BY NON WOODY BIOMASS AND COAL BIOMASS ...POTENTIAL ANALYSIS OF POWER GENERATION BY NON WOODY BIOMASS AND COAL BIOMASS ...
POTENTIAL ANALYSIS OF POWER GENERATION BY NON WOODY BIOMASS AND COAL BIOMASS ...IAEME Publication
 
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...CrimsonPublishersACSR
 
Carbon Storage & Low Energy Intensity in Harvested Wood Products
Carbon Storage & Low Energy Intensity in Harvested Wood ProductsCarbon Storage & Low Energy Intensity in Harvested Wood Products
Carbon Storage & Low Energy Intensity in Harvested Wood ProductsBecky LaPlant
 

Similar to I04465764 (20)

Characterizing Erythrophleum Suaveolens Charcoal as a Viable Alternative Fuel...
Characterizing Erythrophleum Suaveolens Charcoal as a Viable Alternative Fuel...Characterizing Erythrophleum Suaveolens Charcoal as a Viable Alternative Fuel...
Characterizing Erythrophleum Suaveolens Charcoal as a Viable Alternative Fuel...
 
Effects of Varying Particle Size On Mechanical and Combustion Characteristics...
Effects of Varying Particle Size On Mechanical and Combustion Characteristics...Effects of Varying Particle Size On Mechanical and Combustion Characteristics...
Effects of Varying Particle Size On Mechanical and Combustion Characteristics...
 
N01245112120
N01245112120N01245112120
N01245112120
 
Impacts Of Seemai Karuvelam (Prosopis Juliflora) Charcoal Heap Units In Rama...
Impacts Of Seemai Karuvelam (Prosopis Juliflora) Charcoal Heap Units In  Rama...Impacts Of Seemai Karuvelam (Prosopis Juliflora) Charcoal Heap Units In  Rama...
Impacts Of Seemai Karuvelam (Prosopis Juliflora) Charcoal Heap Units In Rama...
 
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
Energy Recovery of Biomass: Study Comparative Experimental of Fixed Bed Combu...
 
Variation of Some Physical Properties of Rice Husk Ash Refractory with Temper...
Variation of Some Physical Properties of Rice Husk Ash Refractory with Temper...Variation of Some Physical Properties of Rice Husk Ash Refractory with Temper...
Variation of Some Physical Properties of Rice Husk Ash Refractory with Temper...
 
337 sunu
337 sunu337 sunu
337 sunu
 
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
Fabrication and Performance Analysis of Downdraft Biomass Gasifier Using Suga...
 
cinnamon for Biomass.pdf
cinnamon for Biomass.pdfcinnamon for Biomass.pdf
cinnamon for Biomass.pdf
 
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
 
kons_k_150205
kons_k_150205kons_k_150205
kons_k_150205
 
Comparative study of products of pyrolysis of cow
Comparative study of products of pyrolysis of cowComparative study of products of pyrolysis of cow
Comparative study of products of pyrolysis of cow
 
Generation of Syngas using Anacardium Occidentale
Generation of Syngas using Anacardium OccidentaleGeneration of Syngas using Anacardium Occidentale
Generation of Syngas using Anacardium Occidentale
 
Socioeconomic_and_Environmental_Impacts.pdf
Socioeconomic_and_Environmental_Impacts.pdfSocioeconomic_and_Environmental_Impacts.pdf
Socioeconomic_and_Environmental_Impacts.pdf
 
8 leaching of trace elements in enugu coal effect of acid concentration
8 leaching of trace elements in enugu coal  effect of acid concentration8 leaching of trace elements in enugu coal  effect of acid concentration
8 leaching of trace elements in enugu coal effect of acid concentration
 
Cooking fuel briquettes for sustainable communities in Kenya
Cooking fuel briquettes for sustainable communities in Kenya Cooking fuel briquettes for sustainable communities in Kenya
Cooking fuel briquettes for sustainable communities in Kenya
 
Optimising Treatment System for Kenaf (Hibiscus cannabinus) Particleboard wit...
Optimising Treatment System for Kenaf (Hibiscus cannabinus) Particleboard wit...Optimising Treatment System for Kenaf (Hibiscus cannabinus) Particleboard wit...
Optimising Treatment System for Kenaf (Hibiscus cannabinus) Particleboard wit...
 
POTENTIAL ANALYSIS OF POWER GENERATION BY NON WOODY BIOMASS AND COAL BIOMASS ...
POTENTIAL ANALYSIS OF POWER GENERATION BY NON WOODY BIOMASS AND COAL BIOMASS ...POTENTIAL ANALYSIS OF POWER GENERATION BY NON WOODY BIOMASS AND COAL BIOMASS ...
POTENTIAL ANALYSIS OF POWER GENERATION BY NON WOODY BIOMASS AND COAL BIOMASS ...
 
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
 
Carbon Storage & Low Energy Intensity in Harvested Wood Products
Carbon Storage & Low Energy Intensity in Harvested Wood ProductsCarbon Storage & Low Energy Intensity in Harvested Wood Products
Carbon Storage & Low Energy Intensity in Harvested Wood Products
 

More from IOSR-JEN

More from IOSR-JEN (20)

C05921721
C05921721C05921721
C05921721
 
B05921016
B05921016B05921016
B05921016
 
A05920109
A05920109A05920109
A05920109
 
J05915457
J05915457J05915457
J05915457
 
I05914153
I05914153I05914153
I05914153
 
H05913540
H05913540H05913540
H05913540
 
G05913234
G05913234G05913234
G05913234
 
F05912731
F05912731F05912731
F05912731
 
E05912226
E05912226E05912226
E05912226
 
D05911621
D05911621D05911621
D05911621
 
C05911315
C05911315C05911315
C05911315
 
B05910712
B05910712B05910712
B05910712
 
A05910106
A05910106A05910106
A05910106
 
B05840510
B05840510B05840510
B05840510
 
I05844759
I05844759I05844759
I05844759
 
H05844346
H05844346H05844346
H05844346
 
G05843942
G05843942G05843942
G05843942
 
F05843238
F05843238F05843238
F05843238
 
E05842831
E05842831E05842831
E05842831
 
D05842227
D05842227D05842227
D05842227
 

Recently uploaded

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 

Recently uploaded (20)

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 

I04465764

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 04 (April. 2014), ||V6|| PP 57-64 International organization of Scientific Research 57 | P a g e Evaluation of combustion characteristic of charcoal from different tropical wood species Ijagbemi Christiana. Oa , PhD ,Adepo S. Olusegunb andAdemolaKazeem Sc . a,c Department of Mechanical Engineering, Federal University of Technology, Akure, Nigeria b Department of Mechanical Engineering Technology, Rufus Giwa Polytechnic, Owo, Nigeria Abstract: - The combustion characteristics of charcoal produced from wood offcuts of some selected tropical wood species (Iroko, Obeche, Oak, Afara, and Mahogany) were evaluated. The woods offcuts were collected from different saw-mills in Ibadan metropolis, Nigeria and were converted into charcoal using a portable steel kiln. Physicalproperties such as density and proximate analysis i.e. percentage moisture content (PMC), percentage volatile matter (PVM), percentage ash content (PAC), percentage fixed carbon (PFC) and heating values (HV), of the produced charcoal were determined using the American Standard Testing Method (ASTM D1102-56). Analysis of wood and production of charcoal were carried out at the Forestry Research Institute of Nigeria Jericho Ibadan, Oyo State while determination of densities and the proximate analysis tests on the charcoal samples were carried out at the Forestry and Wood Department Laboratory, Federal University of Technology, Akure. Keywords: - Characteristic, Charcoal, Percentage, Evaluation I. INTRODUCTION Traditionally, energy in the form of firewood, twigs and charcoal have been the major sources of renewable energy for many developing countries. Although Africa accounts for 12% of the global population, it consumes only 4% of global energy. The high and rapid demand for wood fuel consumption is considered as a major contributing factor to the fuel wood crisis in Nigeria[1]. The demand for fuel wood is expected to have risen to about 213.4 × 103 metric tonnes, while the supply would have decreased to about 2.84 × 102 metric tonnes by the year 2030. For this reason, a transition to a sustainable energy system is urgently needed in the developing countries such as Nigeria. One of such energy sources is wood waste or sawmill residue. Wood offcut constitutes one of the most abundant waste or residue in wood industries. It was estimated that wood waste generated in the country in 1998 was 1.72 million/m3 out of which wood off cuts was15 %. Charcoal made from materials such as wood offcut and partially decomposed plant waste can be an alternate source of domestic and industrial energy to briquettes, firewood, gas, coal and electricity. Presently, the major source of energy to the rural community is fuelwood because other sources of energy (electricity, gas and kerosene) are either not available or grossly inadequate where available and they are beyond the reach of the masses. Depending on the type of wood offcut used to make charcoal, they burn cleaner in cook stoves than briquettes and firewood. Charcoal production from wood offcuts thereby turns wood waste materials into fuel source whichwould serve as an alternative to non-renewable energy resources. . However, inefficient wood conversion and low biomass recovery from the timber process in Nigerian forest industry have led to the prevalence of wood wastes around sawmills, thereby constituting a visual blight to the local environment and a breeding ground for wood decaying organisms. But, these hills of wood off cut could be converted into charcoal for fuel energy supply. [2] Charcoal made from wood off cut can reduce forest degradation and deforestation to mitigate these problems. According to [3], one of the promising solutions to the problems of unutilized agricultural residues and wood waste is the application of charcoal production technology by knowing which wood specie has the highest heating value and low ash content. [4] and [5] described the desirable criteria for quality wood charcoal as having low moisture content, relatively easy to cut, easy to handle, easy to ignite and burn with high calorific value/heating value, producing very little or no smoke without toxic fumes and neither spits nor sparks. They retain grain of the wood; it has jet black colour with shining luster; it is sonorous with metallic ring and does not soil the finger. These criteria are found in many tropical woodspecies and other woody species. [5]examined some Acacia wood species for their potential of charcoal production and gross heat of combustion. The results obtained indicated that charcoal from Acacia wood species had density ranges from 0.563 to 0.90 gcm−3 , with heating value of 32.39 MJkg−1 , percentage fixed carbon of 84.70% and low ash and volatile matter of 3.35% and 11.95% respectively. The results obtained were more or less close to the desirable criteria for quality charcoal. [6]suggested apparent density of 0.4 to 0.9 gcm−3 for efficiency of quality charcoal.
  • 2. Evaluation of combustion characteristic of charcoal from different tropical wood species International organization of Scientific Research 58 | P a g e [7] reported a density of 0.621 and 0.623 gcm−3 for charcoal produced from wood of six years old A. amplecipsandA. karroo respectively, the two charcoal samples used had gross heat of combustion values of 7,032 Calg−1 and 6,865 Calg−1 respectively, percentage volatile matter of 28.23% and 29.11% respectively, moisture content values of 5.53% and 5.38%, ash content values of 5.37% and 6.42% respectively and fixed carbon values of 60.87% and 56.92 % respectively. According to [8], calorific properties of the charcoal produced showed that charcoals from tropical wood species are very suitable for charcoal production. The efficiency from the use of different wood for charcoal production has been demonstrated by many researchers, charcoal produced from Afezelia Africana had the best physical and combustion properties when compared with those produced from Meliciaelcelsa and Acacia salicina which had lower combustion properties. According to the research, a heating value of 31,460 kJ/kg, percentage fixed carbon of 86%, ash content of 6.2% and volatile matter of 9.4% were obtained for charcoal produced from Afezeliaafricana[8]. [5], produced charcoal from Acacia asak and Acacia negrii and obtained relatively high calorific values that ranged between 6,763 Calg−1 and 6,865 Calg−1 , with low ash content of between 3.22 – 5.2%; relatively high volatile matter values that ranged between 27.55% and 31.56% with fixed carbon content between 57.89% and 62.63%. The results showed that charcoal produced from Acacia wood species have higher calorific values than those produced using soft wood species such as spruce. This may be due to the density of wood species used, which is higher than that of spruce or any other soft woods species. [9],reported aheating value of23.43MJ/kg for charcoal produced from Mangiferaindica. According to DIN 51731, a minimum value of 17,500 kJ/kg must be obtained before a biomass material can be regarded as having adequate calorific value. The percentage ash content,and moisture content values obtained by [9], for Mangiferaindica are 7.26% and 8.06% respectively.[10]obtainedpercentage volatile matter values of 73.5 and 78.2% for charcoal produced from Elaeisguineensis. This was due to low carbonizationtemperature during its conversion to charcoal and this made the charcoal easier to ignite although burn with much smoke. [10]also obtained relatively low fixed carbon content values that ranged between 11.9% and 16.4%; ash content values of between 4.33 and 7.26% and heating value of 21,420 kJ/kg to 23,431 kJ/kg. [11] obtained apparent density values of 0.292 and 0.325 gcm−3 respectivelyon charcoal produced from Acacia stenopylla and Acacia seyal, and also recorded fixed carbon content values of 59.83% and 58.76%; volatile matter values of 27.28% and 28.08%; high ash content values of 5.7% and 7.02% and gross heat of combustion values of 6,746 Calg−1 and 6,590 Calg−1 respectively. II. CHARACTERISTICS 2.1 Charcoal Density The densities of the charcoal samples were determined using water displacement method. Density was calculated from the ratio of the mass to the volume of the charcoal in accordance with the method used by[12].The densities were calculated using equation (1), ρ = mc vw (1) where ρ = Density mc = Mass of charcoal sample (g) vw = Volume of water displaced(cm−3 ) 2.2 Percentage Moisture Content of Charcoal Samples The charcoal samples were weighed and then placed in oven for 24 hours at 103 ℃, The PMC was estimated using, 100%    C CC D DW MC (2) where, CW Air dried weight of charcoal CD Oven dried weight of charcoal at103 ℃ MC = Moisture content. 2.3 Percentage Volatile Matter of Charcoal Samples (PVM) The percentage volatile matter, PVM, was calculated using,
  • 3. Evaluation of combustion characteristic of charcoal from different tropical wood species International organization of Scientific Research 59 | P a g e VMo 0 = od sfod M MM  (3) where odM = Mass of oven dried sample of charcoal (g) sfM = Mass of sample after 10min in furnace at 550 ℃ (g) 2.4 Determination of Percentage Ash Content of Charcoal Samples (PAC) Percentage ash content was calculated as a proportion of the dried weight of the ash residue in furnace to the oven-dried weight of charcoal specimen. This was determined using, % Ash content = 100 )( )( .  gM gM do ar (4) where raM . = Mass of ash residue (g) odM = Mass of oven dried sample (g). 2.5 Percentage Fixed Carbon of the Charcoal Samples (PFC) The percentage fixed carbon, PFC was calculated by subtracting the sum of percentage volatile matter (PVM) and percentage ash content (PAC) from 100. The carbon content is usually estimated as a "difference", i.e., all the other constituents are deducted from 100 as percentages and the remainder is assumed to be the percentage of pure or fixed carbon [13]. This was determined using, ).(100 0 0 0 0 0 0 CAVMFC  (5) where VM = % Volatile matter AC% = % Ash content FC% = % Fixed carbon 2.6 HEATING VALUE (HV) The calorific value (or heating value) is the standard measure of the energy content of a fuel.The Heating Value of the tropical hard wood charcoal samples were calculated using equation (6) below[4], HV = 2.326(147.6C + 144V)(6) where C=the percentage fixed carbon and V= the percentage volatile matter. III. PERFORMANCE EVALUATION OF CHARCOAL SAMPLES The evaluation of combustion properties of the various charcoal samples produced was carried out through water boiling test. The procedure used in the calculations of the parameters was based on the approach used by [14]. 3.1 BurnRate (F) The burn rates (F) corrected for moisture content of the various tropical wood charcoal in cook stove were calculated using the formula below, F (kg/h) = 𝟏 𝒕 . 𝟏𝟎𝟎(𝑾 𝒊− 𝑾 𝒇) (𝟏𝟎𝟎 +𝑴) (7) where F = Burning Rate (kg/h) 𝑊𝑖 = Initial weight of the fuel before burning (kg) 𝑊𝑓 = Weight of fuel after burning (kg) M = Moisture content of the fuel
  • 4. Evaluation of combustion characteristic of charcoal from different tropical wood species International organization of Scientific Research 60 | P a g e t = Total time taken for burning fuel 3.2 Time Spent in Cooking Per Kilogram of Cooked Food 𝑻 𝒔 = 𝐓𝐨𝐭𝐚𝐥 𝐭𝐢𝐦𝐞 𝐬𝐩𝐞𝐧𝐭 𝐢𝐧 𝐜𝐨𝐨𝐤𝐢𝐧𝐠 𝐓𝐨𝐭𝐚𝐥 𝐰𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐜𝐨𝐨𝐤𝐞𝐝 𝐟𝐨𝐨𝐝 (hr/kg) (8) where Ts = Timespent IV. RESULTS AND DISCUSSION Charcoal from different wood species used for these analyses had densities ranged between 0.453 ± 0.038 𝑔𝑐𝑚−3(Afara specie) and 0.620±0.046 gcm−3(0beche specie)(𝑃<0.05). The densitiesof charcoal produced from Iroko, Oakand Mahogany wood had density values of 0.5567±0.042 gcm−3 , 0.5300±0.035 gcm−3 and 0.4567±0.032 𝑔𝑐𝑚−3 respectively, as shown in Fig.1(a). Charcoal produced from Afarawood had the least density (0.4533 ± 0.038 gcm−3 ) among the various charcoal samples used while Obeche wood specie had the highest density value. According to [6], these variations may be due to the differences in the age of trees species and/or the environmental conditions as a result of using different maximum final temperatures during carbonization process. However, density values reported in this study met at least in part, the criteria suggested by [7]. Significant differences in heating values were found among charcoal samples used(P < 0.05). The highest value was obtained from charcoal of Afara wood(3.3236 × 104 ± 171.932 kJkg−1 ), with a close heating value proportions with charcoal fromObeche wood (3.3038 × 104 ± 169.604 kJkg−1 ) and Oak wood (3.2956 × 104 ± 430.128 kJkg−1 ) while Mahogany wood had heating value of (3.2230 × 104 ± 337.054 kJkg−1) andIrokowood had the least heating value of (3.2149 ×104±248.974 kJkg−1). These are as shown in Fig. 1(b). The varying heating values observed was as results of low ash content and high fixed carbon content in charcoal which are associated with high lignin content in the wood used [15].Afara wood had the highest lignin content while Iroko wood specie had the least lignin content among the wood samples used to produced charcoal. This fact is related to the higher resistance to thermal degradation of lignin, when compared to holocelluloses, mainly due to the increasing number of C–C and C=C present in its structure and also because lignin has higher percentage of elemental carbon and low oxygen, when compared with other chemical components of wood [15]. The results obtained for heating values in this study are higher than the values obtained by [6], for charcoal from acacia tree species. This may also be due to differences in ages of trees used for charcoal production and the peak temperatures during the carbonization process. However, the heating values reported in this study met at least in part, the criteria suggested by [7] for wood charcoal. Chemical properties of charcoal showed significant differences among the various species of charcoal used for these analyses. Charcoal produced from Oak wood has significantly the highest moisture content value of (4.823 ± 0.954%),charcoal from Irokowoodspecie had 3.820 ± 0.931 % ,charcoal from Mahogany wood specie had (3.733±1.106%); charcoal from Obechewoodspecie had (2.663±0.448%) while charcoal from Afara wood had the lowest moisture content of (2.110±0.661%). (P<0.05). Charcoal that had lower moisture content gave often-higher gross heat of combustion or heating values. This is because high moisture content lowers the calorific or heating value of charcoal [13]. This seems true when charcoal from Oak specieshad the highest moisture content value of (4.823±0.954 %) but had a lower heating valueof(3.2956 × 104 ± 430.128 kjkg−1 ); this was due to the water absorbing nature of oak tree and low level of halocelluloses in oak wood [8], while charcoal from Afara wood which had the lowest percentage moisture content value had the highest heating value of 3.3236 × 104 ± 171.932 𝑘𝑗𝑘𝑔−1 .Fig.2(a) shows the variations in percentage moisture content of various charcoal samples used. The values of moisture content of charcoal produced from different tropical wood species used for these analyses fall within the desirable criteria by [13] in which 7 % is the higher limit for moisture content. Percentage volatile matter in charcoal from Obechewoodspecie presented distinctly the highest proportion (11.00±0.5000%) compared to others. Charcoal from Afara wood, Iroko and Oak wood had close percentage volatile matter proportions of (7.833±1.155%), (7.833±1.607%) and (7.167±2.082%) respectively, with Afara and Iroko species producing similar values of percentage volatile matter. Charcoal from Mahogany wood presented the lowest value of percentage volatile matter (5.000±0.866%). (P<0.05). Fig. 2(b) shows the variations among various charcoal samples used. The volatile matter in charcoal can vary from a high of 40% or more down to 5% or less [13]. According to [16] regarding quality of charcoal, lower levels of volatiles in charcoal is associated with high level of lignin and low level of extractives in wood. This was responsible for Obeche wood specie which had more wood extractives among the various wood samples selected for the production of charcoal and Mahogany wood had the least. High volatile charcoal is easy to ignite but may burn with a smoky flame while low volatile charcoal is difficult to light and burns very cleanly. However, high
  • 5. Evaluation of combustion characteristic of charcoal from different tropical wood species International organization of Scientific Research 61 | P a g e volatile charcoal is preferable for some purposes such as barbecue, while other utilizations as chemical purification and metal manufacture need charcoal with low percentage volatile matter content. There is significant difference in proportion of fixed carbon among charcoal samples used and the greatest proportion of fixed carbon was inAfara specie (89.167±1.258%) which had close fixed carbon content values with charcoal samples from Mahogany specie and Oak specie (89.000±0.500%) and (89.000±2.291%) respectively.Charcoal from Iroko specie had fixed carbon content value of 86.000 ± 0.866 while the lowest was that of Obeche specie (85.500±0.500%). (P<0.05) .The variation in percentage fixed carbon content is shown in Fig. 5.3(a). The fixed carbon content of charcoal ranges from a low of about 50% to a high of around 95 % [13], thus charcoal consists mainly of carbon. Charcoal produced from Afarawoodwhich had the highest heating value also had the highest percentage fixed carbon content value except that of Obeche which had a higher heating value and the lowest percentage fixed carbon in this present study. According to [15] on quality of charcoal, better chemical properties of charcoal such as higher level of fixed carbon is also associated with high levels of lignin and low level of holocelluloses and extractives in wood. Proportion of fixed carbon content can be controlled through the maximum temperature and its residence time during the carbonization process [17]. Increasing the fixed carbon content of charcoal in such a way is associated always with decrease in charcoal yield. The percentage Ash content in various wood charcoal used for these analyses were significantly different (P<0.05). Charcoal from Iroko wood (6.167±0.764 %) had the highest value and a close proportion of ash content value with charcoal from Mahogany wood (6.000±1.000%), while charcoal from Oak, Obeche and Afara wood species had ash content proportions of (3.833±1.258%), (3.500±0.500%) and (3.000±0.500%) respectively. The variation in percentage ash content of charcoal samples used is shown in Fig.3(b). The present study showed that charcoal samples with lower ash content value has invariably higher heating values, with Afara specie having the least ash content value while Iroko specie had highest ash content value. Charcoal sample from Afara wood produced least amount of ash because of its higher level of lignin and low mineral matter compared to charcoal from other wood species. According to [18], presence of high mineral matter components in wood is not desirable, because they are not degraded during carbonization and they remain in charcoal as an undesirable residue (ash) which also contributes to the reduction of charcoal heating value. Ash content of charcoal varies from about 0.5% to more than 5% depending on the species of wood used to produce the charcoal. Good quality lump charcoal typically has an ash content of about 3% [13]. Regression analysis was used to establish linear regression model from the values of correlation coefficient. The plot of the best straight line fit is shown in Fig.4, and the linear equation is: 𝐘 = 𝟑𝟒𝟐𝟑𝟖 − 𝟑𝟑𝟔. 𝟖𝟖𝐗; 𝐑 𝟐 = 𝟎. 𝟗𝟗𝟗 (9) where Y= Heating Value, X= percentage Ash content The linear regression model developed shows an increase in heating value as the percentage ash content of the charcoal samples decreases, Fig.4. V. CONCLUSION AND RECOMMENDATION This research work was carried out to evaluate the physical and combustion characteristics of charcoalproduced from wood offcuts of some selected tropical wood species. The combustion characteristics of charcoal used in this study was influenced by the properties of wood that was used. The quality of the charcoal that was produced using wood offcuts of Afara wood was higher than those of other species. It has the lowest percentage moisture content, ash content and highest heating value and it is followed by charcoal produced from obeche wood offcut. There was little variation in the qualities of charcoal from other wood species used in this study. However, all species of wood offcut used possess good combustion properties and had a high range of heating values. The production and uses of charcoal from wood offcuts should be given wide publicity in Nigeria due to the imminent wood shortage and scarcity of other non-renewable energy sources. REFERENCES [1] Himraj, D,Environmental management, Vol. 19 (3),1993, 283-288. [2] Wilaipon, P. American Journal of Applied Science. Vol. 4(2007), 995-998. [3] Ogunsanwo, O. Y, Effective Management of Wood Waste for Sustainable Wood Utilization in Nigeria,27th Annual Conference of Forestry Association of Nigeria Abuja, FCT 17-21, Sept., 2001, pp225-234. [4] Bailey, R.T. and Blankenhorn, P.R, Wood science, 15(1), (1984), pp19-18
  • 6. Evaluation of combustion characteristic of charcoal from different tropical wood species International organization of Scientific Research 62 | P a g e [5] Hines, D.A. and Eckman, K., Indigenous Multipurpose Trees of Tanzania: Uses and EconomicBenefits for People,FO: Misc/93/9 Working Paper, FAO, Rome, (1993) [6] Megahed, M. M.; M. L. El-Osta; H. A. Abou-Gazia and A. M. El-Baha, Properties of plantation grownleguminous species and their relation to utilization in Egypt. Menofiya Journal of AgriculturalResearch23 (6), (1998), 1729-1751. [7] Food and Agriculture Organization of the United Nations- FAO,Charcoal for domestic and industrialuse. FAO, Rome, (1962). [8] Stimely, G. L. and Blankenhorn, P. R, Effects of species, specimen size and heating rate on charcoalyield and fuel properties. Wood and Fiber Sciences 17(4), (1985), 477-489. [9] Massey, E. E. and Prima, S. D, The demand for charcoal in Dares Salaam Tanzania: An economicand environmental assessment. PREM report.(2005) [10] Antal, M. J, Process for charcoal production from woody and herbaceous plant materials, US pat,(1995), 5435& 983. [11] Aref, I. M., El-Juhany, L. I. and HegazyS. S Comparison of the growth and biomass production ofsixAcacia species in Riyadh, Saudi Arabia after four years of irrigated cultivation. Journal of Arid Environments 54 (4),(2003), 783-792. [12] Rabier, F., Temmerman, M., Bohm, T., Hartmann, H., Rathbauer, J. and Fernandez, M, Particledensity determination of pellets and charcoal. Journal ofBiomass and Bioenergy.30,(2006), 954– 963 [13] Food and Agriculture Organization of the United Nations- FAO, Industrial charcoal making, FAOForestry Paper No. 63, FAO, Rome.(1985) [14] Ahuja, D. R., Joshi, V., Smith, K. R. and Venkataranman, C, Thermal Performance and Emission Characteristics of Unvented Biomass – Burning Cookstoves; A Proposed Standard Method for Evaluation of Biomass, . (1987), 12. [15] Santos, R. C., Carneiro, A. D. and Castro, A. F, Correlation of quality parameters of wood and charcoal of clones of eucalyptus,” Forest Sciences, No. 90, (2011) 221–230. [16] Oliveira, E, Correlations between quality parameters of Eucalyptus grandis (Whill ex-Maiden) woodand charcoal, Technical Bulletin SIF 2, (1990). [17] Hindi, S. S, Charcoal properties as affected by raw material and charcoaling parameters. M.Sc.Thesis, Alexandria University, Egypt,(1994) [18] Tsoumis, G., Science and Technology of Wood: Structure, Properties, Utilization, Van Nostr and Rein old, New York, NY, USA.(1991)
  • 7. Evaluation of combustion characteristic of charcoal from different tropical wood species International organization of Scientific Research 63 | P a g e Figure 1.1: Variation in Density (a), Variation in Heating Values (b) of Charcoal Samples used. Figure 2: Variation in Percentage Moisture Content (a), Variation in Percentage Volatile Matter (b), of Charcoal Samples used.
  • 8. Evaluation of combustion characteristic of charcoal from different tropical wood species International organization of Scientific Research 64 | P a g e Figure 3: Variation in Percentage Fixed Carbon Content (a), Variation in Percentage Ash Content (b) of Charcoal Samples used. Figure 4: Linear Regression Graph of Heating Values and %Ash