SlideShare ist ein Scribd-Unternehmen logo
1 von 19
Downloaden Sie, um offline zu lesen
TRAUMA




                                     SURGERY OF CEREBRAL TRAUMA
                                     AND ASSOCIATED CRITICAL CARE

Alex B. Valadka, M.D.                 The last 30 years have been both exciting and frustrating for those in the field of trau-
Department of Neurosurgery,           matic brain injury (TBI). Much has been learned, but no new treatment has been shown
University of Texas Medical
School at Houston,
                                      to improve patient outcomes despite the execution of many clinical trials. The overall
Houston, Texas                        incidence of TBI has decreased, probably because of intensive efforts toward preven-
                                      tion and education. Rigorous assessment of available research has produced several
Claudia S. Robertson, M.D.            evidence-based guidelines for the management of neurotrauma patients. The creation
Department of Neurosurgery,           of organized emergency medical services systems in many regions has improved pre-
Baylor College of Medicine,
                                      hospital care. Computed tomographic scans have become the gold standard for obtain-
Houston, Texas
                                      ing immediate images of patients with TBI, and ongoing advances in visualizing cere-
Reprint requests:                     bral metabolism continue to be remarkable. The major current question regarding
Alex B. Valadka, M.D.,                surgical treatment for TBI involves the role of decompressive craniectomy, an opera-
Department of Neurosurgery,
University of Texas Medical School
                                      tion that first fell out of favor and has since (in the last three decades) enjoyed a resur-
at Houston,                           gence of interest. Growing interest in the intensive care management of TBI patients
6410 Fannin Street, Suite 1020,       helped to establish the new field of neurocritical care. Prophylactic hyperventilation is
Houston, TX 77030.
Email: alex.valadka@uthtmc.edu
                                      no longer recommended, and earlier recommendations for aggressive elevation of blood
                                      pressure have been softened to endorsement of a cerebral perfusion pressure of 60
Received, December 12, 2006.          mmHg. Recombinant factor VIIa is increasingly used for minimizing complications
Accepted, March 22, 2007.             related to coagulopathy. Intracranial pressure monitoring is now recommended for the
                                      majority of TBI patients. At present, available technologies allow measurement of other
                                      aspects of cerebral metabolism including cerebral blood flow, brain oxygen tension,
                                      biochemistry, and electrical activity. Therapeutic interventions that are growing in pop-
                                      ularity or are presently under investigation include administration of hypertonic saline,
                                      hyperoxygenation, decompressive craniectomy, and hypothermia. Rehabilitation has
                                      become accepted as an important part of the TBI recovery process, and additional work
                                      is needed to identify optimal interventions in this area. Socioeconomic factors will play
                                      a growing role in our treatment of TBI patients. Although much progress has been made
                                      in the last 30 years, the challenge now is to find ways to translate that progress into
                                      improved care and outcomes for TBI patients.
                                      KEY WORDS: Computed tomography, Guidelines, Neurocritical care, Neurotrauma, Prehospital, Traumatic
                                      brain injury

                                     Neurosurgery 61[SHC Suppl 1]:SHC-203–SHC-221, 2007                 DOI: 10.1227/01.NEU.0000255497.26440.01




S
      urgical treatment of head injuries was almost certainly the        greatly improved our understanding of posttraumatic cerebral
      first type of neurosurgical procedure performed by ancient          pathophysiology (Fig. 1). At the same time, these new insights
      peoples several millennia ago. Even as recently as last cen-       have failed to make the transition to clinically useful therapies.
tury, as neurosurgery was rapidly growing as a specialty and as          Many of the major clinical trials of the last decades have been
new practitioners began to settle in more and more cities across         “negative” studies that have shown us what does not work. It
the United States, trauma patients continued to be a major part          has been extraordinarily difficult to demonstrate the efficacy of
of the clinical volume of many of these newly established prac-          new treatments.
tices.                                                                     Identifying new treatments and proving their utility have
   The last three decades have been alternately exhilarating and         been seemingly insurmountable obstacles. Progress has been
frustrating for those with clinical and research interests in trau-      made, however, in other arenas. Careful reevaluation of exist-
matic brain injury (TBI). Laboratory and bedside research has            ing data and publications can help in identifying which prac-




NEUROSURGERY                                                                       VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-203
VALADKA AND ROBERTSON


                                                                                                                      wounds to the head (GSWH)
                                                                                                                      (59).

                                                                                                                      Age
                                                                                                                         Another recent develop-
                                                                                                                      ment has been the apparent
                                                                                                                      increase in brain injuries
                                                                                                                      among the elderly. Some of
                                                                                                                      this increase is thought to
                                                                                                                      reflect the growing number
                                                                                                                      of elderly citizens in the pop-
                                                                                                                      ulation at large. Another
                                                                                                                      likely contributing factor is
                                                                                                                      the concurrent growth in the
                                                                                                                      number of elderly patients
                                                                                                                      taking anticoagulant or
                                                                                                                      antiplatelet drugs.

                                                                                                                      Outcome
                                                                                                                            Some authors report a sig-
                                                                                                                          nificant decrease in mortality
                                                                                                                          rates attributed to TBI over
                                                                                                                          the last few decades (33).
                                                                                                                          However, such reports often
  FIGURE 1. Findings from a patient with fatal brain injury. A, computed tomographic scans were obtained at hospi-        exclude the most severely
  tal admission and 12 hours later, showing local cerebral ischemia progressing to global cerebral ischemia. Location of  injured patients or those in
  brain tissue oxygen probe is shown (yellow circle). B, graphs showing progressive increase in ICP, decrease in brain
                                                                                                                          whom a significant amount of
  oxygen level, and decreases in glucose and pyruvate levels in cerebral microdialysate, with a rapid increase in lactate
  and a later increase in glutamate levels.
                                                                                                                          time passed between injury
                                                                                                                          and arrival at a hospital (19,
                                                                                                                          31, 38, 43, 71). Such exclusions
tices are supported by the best available evidence and which                       are understandable because those studies were often designed
can be discarded or at least placed in an appropriate context                      to evaluate the efficacy of potential new therapies, which are
that recognizes their limitations. Finally, emergency neurosur-                    unlikely to be effective in patients with devastating trauma. At
gical care, like emergency care in general, has benefited from                      the same time, however, the outcomes in these reports cannot
sustained efforts at systems planning, integration, and cooper-                    be viewed as representative of the outcomes that would be
ation. Prehospital and interhospital coordination are much                         expected when all patients with TBI are included. An addi-
more effective when protocols are established before they are                      tional concern about some studies is that the only outcome
needed, and are far better than the alternative of waiting until                   captured is survival versus death at hospital discharge.
a patient deteriorates before deciding where to send and how                       Detailed long-term outcome assessments by trained, blinded
to treat him or her.                                                               examiners are generally not performed.
   These successes and disappointments are summarized in the                          The Traumatic Coma Data Bank (TCDB) was created when
following sections. They begin with discussions of epidemiol-                      four academic centers with interest and expertise in TBI partic-
ogy, prevention, and guidelines, and continue with a sequence                      ipated in a data collection project that began almost 30 years
of steps that a trauma patient would experience as he or she                       ago. At that time, prehospital care systems and improvements
progresses through the emergency care system, including ini-                       in emergency medical systems had evolved sufficiently to
tial prehospital and emergency department care, imaging, sur-                      allow rapid transport of injured patients to hospitals.
gery, intensive care, and rehabilitation.                                             Thus, it seems reasonable to use TCDB data as a reliable
                                                                                   starting point for discussions of outcome after TBI (37). Like
                                                                                   most such studies, however, these data suffer from at least two
                          EPIDEMIOLOGY                                             limitations. The first is that the data were gathered from aca-
                                                                                   demic trauma centers, which may not necessarily have compa-
Mechanism of Injury                                                                rable outcomes to nonacademic facilities or to facilities that are
   A welcome change in the epidemiology and demographics of                        not designated trauma centers. The second is that patients
TBI has been the steady decrease in incidence of severe closed-                    enrolled in clinical trials—even the placebo group—tend to
head injury in recent years. Unfortunately, this decrease has                      have better outcomes than other patients because of the extra
been paralleled by an increase in the numbers of gunshot                           attention that is given to all patients in a study. For these rea-




SHC-204 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT                                                                   www.neurosurgery-online.com
SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE


sons, TCDB data may be unduly optimistic if they are used to         Thoughtful analysis of these injuries is a science that is still in
anticipate the likelihoods of different outcomes in patients who     its infancy. In sports such as football, neurosurgeons have
are not enrolled in clinical trials, who are treated at nonacade-    assumed the lead in modifying rules of play to increase safety
mic facilities, or who are managed at a hospital that is not a       without diminishing the enjoyment for participants or specta-
trauma center.                                                       tors (6). Improving the performance of safety equipment, such
   The TCDB data suggest that death can be expected in roughly       as football helmets, is another area of active investigation. The
30 to 36% of patients with severe closed TBI. A persistent vege-     most pressing questions seem to center around when and
tative state will occur in 5% or fewer of these patients. Severe     whether an athlete can return to play, and whether repetitive
disability will probably be the outcome for approximately 15%        minor brain injuries can have cumulative long-lasting effects. In
of patients; moderate disability can be expected in perhaps 15 to    addition to clinical evaluation and neuropsychological testing,
20% of patients; and a good outcome will occur in at least 25%       computerized assessment tools have been developed to assist
of patients. These results are comparable to those of some           in answering these questions (36). Functional imaging tech-
recently compiled series of unselected patients (55).                niques are also under investigation in this area.
   In patients with GSWH, the outcome distribution is more
heavily skewed toward the extremes (62). Some studies report                                 GUIDELINES
prehospital mortality rates of almost 90% for GSWH patients,
and patients who are still alive upon arrival at a hospital may         The phrase “evidence-based medicine” has seen so much
have mortality rates of 60% or higher. However, 30 to 40% of         use in recent years that it has become a cliché. Basing patient
patients will achieve good outcomes or have only moderate            care decisions on high-quality research data has always been
disability. The “intermediate ground” of severe disability or        the mainstay of clinical practice. During the last decade,
persistent vegetative state occurs less commonly in GSWH             attempts to codify and label these practices have been driven
patients than in those with closed TBI.                              by several factors, including busy practitioners’ desires to make
   A major advance over the last few decades has been the            sure that they are doing the right thing according to currently
growing awareness that a good outcome on the Glasgow                 accepted practices, as well as cost-cutting attempts to reduce
Outcome Scale does not necessarily mean that a patient will          unwarranted variation. Of note, TBI was the subject of the first
recover without any deficits. Problems with judgment, impulse         guidelines effort in neurosurgery (8). Several other neuro-
control, abstract thinking, short-term memory, and other areas       trauma guidelines have been produced subsequently, including
may be devastating for patients and families, even when a            those for pediatric brain injury, penetrating brain injury, surgi-
patient outwardly appears to have made a good recovery.              cal management of brain injury, and prehospital management
                                                                     of brain injury (1, 4, 13, 26).
                       PREVENTION                                       These documents are quite useful as reviews of existing
                                                                     knowledge and categorization of the strength of evidence sup-
   Without question, one of the most important developments          porting various management practices. For a disease as com-
in neurotrauma in the last 30 years or so has been the creation      plex as TBI, a common concern about applying the results of a
and growth of injury prevention programs. For example,               clinical trial is the generalizability of the results to a particular
ThinkFirst is a program that was created by organized neuro-         patient or circumstance. It is often difficult to appreciate the
surgery with the goal of preventing injury via education,            nuances and determine when thoughtful deviation from guide-
research, and policy. Some data suggest that this educational        lines is appropriate. The optimal practice of evidence-based
program not only increases children’s knowledge about injury         medicine consists of making clinical decisions by integrating
prevention, but also reduces their incidence of head and back        knowledge of the available evidence with a particular patient’s
injuries (69). Other injury prevention programs, including those     circumstances, a physician’s own training and experience, and
at the local, regional, and statewide levels, also play important    the setting in which the care is being provided. Guidelines pro-
roles in injury prevention.                                          vide an excellent place to start setting treatment goals and for-
   Because automobile accidents are a major cause of all types of    mulating a therapeutic plan.
trauma, one would expect that improvements in automobile                Several retrospective reports using historical controls sug-
safety would have a major impact on the incidence of TBI. Air        gest that standardization of care through protocols based on
bags, compulsory seatbelt laws, lower speed limits, and              published guidelines may improve outcomes for TBI patients.
improvements in the overall safety and crash tolerance of auto-      In some cases, costs are reduced, but other reports describe
mobiles may all have played a role in reducing the incidence of      increased costs if hospitals had not previously devoted many
traffic-related TBI during the last three decades. Greater societal   resources to acute TBI management. Also, despite widespread
awareness of the dangers of driving while under the influence of      dissemination, the degree to which most hospitals and practi-
alcohol or other drugs is probably another major factor. A wealth    tioners actually implement guidelines remains unclear.
of epidemiological data indicates that motorcycle helmet laws           Despite these caveats, the continuing maturation of guide-
are associated with lower rates of motorcycle operator fatalities.   lines efforts in neurosurgery has been a major development
   Sports-related neurological injuries comprise a distinct group    during the last decade. Many neurosurgeons and hospitals
of traumas that occur at a predetermined time and place.             have used this opportunity to review their practices and revise




NEUROSURGERY                                                                  VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-205
VALADKA AND ROBERTSON


them when appropriate. The goals of these efforts are                  gency patients. However, the subsequent widespread adoption
improved efficiency, reduced costs, and, most importantly, bet-         of prehospital sedation, paralysis, and intubation of emergency
ter outcomes.                                                          patients has made it impossible to perform an appropriate neu-
                                                                       rological evaluation on many of these individuals.
                                                                          Good solutions to this problem remain elusive. Reliance
                   PREHOSPITAL CARE                                    upon prehospital providers’ descriptions of the prehospital
                                                                       examination is often the only alternative, but these assess-
Organization of Prehospital Care                                       ments may be incomplete or inaccurate. Marshall et al. (39)
   Thirty years ago, organized networks for prehospital care           created a computed tomography (CT)-based classification
were little more than a promising idea. The subsequent years           scheme that categorizes the severity of brain injury. The
have witnessed definite improvement in the organization of              Abbreviated Injury Scale used by general trauma surgeons is
prehospital care systems in the United States, and such net-           also based on anatomic criteria. Although useful, such
works now exist in many regions. Mortality is significantly            schemes cannot supplant clinical assessments of neurological
reduced when injured patients receive care at a trauma center          function. Instead, they are best thought of as supplementary
as opposed to a hospital that is not a trauma center (34). The         sources of information.
obvious implication is that organized prehospital triage and
referral systems can improve patient outcomes. However,                Airway
major organizational gaps continue to affect the optimal pre-
hospital care of many TBI patients.                                       The need to secure the airway of a severely brain-injured
   In 1986, the Emergency Medical Treatment and Labor Act              patient has long been a basic management principle. It seems
(EMTALA) became law. It was intended to prevent uninsured              intuitively obvious that establishing a secure airway will facil-
patients from being refused emergency assessment and treat-            itate oxygenation, avoid hypercarbia, and prevent aspiration
ment. As with many well-intentioned government regula-                 (18, 42).
tions, unintended consequences soon appeared. For example,                Why, then, have several recent retrospective reviews
a remote hospital that is not a designated trauma center (and          reported an increase in mortality in severe TBI patients who
which does not have immediate access to operating rooms 24             were endotracheally intubated before reaching the hospital?
hours per day) could be found to be in violation of EMTALA             The answer seems to lie in problems with implementation,
if personnel there were to deny a request for an emergency             not with the basic principle itself (25). In some regions, para-
patient transfer with the reasoning that the patient would be          medics and other first responders may perform endotracheal
much better served at a closer or more appropriate facility,           intubation so rarely that the necessary skills cannot be main-
such as a level I trauma center. Another unintended situation          tained. In other situations, optimal ventilation may not be
occurs when a trauma center becomes filled with patients               performed (21).
who have relatively minor injuries because the center is statu-           It seems safe to conclude that immediate intubation of
torily required to accept all patients in transfer. As a result, the   patients with TBI is still an effective method of securing an air-
trauma center may be forced to go on ambulance diversion,              way, but only if the person performing the intubation is suffi-
which makes the facility and its specialty attention unavail-          ciently skilled. A better choice for inexperienced responders
able to the very people it was established to serve: severely          may be using a bag-valve-mask device or a laryngeal mask air-
injured patients who truly require immediate surgery and               way to maintain the patient’s ventilation.
critical care.
   Regional interhospital cooperation is an obvious solution.          Breathing
However, the frequently intense competition between hospitals             Recommendations for the use of hyperventilation in TBI
and the resulting lack of cooperation are common barriers to           patients have undergone several changes over the last decade.
regional coordination of services. Along with continued revi-          Early observations about the effectiveness of hyperventilation
sions of EMTALA, these barriers must be overcome if injured            in lowering intracranial pressure (ICP) led to its widespread
patients are to receive optimal prehospital care. The susceptibil-     use. The mechanism appears to be a pH-mediated effect of con-
ity of the acutely injured brain to secondary insults such as          stricting cerebral resistance arterioles which thereby decreases
hypoxia and hypotension, as well as the frequency with which           cerebral blood volume.
such insults occur, suggests that efficient and coordinated pre-           Subsequent laboratory work suggested that the vascular
hospital networks are especially important for optimal care of         constrictive effect of sustained hyperventilation begins to wear
TBI patients.                                                          off within a few hours (45). Moreover, once a low CO2 partial
                                                                       pressure (PaCO2) has been maintained for more than a few
Neurological Assessment                                                hours, any attempts to raise the PaCO2 back to normal may
  The first publication of Plum and Posner’s classic mono-             cause the blood vessels to dilate and thereby increase blood
graph in 1966 (50) and the description of the Glasgow Coma             volume and ICP.
Scale by Teasdale and Jennett in 1974 (60) had a major influence           Eventually, clinical data demonstrated worse outcomes in
on the standardization of neurological assessment of emer-             severe TBI patients who had been routinely treated with hyper-




SHC-206 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT                                                      www.neurosurgery-online.com
SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE


ventilation (44). Thus, routine use of prophylactic hyperventi-       pressures (5, 23). This protocol is based in part on the assump-
lation is not recommended.                                            tion that the hydrostatic pressures associated with elevated
   However, there remain at least two situations in which             blood pressure may promote cerebral edema through passage
hyperventilation may be appropriate. The first is as a latter-         of water from the circulation to the brain, whereas increasing
stage treatment for refractory intracranial hypertension.             blood oncotic pressure and increasing precapillary vasocon-
Protocols vary as to the exact circumstances at which this ther-      striction may facilitate diffusion of water from the brain to the
apy should be instituted, but most agree that it should only fol-     vasculature (Fig. 2). Again, however, support for these con-
low the failure of some other therapies, such as sedation, phar-      cepts is based only on uncontrolled case series.
macological paralysis, CSF drainage, and/or osmolar therapy.             Present thinking suggests that there probably exists a floor
If advanced neurological monitoring capabilities are available,       below which CPP should not decrease. However, efforts to
cerebral oxygen metabolism can be tracked to ensure that              increase CPP above this floor in all patients may increase com-
hyperventilation does not cause a reduction in oxygen delivery        plications without conferring any added benefit. A minimum
to the brain. Similarly, if cerebral blood flow (CBF) monitoring       CPP of 60 mmHg is probably reasonable for most patients. As
indicates that blood flow to the brain is normal or even ele-          with all such recommendations, however, individual patients
vated, then mild hyperventilation may be implemented early in         may fare better with either higher or lower CPPs. Ideally,
the management of intracranial hypertension.                          detailed cerebral monitoring could be used to identify those
   Another indication for hyperventilation is an acute neurolog-      patients who require a higher CPP and, conversely, those who
ical deterioration that is known or suspected to be caused by a       would not need to be subjected to the potential risks of aggres-
large intracranial mass lesion. In theory, a brief period of hyper-   sive efforts to increase CPP to an arbitrary level.
ventilation may lower ICP long enough to allow sufficient time            Of note, most of these studies were conducted in intensive
to transport a patient to an operating room for evacuation of a       care units (ICUs). It is reasonable to extrapolate them to the pre-
hematoma or contusion. The negative effects of a potential tem-       hospital setting, but the reader should remember that specific
porary compromise of CBF from vasoconstriction may be out-            treatment goals may have to be adapted to that setting.
weighed by the benefits of reducing ICP. In these patients, once
a clot is removed, ventilation returns to normal. In patients                                     IMAGING
without focal signs suggestive of the presence of a mass lesion
(such as a significantly asymmetric motor exam or asymmetry              A generation ago, CT was still a new technology. Published
of pupillary response), there is less indication to initiate imme-    reports continued to explore the utility of this new imaging
diate hyperventilation. Similarly, if a patient who has been          technique in brain-injured patients. Angiography and cranial
hyperventilated as a preliminary treatment for a suspected            radiography were beginning to fade from the scene as routine
acute hematoma is found to have no such lesion upon per-              tools in the evaluation of trauma patients. Magnetic resonance
formance of CT, hyperventilation is usually best stopped while        imaging had not yet become available.
other treatments with more acceptable risk-benefit ratios are
implemented.

Circulation
  Similar to the breathing and ventilation strategies for treating
TBI patients, the general consensus on blood pressure goals
has undergone several changes during the last three decades.
The 1980s and 1990s witnessed widespread dissemination of
the belief that elevating blood pressure to maintain a mean
cerebral perfusion pressure (CPP) of at least 70 mmHg
improved outcome for patients with severe TBI. Anecdotes and
case series supported this approach, and it seemed to be consis-
tent with the concept that cerebral hypoperfusion caused by
low blood pressure is a major source of secondary brain injury
(53, 54).                                                                       FIGURE 2. According to the Starling hypothesis,
  Subsequent reports, however, including a prospective, ran-                    fluid exchange (JV) between a capillary and the inter-
domized, controlled trial, demonstrated no improvement in                       stitial space is determined by hydrostatic pressure
patient outcome as a result of this practice (32, 52). Robertson                within the capillary (Pc), hydrostatic pressure in the
                                                                                interstitial space (Pi), oncotic pressure within the cap-
et al. (52) found that this treatment strategy did seem to
                                                                                illary (πc), and oncotic pressure within the interstitial
decrease the incidence of cerebral ischemia, but it did so at the               space (πi). K is a constant. Important parts of the Lund
price of increased pulmonary complications. The overall result                  strategy for management of patients with severe TBI
for patients was no gain.                                                       include manipulation of these parameters to attempt to
  Meanwhile, a management protocol from Lund, Sweden,                           minimize cerebral edema.
called for severe TBI patients to be maintained at lower blood




NEUROSURGERY                                                                   VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-207
VALADKA AND ROBERTSON


   Not too many years ago, performing emergency CT was a
time-consuming affair. The neurosurgeons accompanying the
                                                                        A                                                        C
patient had plenty of time to write their admission history and
physical and their admitting orders while in the scanner.
Neurosurgery residents who had some knowledge of computer
programming could learn to operate the scanner. Debates in the
literature and at meetings argued about the value of a single-
slice computed tomographic scan through the center of the
head as a way to identify mass lesions quickly, without the
need to wait for the entire scan to be completed.
   Subsequent advances in CT technology have been nothing
short of remarkable. Scans of the brain can now be obtained in
a matter of seconds. Touch-screen technology has made it pos-
sible for virtually any physician to perform CT with only min-
imal training. Image quality has improved greatly. The need to
print images on film has disappeared, as the scans are accessi-
ble from any place that has Internet connectivity.
   A key development in medical imaging has been our ability
to visualize not only anatomic structure, but also function. CT,
which remains the imaging modality of choice for patients with
acute TBI, can be adapted to provide information about CBF,             B
perfusion, and vascular anatomy, even in emergency settings
(Fig. 3). Magnetic resonance imaging and magnetoencephalog-
raphy can reveal selective activation of specific brain regions.
Although positron emission tomography scanning remains the
most powerful tool for acute study of CBF and metabolism
after injury, as yet its application is not as widespread as that of
CT and magnetic resonance imaging.
   A common problem, however, is the need to transport criti-
cally ill patients to the radiology department to perform such
studies. Patient transport has been reported by many authors to
be associated with an increase in potentially adverse events.
Portable CT equipment has been available for several years, but
only recently have technological advances made these devices
more user friendly. Important features include helical scanning
capability, low radiation exposure, wireless links to a hospital’s
imaging network, operation via a touch screen, ability to run on
battery power, and ability to perform perfusion and xenon-
enhanced CT studies (48). Most importantly, this technology             FIGURE 3. Two examples of stable xenon-enhanced computed tomo-
avoids the need to transport patients to the radiology depart-          graphic scans. A, scan shows left temporal ischemic area, but flows are ele-
ment. Future applications may include placement of these scan-          vated elsewhere in the brain. B, scan shows reduced flow throughout the
ners in emergency departments and even in certain types of              brain, with large ischemic areas in the right temporal and frontal areas and
ambulances.                                                             smaller ischemic areas elsewhere (left). C, scale bar for CBF (units are mil-
                                                                        liliters per 100 grams per minute) is shown.
                          SURGERY
  Basic principles of surgical management have not changed             torn between performing an operation that may be unneces-
much in the last generation. As articulated clearly by Becker          sary versus having a patient undergo neurological deteriora-
and others, they include prompt evacuation of contusions and           tion if surgery is delayed too long.
other mass lesions and use of large craniotomy openings for the           Several courses of action are possible in such situations.
evacuation of acute subdural hematomas (ASDHs).                        These include waiting a few hours to allow alcohol or other
                                                                       drugs to be metabolized; obtaining a follow-up computed
Indications                                                            tomographic scan within several hours to determine whether
  Some of the most difficult decisions we make in neurotrauma           the lesions have enlarged; and/or inserting a ventriculostomy
care involve whether moderate-sized hematomas or contusions            or parenchymal ICP monitor in search of elevated ICP, which
should be evacuated or simply observed. A surgeon may feel             might prompt an immediate craniotomy.




SHC-208 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT                                                              www.neurosurgery-online.com
SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE


   These decisions are often based on an individual physician’s              be time consuming in some hospitals, and procurement of
judgment and experience. It is often preferable to remove size-              recombinant factor VIIa may require complex bureaucratic pro-
able lesions early, before a patient’s condition deteriorates.               cedures because of its cost. Neurologically compromised yet
Prompt surgery also minimizes subsequent parenchymal                         treatable patients may not be able to tolerate such delays. We
edema around a contusion. Furthermore, a global measure                      have sometimes enjoyed success with taking such patients
such as ICP may be normal even while CBF and metabolism                      promptly to surgery while the hospital’s blood bank initiates
are focally impaired near an acute traumatic lesion.                         the process of delivering fresh frozen plasma and/or platelets
   Recently published evidence-based guidelines provide some                 to the operating room. Blood products generally arrive in the
direction (10–12, 14, 15). Patients with Glasgow Coma Scale                  operating room while the neurosurgeon is in the midst of the
scores of 8 or less with large mass lesions should undergo                   surgery, and their effect on clotting is usually immediate and
prompt lesion evacuation, especially if the results of their neu-            obvious. Although laboratory tests of hemostatic function are
rological examinations reveal deterioration, if their pupils                 helpful, the surgeon can gain useful information simply by
exhibit anisocoria or are fixed and dilated, or if the lesions are            watching how the blood is clotting in the surgical field.
causing focal neurological deficits. A midline shift of 5 mm or                  Recombinant factor VIIa has received a great deal of atten-
more and effacement of the basal cisterns are commonly used                  tion recently for treatment of coagulopathy in trauma patients
computed tomographic indicators of significant mass effect.                   (22). An important neurosurgical application is the immediate
Regardless of the patient’s Glasgow Coma Scale score, evacu-                 treatment of warfarin-associated intracranial hemorrhage (9).
ation is recommended for epidural hematomas larger than 30                   This product may help with diffuse oozing, but brisk bleeding
mm3, subdural hematomas greater than 10 mm in thickness or                   from a large vessel still requires direct treatment via cautery,
causing more than 5 mm of midline shift, and parenchymal                     ligation, tamponade, etc.
lesions greater than 50 mm3 in volume. Evacuation of frontal                    As neurosurgeons’ experience with factor VIIa has increased,
and temporal contusions greater than 20 mm3 in size is recom-                several questions have been raised. One is the possibility of
mended if the contusions are located frontally or temporally                 inducing adverse reactions, such as thrombosis of stenotic coro-
and are associated with compressed cisterns or a midline shift               nary arteries, in susceptible patients. The number of such
of 5 mm or more in patients with Glasgow Coma Scale scores                   reports will undoubtedly increase as this agent sees greater
of 6 to 8. A smaller size threshold is often used in assessing tem-          use. Another concern is that the half-life of factor VIIa is only 3
poral lesions because of their potentially greater risk.                     to 6 hours. Thus, after its period of action has passed, the hem-
                                                                             orrhagic diathesis may recur unless additional treatments are
Anticoagulant and Antiplatelet Agents                                        initiated, such as administration of fresh frozen plasma, vita-
   An increasingly common problem involves the patient who                   min K, or additional factor VIIa. The cost of the drug is high,
develops an intracranial hemorrhage while taking Coumadin,                   especially for the doses required to treat bleeding in trauma
Plavix, and/or aspirin medications (Fig. 4). Some neurosur-                  patients. To control costs, some hospitals have implemented
geons delay surgery until platelets can be administered or                   complex administrative-approval algorithms. The significant
coagulation parameters normalized. Vitamin K is usually read-                cost also raises important questions about appropriate indica-
ily available, but obtaining platelets or fresh frozen plasma can            tions, especially in elderly patients with devastating hemor-




   FIGURE 4. Series of computed tomographic scans showing rapid              ative epidural hematoma developed, requiring the patient to return to the
   enlargement of a contusion, which was surgically evacuated. A postoper-   operating room.




NEUROSURGERY                                                                           VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-209
VALADKA AND ROBERTSON


rhages that make meaningful recovery unlikely. These issues        troublesome area. It is often helpful to place small amounts of
are important because such situations will likely occur with       an absorbable hemostatic agent, such as Gelfoam (Pharmacia/
increasing frequency in the future as the population ages and      Upjohn; Kalamazoo, MI) or Surgicel (Johnson & Johnson;
the number of patients taking anticoagulants increases.            Arlington, TX) sponges or fibrillar collagen, just under the bony
                                                                   edge. These materials provide some extra bulk that may act as
Subdural Hematomas                                                 tamponades in areas of bleeding.
                                                                      Several maneuvers during opening of the dura may be use-
   Although it has been reported (57) that reduced mortality
                                                                   ful for avoiding subsequent problems. The first is to open the
can be expected if ASDHs are evacuated within 4 hours, other
                                                                   dura in a slow, controlled manner. Going slowly at this point of
surgeons have not been able to replicate this effect (70). Some
                                                                   the operation may seem counterintuitive to the need for rapid
patients may fail to improve because of coexisting parenchymal
                                                                   evacuation of a large clot. However, some experienced neuro-
brain injury that will not improve after evacuation of a mass
                                                                   traumatologists speculate that a relatively slow dural opening
lesion. Furthermore, even rapid progression of a patient
                                                                   may allow a more gradual reduction of the pressure on the
through the emergency medical services system and to the
                                                                   cerebral cortex. This gradual equilibration has been assumed to
operating room may not be fast enough to reverse damage
                                                                   reduce the likelihood of sudden, massive herniation of brain
caused by the mass effect of a clot. Nevertheless, clinical and
                                                                   through the craniotomy opening.
laboratory evidence documents the adverse effects of a large
                                                                      Along similar lines, it may be helpful to open the dura in a
acute mass lesion on cerebral metabolism (27). Prompt evacu-
                                                                   cruciate manner. Specifically, the four limbs of a cruciate open-
ation is not only common sense; it is also consistent with the
                                                                   ing may be made without connecting them at the center of the
common clinical observation that patients often improve after
                                                                   “X.” This allows evacuation of the clot from all four quadrants
evacuation of large ASDHs. These same arguments apply to
                                                                   of the exposure. If the brain appears to begin swelling slightly,
other types of traumatic mass lesions as well.
                                                                   and if intradural bleeding has stopped, these four smaller inci-
   The use of large craniotomy flaps when performing ASDHs
                                                                   sions can be closed quickly. Alternatively, two of these limbs
allows the surgeon to gain access to a variety of potential
                                                                   can be connected to create a small dural flap if access to only a
sources of bleeding. These include large draining veins near
                                                                   specific part of the opening is desired. Wider access can be
the superior sagittal sinus as well as contused tissue in the
                                                                   gained by connecting all four limbs. If the surgeon wishes to
subtemporal and subfrontal areas and the temporal and
                                                                   close quickly, a single stitch in the center can pull all four dural
frontal poles. A large craniotomy opening for evacuating an
                                                                   leaves together. Although this approach is especially helpful if
ASDH has been a standard recommendation for many years,
                                                                   the surgeon is not initially planning to perform a decompres-
but it is worth emphasizing in our present era of tiny incisions
                                                                   sive craniectomy, it is completely compatible with a decision to
made possible by image-guidance systems and endoscopic
                                                                   proceed with decompression if unexpected intraoperative
instrumentation. The medial part of the scalp incision may be
                                                                   events indicate that it might be helpful.
made on or near the midline, but it may be wise to keep the
                                                                      Other surgeons attempt to prevent massive brain swelling by
bony opening several centimeters off the midline to avoid
                                                                   incising the dura with a reverse “U” incision anteriorly, inferi-
arachnoid granulations and large dural and cortical veins
                                                                   orly, and posteriorly; the dura near the midline is left intact (3).
near the midline. The midline placement of the scalp incision
                                                                   They report excellent results in terms of evacuating subdural
preserves the option of removing additional bone near the
                                                                   hematomas and parenchymal lesions, with no cases of mas-
midline if subsequent uncontrollable bleeding near the supe-
                                                                   sive brain swelling.
rior sagittal sinus necessitates more medial exposure. It also
ensures a sufficiently wide base for the scalp flap, which pre-
vents necrosis of the posterior and superior edges of the flap     Decompressive Craniectomy
from inadequate blood supply.
                                                                      In the last few decades, interesting swings have occurred in
   An exception to the general practice of using larger flaps
                                                                   the neurosurgical community’s opinion regarding decompres-
may sometimes be found in coagulopathic patients with rela-
                                                                   sive craniectomy. It is clear that decompressive craniectomy
tively focal subdural hematomas. Some authorities describe
                                                                   can lower ICP in many cases (Fig. 5). However, it is equally
successful clot evacuation in such cases without excessive dif-
                                                                   clear that no well-done, randomized, prospective trial has been
ficulty in obtaining hemostasis.
                                                                   completed to answer the question of whether decompressive
                                                                   craniectomy truly improves outcomes for all patients, or even
Surgical Technique                                                 for certain selected subpopulations (56). Two prospective trials
  If epidural tack-up sutures are used in an emergency surgery,    now in progress may provide important information about
many surgeons prefer to wait until closing to place them so as     the effectiveness of decompressive craniectomy for TBI
not to delay evacuation of a large mass lesion. However, dur-      patients (29, 56).
ing the opening, brisk epidural bleeding may be encountered           Although the potential complications of decompressive
immediately upon removal of the bone flap, especially near          craniectomy are familiar to those who perform these proce-
the midline. The only way to achieve control may be by plac-       dures, these issues have only recently received more than a
ing numerous, closely spaced epidural tack-up sutures at the       cursory mention in the literature. Potential problems include




SHC-210 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT                                                   www.neurosurgery-online.com
SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE


                                                                                                                   trauma operations. Unless
                                                                                                                   the brain is markedly
                                                                                                                   swollen, this practice may
                                                                                                                   not be necessary in many
                                                                                                                   cases. Mildly protruding
                                                                                                                   brain can often tolerate
                                                                                                                   watertight closure of the
                                                                                                                   overlying dura, even if the
                                                                                                                   brain has to be carefully pro-
                                                                                                                   tected and depressed with a
                                                                                                                   malleable retractor during
                                                                                                                   dural closure. Postoperative
                                                                                                                   ICP is often lower than one
                                                                                                                   might expect, which perhaps
                                                                                                                   serves as clinical corrobora-
                                                                                                                   tion of experimental data
                                                                                                                   that suggest decompressive
                                                                                                                   craniectomy may actually
                                                                                                                   increase edema of the under-
                                                                                                                   lying brain (20).
                                                                                                                      A third area that is less
                                                                                                                   controversial is the size of
                                                                                                                   the decompression. The gen-
                                                                                                                   eral rule is “the bigger, the
                                                                                                                   better.” This must be kept in
                                                                                                                   mind during the planning of
                                                                                                                   the initial craniotomy. If the
                                                                                                                   surgeon anticipates even a
  FIGURE 5. Preoperative and postoperative conventional and xenon-enhanced computed tomographic scans from a       slight possibility of leaving
  patient who underwent decompressive craniectomy. ICP decreased, CPP and global CBF increased, and regional CBF   the bone flap off, it is helpful
  increased dramatically.                                                                                          to position the patient with
                                                                                                                   the head turned as far later-
postoperative epidural/subgaleal hematomas, subdural fluid                   ally as possible. This may require significant turning of the
accumulation remote from the craniectomy site, brain injury                  head (if the cervical spine has been cleared) or positioning the
at the edges of the craniectomy from impingement during                      patient in the lateral position (if cervical spine injury is known
outward brain swelling, lack of brain protection under the                   or has not been excluded). This extensive turning of the head
craniectomy site, possible impairment of cerebral metabolism                 allows access to the posterior and inferior regions of the cranial
from lack of overlying cranium, the need for subsequent sur-                 vault, which are often not well decompressed even by a stan-
gery to replace bone, and potential resorption of the bone                   dard large trauma flap. Another important point is to take the
flap, among others.                                                          decompression to the floor of the temporal fossa. Extending
                                                                             the inferior margin of the craniectomy down to the temporal
Controversies                                                                cranial base is recommended for achieving optimal decompres-
   Several questions exist about the way these operations are                sion of the perimesencephalic cisterns (46). This recommenda-
performed. The first concerns timing. Some data suggest that                  tion is consistent with other results indicating that large
patients fare poorly if they receive a decompressive craniec-                craniectomies are more effective than smaller ones (31).
tomy early in their course of treatment (2). It might be better to
treat those patients with medical interventions that are as                  Technique
aggressive as possible; if these measures fail to improve out-                   The importance of performing a sufficiently large decom-
come, then surgical decompression seems unlikely to have any                 pression cannot be emphasized too strongly (Fig. 6). Crani-
better results. Other practitioners, however, feel that patients             ectomies or dural openings that are too small may cause
who arrive in the emergency department with poor neurolog-                   swollen brain tissue to herniate through the bony defect,
ical examinations and diffuse brain swelling as evidenced by                 thereby causing strangulation, infarction, and creation of addi-
CT have little to lose by undergoing prompt decompression.                   tional brain swelling from inward tracking of the resultant cere-
   A second controversy involves performing these operations                 bral edema (Fig. 7).
routinely, whenever a patient undergoes a trauma craniotomy.                     If a patient who has had a recent craniotomy is returned
Some surgeons leave bone flaps off as a routine part of their                 to the operating room for removal of the bone flap, the sur-




NEUROSURGERY                                                                          VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-211
VALADKA AND ROBERTSON


                                                                              INTENSIVE CARE UNIT MANAGEMENT
                                                                          Evolution of Neurocritical Care
                                                                             The field of neurocritical care is rapidly becoming a distinct
                                                                          discipline. Traditionally, critical care medicine has been domi-
                                                                          nated by a focus on the heart and lungs. More recently,
                                                                          improved knowledge of central nervous system pathophysiol-
                                                                          ogy, as well as the availability of therapies for previously
                                                                          untreatable conditions such as ischemic stroke, have driven
                                                                          interest in the management of these patients within ICUs. The
                                                                          Neurocritical Care Society was created only a few years ago as
                                                                          a multidisciplinary group with the goal of improving the care
 FIGURE 6. Bifrontal decompres-
                                      FIGURE 7. Contrast-enhanced         of patients with life-threatening neurological illnesses (47).
 sion. The frontal craniectomy
                                      computed tomographic scan of a         In the last few decades, our knowledge and technology per-
 could have been extended inferi-
                                      patient in whom a bony decom-       taining to ICUs have mushroomed (Fig. 8). Unfortunately, this
 orly, but the surgeon deliberately
                                      pression was performed, but the     wealth of information sometimes makes it difficult to filter
 chose not to do so to avoid the
                                      dura was not opened widely.         important bits of data from the background noise. Knowledge
 frontal sinus.
                                      Necrotic brain tissue can be seen
                                                                          does not necessarily equal wisdom. More information in and of
                                      herniating through the defect.
                                                                          itself is not automatically associated with a coordinated direc-
                                                                          tion of patient care, and in fact, it may cause distraction and
geon may wish to use a “T” incision to facilitate removal of              unnecessary confusion. An intensivist who concentrates on dis-
more bone. In general, these “T” incisions begin at the pos-              eases of the nervous system may be uniquely able to balance
terosuperior part of the existing incision and curve gently               management of the nervous system with cardiac, pulmonary,
toward the inion. The scalp on the two sides of the “T” can               renal, and other critical care issues.
be reflected to expose additional bone medially, posteriorly,                The growth of knowledge, procedures, and diagnostic tests
and inferiorly. This bone can be removed as a separate piece              available to intensivists has been intimidating for some neuro-
that can be secured to the original bone flap at the time of              surgeons. However, a neurosurgeon’s unique expertise and
replantation.                                                             perspective on the management of his or her patients are more
   The closing of a decompressive craniectomy is the ideal time           than adequate to offset a lack of intimate familiarity with cur-
to make preparations for subsequent replacement of the bone               rent trends in ventilator or pressor management. The latter
flap. Most surgeons perform a duraplasty or dural augmenta-                issues can be learned, but a neurosurgeon’s judgment and accu-
tion as part of these procedures. It may be wise to lay another           mulated wisdom cannot be duplicated by other physicians.
sheet of dural substitute over the entire area of exposed dura.           Neurosurgeons should be confident that they bring a unique
This maneuver prevents adhesions from forming between the                 and much-needed perspective to the management of their
dura and the scalp. These adhesions can make it difficult to               patients, no matter how sick those patients may be. After all,
expose the craniectomy site during subsequent surgery for                 most intensivists will not see patients several weeks or months
bone flap replacement. A similar precaution may be used to                 after they leave the ICU, but the neurosurgeon may be in fre-
minimize scarring and adhesion of the temporalis muscle to                quent contact with such patients and their families for years.
the scalp. Careful attention should be paid to the handling               This type of long-term feedback is invaluable as a means for
and preservation of the temporalis to optimize long-term cos-             reevaluating one’s judgment and management practices.
metic results.                                                               The critical care community has benefited from several arti-
   In general, bone flaps should be replaced as soon as possible.          cles and abstracts that report improved care when ICUs are
The determining factor may be the persistence of cerebral                 administered by board-certified intensivists as opposed to ICUs
edema, which may require weeks to subside sufficiently to                 that are run by other physicians (64). However, some of these
allow cranioplasty. For other patients, bone flap replacement              studies are methodologically suspect, and the anticipated
may be delayed by the presence of intradural CSF collection,              advantages of hiring intensive care physicians to manage ICUs
which sometimes causes protrusion of the brain through the                may not always materialize. For example, it is sometimes
craniectomy defect. Extra-axial CSF collections along the mid-            assumed that the presence of an intensivist will lead to greater
line or at the craniectomy site may respond to CSF drainage via           efficiency and thus decreased costs of ICU care. However, the
a lumbar drain inserted the day before surgery. Another option            exact opposite may occur, as costs may increase significantly at
for treating patients with hydrocephalus is insertion of a ven-           hospitals that have previously not devoted appropriate
triculoperitoneal shunt with a programmable valve. The resist-            resources to these types of patients (49). Another uncertainty is
ance can initially be set low to facilitate CSF drainage. After           whether such reported improvements as decreased costs and
cranioplasty, the resistance can be set to normal to prevent              shorter lengths of ICU stay are direct results of an intensivist’s
excessive CSF drainage from creating an epidural “dead space”             presence or whether they instead represent greater institu-
under the bone flap.                                                       tional adherence to standardized patient management prac-




SHC-212 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT                                                         www.neurosurgery-online.com
SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE


                                                                     Another important variable in this system is the degree of neu-
                                                                     rological sophistication possessed by the eICU doctor.

                                                                     Anticipation versus Reaction
                                                                        Physicians are trained to prevent problems and also to antic-
                                                                     ipate them before they occur. Unfortunately, this goal of being
                                                                     proactive has not always resulted in improved patient out-
                                                                     comes. During the last few decades, well-conducted clinical
                                                                     trials have shown that attempts to prevent intracranial hyper-
                                                                     tension by immediate initiation of therapies that are often effec-
                                                                     tive for treating established intracranial hypertension not only
                                                                     do not improve outcome; they may sometimes actually worsen
                                                                     outcome. The list includes hyperventilation, barbiturates, phar-
                                                                     macological paralysis, hypothermia, and artificial elevation of
                                                                     CPP (19, 28, 44, 52, 67). Decompressive craniectomy might also
                                                                     find its way onto that list if a prospective trial is conducted.
         FIGURE 8. Complex relationships have been discov-              Thus, despite our natural inclination to control a situation by
         ered between CBF, cerebral metabolic rate of oxygen         playing offense and initiating treatments before complications
         (CMRO2), cerebral arteriovenous difference of oxygen        get out of hand, it might be best for us to sit back and play
         content (AVDO 2 ), hyperemia, hypoperfusion,                defense. The best that we can do may be to react immediately
         ischemia, and infarction. (From, Robertson CS,              when circumstances change. Prompt treatment of established
         Narayan RK, Gokaslan ZL, Pahwa R, Grossman RG,              problems may be better for our patients than initiation of treat-
         Caram P Jr, Allen E: Cerebral arteriovenous oxygen          ments for complications that have yet to happen. Of course,
         difference as an estimate of cerebral blood flow in         intensive efforts continue in the search for interventions that
         comatose patients. J Neurosurg 70:222–230, 1989).
                                                                     are truly effective when given prophylactically.

tices, with a resultant reduction in the sometimes expensive         Tracheostomy and Ventilator Weaning
idiosyncratic variation that exists among practitioners. If the         Management of the ABCs (airway, breathing, and circula-
latter is true, then the presence of an intensivist per se may not   tion) was discussed in the context of prehospital care, but most
be as important as the commitment of a hospital and medical          of our understanding of these topics comes from research con-
staff to reevaluate and refine existing patient management           ducted in ICUs. An additional issue that arises in ICUs sur-
practices as necessary.                                              rounds the timing of tracheostomy. Many trauma surgeons
   These external pressures are presently causing difficulty for      and intensivists push for early tracheostomy. Many of their
some neurosurgeons who have served for years as directors of         patients, however, have significant pulmonary problems and
their local neurosurgery ICUs. In some cases, they are being         do not suffer from brain injuries. It is usually best not to per-
displaced as medical directors and even prevented from serv-         form any procedures on patients with acute and severe TBI
ing as primary physicians for their patients while the patients      unless those procedures are essential. Furthermore, TBI
are in the ICU.                                                      patients will often remain in ICUs longer than other patients,
   Another practical issue facing ICUs relates to available per-     because they require intracranial monitoring. Thus, perform-
sonnel. There are at present far too few intensivists to fill cur-    ing early tracheostomy may not significantly shorten the
rent and projected needs. It remains unclear how recommenda-         length of ICU stay in these patients.
tions to increase intensivist presence in ICUs will be reconciled       Patients who appear to be “waking up” may be given some
with the relatively small supply of intensivists available. One      extra time to see if they can be given a trial of extubation. The
potential solution is an electronic ICU, or “eICU.” In this sys-     traditional teaching that a tracheostomy should be performed
tem, each bed from several different ICUs is electronically          within 2 weeks is based more on dogma than fact. On the other
linked to a central area, which may be geographically remote,        hand, if it appears that a patient will likely not experience
that has continuously available bedside monitoring data from         enough neurological recovery to protect his or her airway, it is
each linked patient. Thus, a nurse or physician in this central      reasonable to proceed expeditiously with a tracheostomy once
area can simultaneously monitor many patients in different           the patient’s cerebral metabolism appears to have stabilized.
ICUs. Each bed may also have a dedicated video camera,
microphone, and speaker, and progress notes and orders are           Monitoring
available via fax or electronic medical record. Different institu-      Although detailed monitoring of cerebral pathophysiology is
tions report varying degrees of success and satisfaction with        not yet performed at many hospitals that treat TBI patients,
this model. Obviously, this system cannot handle emergencies         such monitoring represents the best way for evaluating a par-
that require a physician’s presence at the bedside, such as intu-    ticular patient’s metabolic pattern and, when necessary, for
bations, central venous access, chest-tube placement, etc.           intervening in an appropriate manner (Fig. 9).




NEUROSURGERY                                                                   VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-213
VALADKA AND ROBERTSON


   A concept that is gaining increasing recognition is the
importance of regional heterogeneity of cerebral metabolism
and the difference between regional and global measures of
cerebral metabolism. Even relatively large areas of focal abnor-
mality may not affect a global measure of cerebral metabo-
lism, such as jugular venous oxygen saturation. Similarly, a
focal monitor such as a brain-tissue oxygen sensor may not
reveal the presence of a large abnormal area if the focal mon-
itor lies within normal tissue. Those who use cerebral monitor-
ing devices must be aware of their limitations as well as their
potential usefulness.
   Continuous electroencephalographic monitoring has been
reported to detect seizures in more than 20% of patients with
moderate and severe TBI during the first 2 weeks postinjury
(66). These results suggest that adverse electrophysiological
events may often be missed and may represent an important
and underappreciated mechanism of secondary brain injury.
                                                                      FIGURE 9. A patient undergoing many different types of cerebral and
Intracranial Pressure                                                 metabolic monitoring.
   The most widely used monitoring techniques measure ICP.
Parenchymal devices have become popular over the last few
decades, but ventriculostomy remains the recommended form            oxygen administered via ventilator, transfusion of packed red
of ICP monitoring technology. The interested reader is referred      cells, and reduction of ICP via evacuation of mass lesions or
to the excellent summaries contained in Guidelines for the           other interventions. Although it is difficult to conduct high-
Management of Severe Traumatic Brain Injury (7), which reviews       quality studies that demonstrate improvement in patient out-
both the different types of ICP monitoring technology and the        come as a result of PbtO2 monitoring, many neurosurgeons
basis for using 20 mmHg as the threshold value for treating          have experience with at least a few patients for whom this
patients with elevated ICP.                                          seemed to be the case.

Brain Tissue Oxygenation                                             Cerebral Blood Flow
   For many years, measurement of cerebral oxygen metabo-               The role that CBF plays in influencing outcome from TBI has
lism could be performed only via intermittently sampling             been intensely scrutinized for many years (Fig. 12). The collec-
blood from the jugular bulb and comparing its oxygen content         tive efforts of many investigators over many years indicate that
to that of arterial blood. Subsequently, jugular venous oximetry     CBF passes through several changes after a severe TBI. It is
allowed for continuous measurement of the oxygen saturation          often quite low during the first few hours after injury. After a
of blood flowing out of the brain (58).                               few hours or days, CBF subsequently increases, often to supra-
   Although direct monitoring of brain-tissue oxygenation was        normal levels. It then gradually decreases and may even pass
not even a dream 30 years ago, it is presently a widespread          through a phase of vasospasm before it finally normalizes (40).
(and increasingly used) monitoring technique. New publica-              Xenon-enhanced CT is a powerful technique for obtaining
tions and ongoing discussions continue to inform us of the           both global and regional quantitative CBF measurements, but
proper interpretation of these data, as well as treatment thresh-    it is presently not approved by the United States Food and
olds and optimal interventions for increasing brain-tissue oxy-      Drug Administration. It is hoped that such approval will be
gen tension (PbtO2). A PbtO2 reading of 10 mmHg probably             forthcoming. Parenchymal or surface monitors use a variety of
represents a minimally acceptable value, although some would         techniques to assess CBF, such as laser Doppler flowmetry,
prefer a higher threshold, such as 15 mmHg or even 20 mmHg.          thermal diffusion, and others. These are useful technologies,
   Although placement of these monitors in uninjured brain           but many of them are invasive. Transcranial Doppler sonogra-
has been recommended, others have suggested that a more              phy is a helpful measure of CBF velocity through the large
appropriate strategy is placement in brain that is at risk because   arteries of the circle of Willis. Its limitations include a high
of adjacent contusions, hematomas, or infarcts (Figs. 10 and         degree of dependence on the operator’s skill, and a lack of
11). Some neurosurgeons have taken these monitors to the             information about regional metabolic activity.
operating room to monitor tissue oxygenation during cere-
brovascular procedures or other operations that may require          Microdialysis
temporary vessel occlusion.                                            Cerebral microdialysis is an invasive Food and Drug
   Depending upon an individual patient’s situation, appropri-       Administration-approved method of measuring biochemical
ate ways to address a low PbtO2 value might include elevation        changes in brain tissue (Figs. 13 and 14). For example, many
of arterial blood pressure, increase in the fraction of inspired     investigators have reported that patients experience increases in




SHC-214 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT                                                      www.neurosurgery-online.com
SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE


                                                                                                                          include the logistics of organ-
                                                                                                                          izing, processing, and storing
                                                                                                                          the many samples; for exam-
                                                                                                                          ple, collecting dialysate every
                                                                                                                          30 minutes for 5 days gener-
                                                                                                                          ates 240 samples that must be
                                                                                                                          tracked. These can be frozen
                                                                                                                          and stored for later analysis.
                                                                                                                          In general, most ICUs that
                                                                                                                          perform cerebral microdialy-
                                                                                                                          sis use the information not as
                                                                                                                          a primary monitoring tool,
                                                                                                                          but rather as a supplemental
                                                                                                                          source of information that
                                                                                                                          corroborates the impression
                                                                                                                          provided by other monitors
                                                                                                                          and may occasionally serve
                                                                                                                          as an early warning that
                                                                                                                          something is beginning to go
                                                                                                                          wrong. Future applications
                                                                                                                          could include detection of
                                                                                                                          intraparenchymal drug lev-
                                                                                                                          els, indirect measurement of
                                                                                                                          activity of stem cells or cloned
                                                                                                                          genes, and targeted delivery
                                                                                                                          of therapeutic agents.
 FIGURE 10. PbtO2 catheter (yellow arrow) was placed in a region that appeared to be uninjured. PbtO2 values are          Treatment
 often low immediately after injury, but then begin to increase. When placed in uninjured tissue, these monitors reflect
                                                                                                                          From one perspective, lit-
 global secondary insults.
                                                                                                                       tle has changed in our man-
                                                                                                                       agement of patients with TBI
                                                                                  over the last generation. The most important parts of manage-
                                                                                  ment remain prompt detection and immediate correction of
                                                                                  secondary insults. Our present approach to the treatment of
                                                                                  patients with elevated ICP uses some of the same tools that we
                                                                                  used 30 years ago, such as initiation of sedation, induction of
                                                                                  pharmacological paralysis, administration of mannitol,
                                                                                  drainage of CSF, hyperventilation, and induction of barbiturate
                                                                                  coma. Despite intensive and very expensive efforts, no “magic
                                                                                  bullet” has been discovered for the “cure” of brain injury.
                                                                                     Although this situation may sound bleak, nothing could be
                                                                                  further from the truth. A great deal has been learned over the
                                                                                  last three decades. Laboratory studies have deepened our
                                                                                  understanding of the cellular and molecular events that follow
                                                                                  injury. Appropriate preclinical testing has become even more
                                                                                  recognized as an essential step to take before new therapies can
                                                                                  be brought to clinical trials. Important principles of clinical trial
                                                                                  design, execution, and analysis have been identified and
 FIGURE 11. Placement of a PbtO2 catheter near a contused area. PbtO2             accepted, and these will affect the design of future studies.
 level decreases as the contusion enlarges. Such focal metabolic changes may      Also, the shrinking availability of healthcare dollars in both
 not be detected by global monitors of cerebral metabolism such as ICP or         the clinical and research arenas has led to greater awareness of
 SjvO2 monitoring.                                                                possible conflicts of interest and establishment of appropriate
                                                                                  guidelines for interaction of clinical and research physicians
lactate, excitatory amino acids, and glycerol and decreases in                    with industry, while simultaneously emphasizing the impor-
glucose and pyruvate during periods of metabolic stress.                          tant role that industry funding plays in moving forward with
Technical difficulties associated with performing microdialysis                    new technologies.




NEUROSURGERY                                                                                  VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-215
VALADKA AND ROBERTSON


                                                                                    Although we have gained a deeper understanding of the
                                                                                 precise roles for many new potential treatments, we have also
                                                                                 eliminated a few things that were found not to work. Steroids
                                                                                 are no longer recommended as part of the treatment of patients
                                                                                 with TBI. Similarly, prophylactic hyperventilation is not rec-
                                                                                 ommended. The practice of deliberately dehydrating patients
                                                                                 to prevent brain swelling has been replaced by an emphasis on
                                                                                 maintaining normal intravascular volumes. On the other hand,
                                                                                 we have also verified the benefit of some practices, such as
                                                                                 administration of prophylactic anticonvulsants during the first
                                                                                 week after a patient experiences TBI.
                                                                                    Perhaps most importantly, it has become clear over the last
                                                                                 few decades that different TBI patients may vary in their patho-
           FIGURE 12. Relationships between patient outcome,                     physiological profiles. Three patients who were riding in the
           cerebral blood flow, and cerebral metabolic rate of oxy-               same automobile during a crash can have very different types of
           gen (CMRO2). (From, Robertson CS, Contant CF,
                                                                                 head injury. One may have severe generalized cerebral edema,
           Gokaslan ZL, Narayan RK, Grossman RG: Cerebral
                                                                                 another may have primarily diffuse axonal injury with low ICP,
           blood flow, arteriovenous oxygen difference, and out-
           come in head injured patients. J Neurol Neurosurg                     and a third may have a large mass lesion that requires immedi-
           Psychiatry 55:594–603, 1992. Reproduced with per-                     ate surgery. The metabolic picture of the same patient may even
           mission from the BMJ Publishing Group.)                               fluctuate from day to day or hour to hour. Ideally, these patients
                                                                                                                    might benefit from different
                                                                                                                    approaches to treatment and
                                                                                                                    from ongoing reassessment
                                                                                                                    and changes in the therapeu-
                                                                                                                    tic plan. However, the sophis-
                                                                                                                    ticated monitoring tech-
                                                                                                                    niques that can guide such
                                                                                                                    physiologically targeted
                                                                                                                    therapy are available in only
                                                                                                                    a few hospitals. We hope
                                                                                                                    that these techniques will
                                                                                                                    spread to more facilities and
                                                                                                                    thereby add to our knowl-
                                                                                                                    edge of how to tailor man-
                                                                                                                    agement to an individual
                                                                                                                    patient’s pathophysiological
                                                                                                                    profile. In the near future,
                                                                                                                    treatment decisions may also
                                                                                                                    be based on a patient’s geno-
                                                                                                                    typically determined antici-
                                                                                                                    pated responses to specific
                                                                                                                    interventions.

                                                                                                                         Hypertonic Saline
                                                                                                                            Recent years have wit-
                                                                                                                         nessed a growing use of
                                                                                                                         interventions that continue
                                                                                                                         to be investigated and
                                                                                                                         debated. Many of these are
                                                                                                                         older treatments that have
                                                                                                                         undergone a resurgence of
                                                                                                                         interest. Hypertonic saline is
 FIGURE 13. Example of microdialysate changes during global cerebral ischemia. As cerebral perfusion pressure and        receiving increasing atten-
 PbtO2 values decrease, pyruvate and glucose levels also decrease, whereas increases are seen in lactate and glutamate
                                                                                                                         tion for its role in the treat-
 levels and the lactate-pyruvate ratio. (From, Hlatky R, Valadka AB, Goodman JC, Robertson CS: Patterns of cerebral
                                                                                                                         ment of patients (especially
 energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21:894–906, 2004.)
                                                                                                                         children) with elevated ICP.




SHC-216 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT                                                                    www.neurosurgery-online.com
Surgery of cerebral trauma and associated critical care
Surgery of cerebral trauma and associated critical care
Surgery of cerebral trauma and associated critical care
Surgery of cerebral trauma and associated critical care
Surgery of cerebral trauma and associated critical care

Weitere ähnliche Inhalte

Andere mochten auch

Guidelines for the preformance of fusion procedures for degenerative disease ...
Guidelines for the preformance of fusion procedures for degenerative disease ...Guidelines for the preformance of fusion procedures for degenerative disease ...
Guidelines for the preformance of fusion procedures for degenerative disease ...INUB
 
Monitoría Presión Intracraneana
Monitoría Presión IntracraneanaMonitoría Presión Intracraneana
Monitoría Presión IntracraneanaINUB
 
Helsinki microsurgery basics and tricks
Helsinki microsurgery basics and tricksHelsinki microsurgery basics and tricks
Helsinki microsurgery basics and tricksINUB
 
Cranial, craniofacial and skull base surgery uploaded for egypt orl-hns
Cranial, craniofacial and skull base surgery    uploaded for egypt orl-hnsCranial, craniofacial and skull base surgery    uploaded for egypt orl-hns
Cranial, craniofacial and skull base surgery uploaded for egypt orl-hnsEdgar Javier Majano B
 
Lecturas recomendadas neuro oncología 2012
Lecturas recomendadas neuro oncología 2012Lecturas recomendadas neuro oncología 2012
Lecturas recomendadas neuro oncología 2012INUB
 
Introducción a los nuevos modelos diagnosticos y terapeuticos para gliomas de...
Introducción a los nuevos modelos diagnosticos y terapeuticos para gliomas de...Introducción a los nuevos modelos diagnosticos y terapeuticos para gliomas de...
Introducción a los nuevos modelos diagnosticos y terapeuticos para gliomas de...INUB
 
Surface landmarks for the junction between the transverse and sigmoid sinuses...
Surface landmarks for the junction between the transverse and sigmoid sinuses...Surface landmarks for the junction between the transverse and sigmoid sinuses...
Surface landmarks for the junction between the transverse and sigmoid sinuses...INUB
 
Guidelines for the management of acute cervical spine and spinal cord injurie...
Guidelines for the management of acute cervical spine and spinal cord injurie...Guidelines for the management of acute cervical spine and spinal cord injurie...
Guidelines for the management of acute cervical spine and spinal cord injurie...INUB
 
Monitoría Eléctrica del Cerebro en NEUROUCI
Monitoría Eléctrica del Cerebro en NEUROUCIMonitoría Eléctrica del Cerebro en NEUROUCI
Monitoría Eléctrica del Cerebro en NEUROUCIINUB
 
Critical care in neurology
Critical care in neurologyCritical care in neurology
Critical care in neurologyINUB
 
Suboccipital bur holes and craniectomies
Suboccipital bur holes and craniectomiesSuboccipital bur holes and craniectomies
Suboccipital bur holes and craniectomiesINUB
 
Surgical anatomy of microsurgical sulcal key points
Surgical anatomy of microsurgical sulcal key pointsSurgical anatomy of microsurgical sulcal key points
Surgical anatomy of microsurgical sulcal key pointsINUB
 
Irrigacion Cerebral
Irrigacion CerebralIrrigacion Cerebral
Irrigacion Cerebralxhavii_0390
 

Andere mochten auch (15)

Guidelines for the preformance of fusion procedures for degenerative disease ...
Guidelines for the preformance of fusion procedures for degenerative disease ...Guidelines for the preformance of fusion procedures for degenerative disease ...
Guidelines for the preformance of fusion procedures for degenerative disease ...
 
Monitoría Presión Intracraneana
Monitoría Presión IntracraneanaMonitoría Presión Intracraneana
Monitoría Presión Intracraneana
 
Helsinki microsurgery basics and tricks
Helsinki microsurgery basics and tricksHelsinki microsurgery basics and tricks
Helsinki microsurgery basics and tricks
 
Cranial, craniofacial and skull base surgery uploaded for egypt orl-hns
Cranial, craniofacial and skull base surgery    uploaded for egypt orl-hnsCranial, craniofacial and skull base surgery    uploaded for egypt orl-hns
Cranial, craniofacial and skull base surgery uploaded for egypt orl-hns
 
Lecturas recomendadas neuro oncología 2012
Lecturas recomendadas neuro oncología 2012Lecturas recomendadas neuro oncología 2012
Lecturas recomendadas neuro oncología 2012
 
Introducción a los nuevos modelos diagnosticos y terapeuticos para gliomas de...
Introducción a los nuevos modelos diagnosticos y terapeuticos para gliomas de...Introducción a los nuevos modelos diagnosticos y terapeuticos para gliomas de...
Introducción a los nuevos modelos diagnosticos y terapeuticos para gliomas de...
 
Surface landmarks for the junction between the transverse and sigmoid sinuses...
Surface landmarks for the junction between the transverse and sigmoid sinuses...Surface landmarks for the junction between the transverse and sigmoid sinuses...
Surface landmarks for the junction between the transverse and sigmoid sinuses...
 
Guidelines for the management of acute cervical spine and spinal cord injurie...
Guidelines for the management of acute cervical spine and spinal cord injurie...Guidelines for the management of acute cervical spine and spinal cord injurie...
Guidelines for the management of acute cervical spine and spinal cord injurie...
 
Monitoría Eléctrica del Cerebro en NEUROUCI
Monitoría Eléctrica del Cerebro en NEUROUCIMonitoría Eléctrica del Cerebro en NEUROUCI
Monitoría Eléctrica del Cerebro en NEUROUCI
 
Critical care in neurology
Critical care in neurologyCritical care in neurology
Critical care in neurology
 
Suboccipital bur holes and craniectomies
Suboccipital bur holes and craniectomiesSuboccipital bur holes and craniectomies
Suboccipital bur holes and craniectomies
 
Surgical anatomy of microsurgical sulcal key points
Surgical anatomy of microsurgical sulcal key pointsSurgical anatomy of microsurgical sulcal key points
Surgical anatomy of microsurgical sulcal key points
 
Neurology book
Neurology bookNeurology book
Neurology book
 
Irrigacion Cerebral
Irrigacion CerebralIrrigacion Cerebral
Irrigacion Cerebral
 
Vascularización cerebral
Vascularización cerebralVascularización cerebral
Vascularización cerebral
 

Ähnlich wie Surgery of cerebral trauma and associated critical care

Surgical alternatives to decompressive craniectomy for TBI and stroke.pptx
Surgical alternatives to decompressive craniectomy for TBI and stroke.pptxSurgical alternatives to decompressive craniectomy for TBI and stroke.pptx
Surgical alternatives to decompressive craniectomy for TBI and stroke.pptxDhaval Shukla
 
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...semualkaira
 
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...semualkaira
 
ACUTE-SCI-LIT-REVIEW-NEURO-2016
ACUTE-SCI-LIT-REVIEW-NEURO-2016ACUTE-SCI-LIT-REVIEW-NEURO-2016
ACUTE-SCI-LIT-REVIEW-NEURO-2016Alexandra Duff
 
Neuropsychologic function and level of caregiver supervision
Neuropsychologic function and level of caregiver supervisionNeuropsychologic function and level of caregiver supervision
Neuropsychologic function and level of caregiver supervisionConnie Dello Buono
 
Neuroimmune responses in the developing brain following traumatic brain injur...
Neuroimmune responses in the developing brain following traumatic brain injur...Neuroimmune responses in the developing brain following traumatic brain injur...
Neuroimmune responses in the developing brain following traumatic brain injur...Adventist University of the Philippines
 
Ricerca clinica sul trauma cranico: report di un Workshop Internazionale sull...
Ricerca clinica sul trauma cranico: report di un Workshop Internazionale sull...Ricerca clinica sul trauma cranico: report di un Workshop Internazionale sull...
Ricerca clinica sul trauma cranico: report di un Workshop Internazionale sull...MerqurioEditore_redazione
 

Ähnlich wie Surgery of cerebral trauma and associated critical care (8)

Surgical alternatives to decompressive craniectomy for TBI and stroke.pptx
Surgical alternatives to decompressive craniectomy for TBI and stroke.pptxSurgical alternatives to decompressive craniectomy for TBI and stroke.pptx
Surgical alternatives to decompressive craniectomy for TBI and stroke.pptx
 
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
 
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
Effect of Transcranial Direct Current Stimulation (Tdcs) on the Consumption o...
 
ACUTE-SCI-LIT-REVIEW-NEURO-2016
ACUTE-SCI-LIT-REVIEW-NEURO-2016ACUTE-SCI-LIT-REVIEW-NEURO-2016
ACUTE-SCI-LIT-REVIEW-NEURO-2016
 
Neuropsychologic function and level of caregiver supervision
Neuropsychologic function and level of caregiver supervisionNeuropsychologic function and level of caregiver supervision
Neuropsychologic function and level of caregiver supervision
 
Neuroimmune responses in the developing brain following traumatic brain injur...
Neuroimmune responses in the developing brain following traumatic brain injur...Neuroimmune responses in the developing brain following traumatic brain injur...
Neuroimmune responses in the developing brain following traumatic brain injur...
 
Ricerca clinica sul trauma cranico: report di un Workshop Internazionale sull...
Ricerca clinica sul trauma cranico: report di un Workshop Internazionale sull...Ricerca clinica sul trauma cranico: report di un Workshop Internazionale sull...
Ricerca clinica sul trauma cranico: report di un Workshop Internazionale sull...
 
Traumatic brain injury.pptx
Traumatic brain injury.pptxTraumatic brain injury.pptx
Traumatic brain injury.pptx
 

Kürzlich hochgeladen

Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Dipal Arora
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...hotbabesbook
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...narwatsonia7
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeCall Girls Delhi
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...CALL GIRLS
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...aartirawatdelhi
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableDipal Arora
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 

Kürzlich hochgeladen (20)

Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 

Surgery of cerebral trauma and associated critical care

  • 1. TRAUMA SURGERY OF CEREBRAL TRAUMA AND ASSOCIATED CRITICAL CARE Alex B. Valadka, M.D. The last 30 years have been both exciting and frustrating for those in the field of trau- Department of Neurosurgery, matic brain injury (TBI). Much has been learned, but no new treatment has been shown University of Texas Medical School at Houston, to improve patient outcomes despite the execution of many clinical trials. The overall Houston, Texas incidence of TBI has decreased, probably because of intensive efforts toward preven- tion and education. Rigorous assessment of available research has produced several Claudia S. Robertson, M.D. evidence-based guidelines for the management of neurotrauma patients. The creation Department of Neurosurgery, of organized emergency medical services systems in many regions has improved pre- Baylor College of Medicine, hospital care. Computed tomographic scans have become the gold standard for obtain- Houston, Texas ing immediate images of patients with TBI, and ongoing advances in visualizing cere- Reprint requests: bral metabolism continue to be remarkable. The major current question regarding Alex B. Valadka, M.D., surgical treatment for TBI involves the role of decompressive craniectomy, an opera- Department of Neurosurgery, University of Texas Medical School tion that first fell out of favor and has since (in the last three decades) enjoyed a resur- at Houston, gence of interest. Growing interest in the intensive care management of TBI patients 6410 Fannin Street, Suite 1020, helped to establish the new field of neurocritical care. Prophylactic hyperventilation is Houston, TX 77030. Email: alex.valadka@uthtmc.edu no longer recommended, and earlier recommendations for aggressive elevation of blood pressure have been softened to endorsement of a cerebral perfusion pressure of 60 Received, December 12, 2006. mmHg. Recombinant factor VIIa is increasingly used for minimizing complications Accepted, March 22, 2007. related to coagulopathy. Intracranial pressure monitoring is now recommended for the majority of TBI patients. At present, available technologies allow measurement of other aspects of cerebral metabolism including cerebral blood flow, brain oxygen tension, biochemistry, and electrical activity. Therapeutic interventions that are growing in pop- ularity or are presently under investigation include administration of hypertonic saline, hyperoxygenation, decompressive craniectomy, and hypothermia. Rehabilitation has become accepted as an important part of the TBI recovery process, and additional work is needed to identify optimal interventions in this area. Socioeconomic factors will play a growing role in our treatment of TBI patients. Although much progress has been made in the last 30 years, the challenge now is to find ways to translate that progress into improved care and outcomes for TBI patients. KEY WORDS: Computed tomography, Guidelines, Neurocritical care, Neurotrauma, Prehospital, Traumatic brain injury Neurosurgery 61[SHC Suppl 1]:SHC-203–SHC-221, 2007 DOI: 10.1227/01.NEU.0000255497.26440.01 S urgical treatment of head injuries was almost certainly the greatly improved our understanding of posttraumatic cerebral first type of neurosurgical procedure performed by ancient pathophysiology (Fig. 1). At the same time, these new insights peoples several millennia ago. Even as recently as last cen- have failed to make the transition to clinically useful therapies. tury, as neurosurgery was rapidly growing as a specialty and as Many of the major clinical trials of the last decades have been new practitioners began to settle in more and more cities across “negative” studies that have shown us what does not work. It the United States, trauma patients continued to be a major part has been extraordinarily difficult to demonstrate the efficacy of of the clinical volume of many of these newly established prac- new treatments. tices. Identifying new treatments and proving their utility have The last three decades have been alternately exhilarating and been seemingly insurmountable obstacles. Progress has been frustrating for those with clinical and research interests in trau- made, however, in other arenas. Careful reevaluation of exist- matic brain injury (TBI). Laboratory and bedside research has ing data and publications can help in identifying which prac- NEUROSURGERY VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-203
  • 2. VALADKA AND ROBERTSON wounds to the head (GSWH) (59). Age Another recent develop- ment has been the apparent increase in brain injuries among the elderly. Some of this increase is thought to reflect the growing number of elderly citizens in the pop- ulation at large. Another likely contributing factor is the concurrent growth in the number of elderly patients taking anticoagulant or antiplatelet drugs. Outcome Some authors report a sig- nificant decrease in mortality rates attributed to TBI over the last few decades (33). However, such reports often FIGURE 1. Findings from a patient with fatal brain injury. A, computed tomographic scans were obtained at hospi- exclude the most severely tal admission and 12 hours later, showing local cerebral ischemia progressing to global cerebral ischemia. Location of injured patients or those in brain tissue oxygen probe is shown (yellow circle). B, graphs showing progressive increase in ICP, decrease in brain whom a significant amount of oxygen level, and decreases in glucose and pyruvate levels in cerebral microdialysate, with a rapid increase in lactate and a later increase in glutamate levels. time passed between injury and arrival at a hospital (19, 31, 38, 43, 71). Such exclusions tices are supported by the best available evidence and which are understandable because those studies were often designed can be discarded or at least placed in an appropriate context to evaluate the efficacy of potential new therapies, which are that recognizes their limitations. Finally, emergency neurosur- unlikely to be effective in patients with devastating trauma. At gical care, like emergency care in general, has benefited from the same time, however, the outcomes in these reports cannot sustained efforts at systems planning, integration, and cooper- be viewed as representative of the outcomes that would be ation. Prehospital and interhospital coordination are much expected when all patients with TBI are included. An addi- more effective when protocols are established before they are tional concern about some studies is that the only outcome needed, and are far better than the alternative of waiting until captured is survival versus death at hospital discharge. a patient deteriorates before deciding where to send and how Detailed long-term outcome assessments by trained, blinded to treat him or her. examiners are generally not performed. These successes and disappointments are summarized in the The Traumatic Coma Data Bank (TCDB) was created when following sections. They begin with discussions of epidemiol- four academic centers with interest and expertise in TBI partic- ogy, prevention, and guidelines, and continue with a sequence ipated in a data collection project that began almost 30 years of steps that a trauma patient would experience as he or she ago. At that time, prehospital care systems and improvements progresses through the emergency care system, including ini- in emergency medical systems had evolved sufficiently to tial prehospital and emergency department care, imaging, sur- allow rapid transport of injured patients to hospitals. gery, intensive care, and rehabilitation. Thus, it seems reasonable to use TCDB data as a reliable starting point for discussions of outcome after TBI (37). Like most such studies, however, these data suffer from at least two EPIDEMIOLOGY limitations. The first is that the data were gathered from aca- demic trauma centers, which may not necessarily have compa- Mechanism of Injury rable outcomes to nonacademic facilities or to facilities that are A welcome change in the epidemiology and demographics of not designated trauma centers. The second is that patients TBI has been the steady decrease in incidence of severe closed- enrolled in clinical trials—even the placebo group—tend to head injury in recent years. Unfortunately, this decrease has have better outcomes than other patients because of the extra been paralleled by an increase in the numbers of gunshot attention that is given to all patients in a study. For these rea- SHC-204 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT www.neurosurgery-online.com
  • 3. SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE sons, TCDB data may be unduly optimistic if they are used to Thoughtful analysis of these injuries is a science that is still in anticipate the likelihoods of different outcomes in patients who its infancy. In sports such as football, neurosurgeons have are not enrolled in clinical trials, who are treated at nonacade- assumed the lead in modifying rules of play to increase safety mic facilities, or who are managed at a hospital that is not a without diminishing the enjoyment for participants or specta- trauma center. tors (6). Improving the performance of safety equipment, such The TCDB data suggest that death can be expected in roughly as football helmets, is another area of active investigation. The 30 to 36% of patients with severe closed TBI. A persistent vege- most pressing questions seem to center around when and tative state will occur in 5% or fewer of these patients. Severe whether an athlete can return to play, and whether repetitive disability will probably be the outcome for approximately 15% minor brain injuries can have cumulative long-lasting effects. In of patients; moderate disability can be expected in perhaps 15 to addition to clinical evaluation and neuropsychological testing, 20% of patients; and a good outcome will occur in at least 25% computerized assessment tools have been developed to assist of patients. These results are comparable to those of some in answering these questions (36). Functional imaging tech- recently compiled series of unselected patients (55). niques are also under investigation in this area. In patients with GSWH, the outcome distribution is more heavily skewed toward the extremes (62). Some studies report GUIDELINES prehospital mortality rates of almost 90% for GSWH patients, and patients who are still alive upon arrival at a hospital may The phrase “evidence-based medicine” has seen so much have mortality rates of 60% or higher. However, 30 to 40% of use in recent years that it has become a cliché. Basing patient patients will achieve good outcomes or have only moderate care decisions on high-quality research data has always been disability. The “intermediate ground” of severe disability or the mainstay of clinical practice. During the last decade, persistent vegetative state occurs less commonly in GSWH attempts to codify and label these practices have been driven patients than in those with closed TBI. by several factors, including busy practitioners’ desires to make A major advance over the last few decades has been the sure that they are doing the right thing according to currently growing awareness that a good outcome on the Glasgow accepted practices, as well as cost-cutting attempts to reduce Outcome Scale does not necessarily mean that a patient will unwarranted variation. Of note, TBI was the subject of the first recover without any deficits. Problems with judgment, impulse guidelines effort in neurosurgery (8). Several other neuro- control, abstract thinking, short-term memory, and other areas trauma guidelines have been produced subsequently, including may be devastating for patients and families, even when a those for pediatric brain injury, penetrating brain injury, surgi- patient outwardly appears to have made a good recovery. cal management of brain injury, and prehospital management of brain injury (1, 4, 13, 26). PREVENTION These documents are quite useful as reviews of existing knowledge and categorization of the strength of evidence sup- Without question, one of the most important developments porting various management practices. For a disease as com- in neurotrauma in the last 30 years or so has been the creation plex as TBI, a common concern about applying the results of a and growth of injury prevention programs. For example, clinical trial is the generalizability of the results to a particular ThinkFirst is a program that was created by organized neuro- patient or circumstance. It is often difficult to appreciate the surgery with the goal of preventing injury via education, nuances and determine when thoughtful deviation from guide- research, and policy. Some data suggest that this educational lines is appropriate. The optimal practice of evidence-based program not only increases children’s knowledge about injury medicine consists of making clinical decisions by integrating prevention, but also reduces their incidence of head and back knowledge of the available evidence with a particular patient’s injuries (69). Other injury prevention programs, including those circumstances, a physician’s own training and experience, and at the local, regional, and statewide levels, also play important the setting in which the care is being provided. Guidelines pro- roles in injury prevention. vide an excellent place to start setting treatment goals and for- Because automobile accidents are a major cause of all types of mulating a therapeutic plan. trauma, one would expect that improvements in automobile Several retrospective reports using historical controls sug- safety would have a major impact on the incidence of TBI. Air gest that standardization of care through protocols based on bags, compulsory seatbelt laws, lower speed limits, and published guidelines may improve outcomes for TBI patients. improvements in the overall safety and crash tolerance of auto- In some cases, costs are reduced, but other reports describe mobiles may all have played a role in reducing the incidence of increased costs if hospitals had not previously devoted many traffic-related TBI during the last three decades. Greater societal resources to acute TBI management. Also, despite widespread awareness of the dangers of driving while under the influence of dissemination, the degree to which most hospitals and practi- alcohol or other drugs is probably another major factor. A wealth tioners actually implement guidelines remains unclear. of epidemiological data indicates that motorcycle helmet laws Despite these caveats, the continuing maturation of guide- are associated with lower rates of motorcycle operator fatalities. lines efforts in neurosurgery has been a major development Sports-related neurological injuries comprise a distinct group during the last decade. Many neurosurgeons and hospitals of traumas that occur at a predetermined time and place. have used this opportunity to review their practices and revise NEUROSURGERY VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-205
  • 4. VALADKA AND ROBERTSON them when appropriate. The goals of these efforts are gency patients. However, the subsequent widespread adoption improved efficiency, reduced costs, and, most importantly, bet- of prehospital sedation, paralysis, and intubation of emergency ter outcomes. patients has made it impossible to perform an appropriate neu- rological evaluation on many of these individuals. Good solutions to this problem remain elusive. Reliance PREHOSPITAL CARE upon prehospital providers’ descriptions of the prehospital examination is often the only alternative, but these assess- Organization of Prehospital Care ments may be incomplete or inaccurate. Marshall et al. (39) Thirty years ago, organized networks for prehospital care created a computed tomography (CT)-based classification were little more than a promising idea. The subsequent years scheme that categorizes the severity of brain injury. The have witnessed definite improvement in the organization of Abbreviated Injury Scale used by general trauma surgeons is prehospital care systems in the United States, and such net- also based on anatomic criteria. Although useful, such works now exist in many regions. Mortality is significantly schemes cannot supplant clinical assessments of neurological reduced when injured patients receive care at a trauma center function. Instead, they are best thought of as supplementary as opposed to a hospital that is not a trauma center (34). The sources of information. obvious implication is that organized prehospital triage and referral systems can improve patient outcomes. However, Airway major organizational gaps continue to affect the optimal pre- hospital care of many TBI patients. The need to secure the airway of a severely brain-injured In 1986, the Emergency Medical Treatment and Labor Act patient has long been a basic management principle. It seems (EMTALA) became law. It was intended to prevent uninsured intuitively obvious that establishing a secure airway will facil- patients from being refused emergency assessment and treat- itate oxygenation, avoid hypercarbia, and prevent aspiration ment. As with many well-intentioned government regula- (18, 42). tions, unintended consequences soon appeared. For example, Why, then, have several recent retrospective reviews a remote hospital that is not a designated trauma center (and reported an increase in mortality in severe TBI patients who which does not have immediate access to operating rooms 24 were endotracheally intubated before reaching the hospital? hours per day) could be found to be in violation of EMTALA The answer seems to lie in problems with implementation, if personnel there were to deny a request for an emergency not with the basic principle itself (25). In some regions, para- patient transfer with the reasoning that the patient would be medics and other first responders may perform endotracheal much better served at a closer or more appropriate facility, intubation so rarely that the necessary skills cannot be main- such as a level I trauma center. Another unintended situation tained. In other situations, optimal ventilation may not be occurs when a trauma center becomes filled with patients performed (21). who have relatively minor injuries because the center is statu- It seems safe to conclude that immediate intubation of torily required to accept all patients in transfer. As a result, the patients with TBI is still an effective method of securing an air- trauma center may be forced to go on ambulance diversion, way, but only if the person performing the intubation is suffi- which makes the facility and its specialty attention unavail- ciently skilled. A better choice for inexperienced responders able to the very people it was established to serve: severely may be using a bag-valve-mask device or a laryngeal mask air- injured patients who truly require immediate surgery and way to maintain the patient’s ventilation. critical care. Regional interhospital cooperation is an obvious solution. Breathing However, the frequently intense competition between hospitals Recommendations for the use of hyperventilation in TBI and the resulting lack of cooperation are common barriers to patients have undergone several changes over the last decade. regional coordination of services. Along with continued revi- Early observations about the effectiveness of hyperventilation sions of EMTALA, these barriers must be overcome if injured in lowering intracranial pressure (ICP) led to its widespread patients are to receive optimal prehospital care. The susceptibil- use. The mechanism appears to be a pH-mediated effect of con- ity of the acutely injured brain to secondary insults such as stricting cerebral resistance arterioles which thereby decreases hypoxia and hypotension, as well as the frequency with which cerebral blood volume. such insults occur, suggests that efficient and coordinated pre- Subsequent laboratory work suggested that the vascular hospital networks are especially important for optimal care of constrictive effect of sustained hyperventilation begins to wear TBI patients. off within a few hours (45). Moreover, once a low CO2 partial pressure (PaCO2) has been maintained for more than a few Neurological Assessment hours, any attempts to raise the PaCO2 back to normal may The first publication of Plum and Posner’s classic mono- cause the blood vessels to dilate and thereby increase blood graph in 1966 (50) and the description of the Glasgow Coma volume and ICP. Scale by Teasdale and Jennett in 1974 (60) had a major influence Eventually, clinical data demonstrated worse outcomes in on the standardization of neurological assessment of emer- severe TBI patients who had been routinely treated with hyper- SHC-206 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT www.neurosurgery-online.com
  • 5. SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE ventilation (44). Thus, routine use of prophylactic hyperventi- pressures (5, 23). This protocol is based in part on the assump- lation is not recommended. tion that the hydrostatic pressures associated with elevated However, there remain at least two situations in which blood pressure may promote cerebral edema through passage hyperventilation may be appropriate. The first is as a latter- of water from the circulation to the brain, whereas increasing stage treatment for refractory intracranial hypertension. blood oncotic pressure and increasing precapillary vasocon- Protocols vary as to the exact circumstances at which this ther- striction may facilitate diffusion of water from the brain to the apy should be instituted, but most agree that it should only fol- vasculature (Fig. 2). Again, however, support for these con- low the failure of some other therapies, such as sedation, phar- cepts is based only on uncontrolled case series. macological paralysis, CSF drainage, and/or osmolar therapy. Present thinking suggests that there probably exists a floor If advanced neurological monitoring capabilities are available, below which CPP should not decrease. However, efforts to cerebral oxygen metabolism can be tracked to ensure that increase CPP above this floor in all patients may increase com- hyperventilation does not cause a reduction in oxygen delivery plications without conferring any added benefit. A minimum to the brain. Similarly, if cerebral blood flow (CBF) monitoring CPP of 60 mmHg is probably reasonable for most patients. As indicates that blood flow to the brain is normal or even ele- with all such recommendations, however, individual patients vated, then mild hyperventilation may be implemented early in may fare better with either higher or lower CPPs. Ideally, the management of intracranial hypertension. detailed cerebral monitoring could be used to identify those Another indication for hyperventilation is an acute neurolog- patients who require a higher CPP and, conversely, those who ical deterioration that is known or suspected to be caused by a would not need to be subjected to the potential risks of aggres- large intracranial mass lesion. In theory, a brief period of hyper- sive efforts to increase CPP to an arbitrary level. ventilation may lower ICP long enough to allow sufficient time Of note, most of these studies were conducted in intensive to transport a patient to an operating room for evacuation of a care units (ICUs). It is reasonable to extrapolate them to the pre- hematoma or contusion. The negative effects of a potential tem- hospital setting, but the reader should remember that specific porary compromise of CBF from vasoconstriction may be out- treatment goals may have to be adapted to that setting. weighed by the benefits of reducing ICP. In these patients, once a clot is removed, ventilation returns to normal. In patients IMAGING without focal signs suggestive of the presence of a mass lesion (such as a significantly asymmetric motor exam or asymmetry A generation ago, CT was still a new technology. Published of pupillary response), there is less indication to initiate imme- reports continued to explore the utility of this new imaging diate hyperventilation. Similarly, if a patient who has been technique in brain-injured patients. Angiography and cranial hyperventilated as a preliminary treatment for a suspected radiography were beginning to fade from the scene as routine acute hematoma is found to have no such lesion upon per- tools in the evaluation of trauma patients. Magnetic resonance formance of CT, hyperventilation is usually best stopped while imaging had not yet become available. other treatments with more acceptable risk-benefit ratios are implemented. Circulation Similar to the breathing and ventilation strategies for treating TBI patients, the general consensus on blood pressure goals has undergone several changes during the last three decades. The 1980s and 1990s witnessed widespread dissemination of the belief that elevating blood pressure to maintain a mean cerebral perfusion pressure (CPP) of at least 70 mmHg improved outcome for patients with severe TBI. Anecdotes and case series supported this approach, and it seemed to be consis- tent with the concept that cerebral hypoperfusion caused by low blood pressure is a major source of secondary brain injury (53, 54). FIGURE 2. According to the Starling hypothesis, Subsequent reports, however, including a prospective, ran- fluid exchange (JV) between a capillary and the inter- domized, controlled trial, demonstrated no improvement in stitial space is determined by hydrostatic pressure patient outcome as a result of this practice (32, 52). Robertson within the capillary (Pc), hydrostatic pressure in the interstitial space (Pi), oncotic pressure within the cap- et al. (52) found that this treatment strategy did seem to illary (πc), and oncotic pressure within the interstitial decrease the incidence of cerebral ischemia, but it did so at the space (πi). K is a constant. Important parts of the Lund price of increased pulmonary complications. The overall result strategy for management of patients with severe TBI for patients was no gain. include manipulation of these parameters to attempt to Meanwhile, a management protocol from Lund, Sweden, minimize cerebral edema. called for severe TBI patients to be maintained at lower blood NEUROSURGERY VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-207
  • 6. VALADKA AND ROBERTSON Not too many years ago, performing emergency CT was a time-consuming affair. The neurosurgeons accompanying the A C patient had plenty of time to write their admission history and physical and their admitting orders while in the scanner. Neurosurgery residents who had some knowledge of computer programming could learn to operate the scanner. Debates in the literature and at meetings argued about the value of a single- slice computed tomographic scan through the center of the head as a way to identify mass lesions quickly, without the need to wait for the entire scan to be completed. Subsequent advances in CT technology have been nothing short of remarkable. Scans of the brain can now be obtained in a matter of seconds. Touch-screen technology has made it pos- sible for virtually any physician to perform CT with only min- imal training. Image quality has improved greatly. The need to print images on film has disappeared, as the scans are accessi- ble from any place that has Internet connectivity. A key development in medical imaging has been our ability to visualize not only anatomic structure, but also function. CT, which remains the imaging modality of choice for patients with acute TBI, can be adapted to provide information about CBF, B perfusion, and vascular anatomy, even in emergency settings (Fig. 3). Magnetic resonance imaging and magnetoencephalog- raphy can reveal selective activation of specific brain regions. Although positron emission tomography scanning remains the most powerful tool for acute study of CBF and metabolism after injury, as yet its application is not as widespread as that of CT and magnetic resonance imaging. A common problem, however, is the need to transport criti- cally ill patients to the radiology department to perform such studies. Patient transport has been reported by many authors to be associated with an increase in potentially adverse events. Portable CT equipment has been available for several years, but only recently have technological advances made these devices more user friendly. Important features include helical scanning capability, low radiation exposure, wireless links to a hospital’s imaging network, operation via a touch screen, ability to run on battery power, and ability to perform perfusion and xenon- enhanced CT studies (48). Most importantly, this technology FIGURE 3. Two examples of stable xenon-enhanced computed tomo- avoids the need to transport patients to the radiology depart- graphic scans. A, scan shows left temporal ischemic area, but flows are ele- ment. Future applications may include placement of these scan- vated elsewhere in the brain. B, scan shows reduced flow throughout the ners in emergency departments and even in certain types of brain, with large ischemic areas in the right temporal and frontal areas and ambulances. smaller ischemic areas elsewhere (left). C, scale bar for CBF (units are mil- liliters per 100 grams per minute) is shown. SURGERY Basic principles of surgical management have not changed torn between performing an operation that may be unneces- much in the last generation. As articulated clearly by Becker sary versus having a patient undergo neurological deteriora- and others, they include prompt evacuation of contusions and tion if surgery is delayed too long. other mass lesions and use of large craniotomy openings for the Several courses of action are possible in such situations. evacuation of acute subdural hematomas (ASDHs). These include waiting a few hours to allow alcohol or other drugs to be metabolized; obtaining a follow-up computed Indications tomographic scan within several hours to determine whether Some of the most difficult decisions we make in neurotrauma the lesions have enlarged; and/or inserting a ventriculostomy care involve whether moderate-sized hematomas or contusions or parenchymal ICP monitor in search of elevated ICP, which should be evacuated or simply observed. A surgeon may feel might prompt an immediate craniotomy. SHC-208 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT www.neurosurgery-online.com
  • 7. SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE These decisions are often based on an individual physician’s be time consuming in some hospitals, and procurement of judgment and experience. It is often preferable to remove size- recombinant factor VIIa may require complex bureaucratic pro- able lesions early, before a patient’s condition deteriorates. cedures because of its cost. Neurologically compromised yet Prompt surgery also minimizes subsequent parenchymal treatable patients may not be able to tolerate such delays. We edema around a contusion. Furthermore, a global measure have sometimes enjoyed success with taking such patients such as ICP may be normal even while CBF and metabolism promptly to surgery while the hospital’s blood bank initiates are focally impaired near an acute traumatic lesion. the process of delivering fresh frozen plasma and/or platelets Recently published evidence-based guidelines provide some to the operating room. Blood products generally arrive in the direction (10–12, 14, 15). Patients with Glasgow Coma Scale operating room while the neurosurgeon is in the midst of the scores of 8 or less with large mass lesions should undergo surgery, and their effect on clotting is usually immediate and prompt lesion evacuation, especially if the results of their neu- obvious. Although laboratory tests of hemostatic function are rological examinations reveal deterioration, if their pupils helpful, the surgeon can gain useful information simply by exhibit anisocoria or are fixed and dilated, or if the lesions are watching how the blood is clotting in the surgical field. causing focal neurological deficits. A midline shift of 5 mm or Recombinant factor VIIa has received a great deal of atten- more and effacement of the basal cisterns are commonly used tion recently for treatment of coagulopathy in trauma patients computed tomographic indicators of significant mass effect. (22). An important neurosurgical application is the immediate Regardless of the patient’s Glasgow Coma Scale score, evacu- treatment of warfarin-associated intracranial hemorrhage (9). ation is recommended for epidural hematomas larger than 30 This product may help with diffuse oozing, but brisk bleeding mm3, subdural hematomas greater than 10 mm in thickness or from a large vessel still requires direct treatment via cautery, causing more than 5 mm of midline shift, and parenchymal ligation, tamponade, etc. lesions greater than 50 mm3 in volume. Evacuation of frontal As neurosurgeons’ experience with factor VIIa has increased, and temporal contusions greater than 20 mm3 in size is recom- several questions have been raised. One is the possibility of mended if the contusions are located frontally or temporally inducing adverse reactions, such as thrombosis of stenotic coro- and are associated with compressed cisterns or a midline shift nary arteries, in susceptible patients. The number of such of 5 mm or more in patients with Glasgow Coma Scale scores reports will undoubtedly increase as this agent sees greater of 6 to 8. A smaller size threshold is often used in assessing tem- use. Another concern is that the half-life of factor VIIa is only 3 poral lesions because of their potentially greater risk. to 6 hours. Thus, after its period of action has passed, the hem- orrhagic diathesis may recur unless additional treatments are Anticoagulant and Antiplatelet Agents initiated, such as administration of fresh frozen plasma, vita- An increasingly common problem involves the patient who min K, or additional factor VIIa. The cost of the drug is high, develops an intracranial hemorrhage while taking Coumadin, especially for the doses required to treat bleeding in trauma Plavix, and/or aspirin medications (Fig. 4). Some neurosur- patients. To control costs, some hospitals have implemented geons delay surgery until platelets can be administered or complex administrative-approval algorithms. The significant coagulation parameters normalized. Vitamin K is usually read- cost also raises important questions about appropriate indica- ily available, but obtaining platelets or fresh frozen plasma can tions, especially in elderly patients with devastating hemor- FIGURE 4. Series of computed tomographic scans showing rapid ative epidural hematoma developed, requiring the patient to return to the enlargement of a contusion, which was surgically evacuated. A postoper- operating room. NEUROSURGERY VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-209
  • 8. VALADKA AND ROBERTSON rhages that make meaningful recovery unlikely. These issues troublesome area. It is often helpful to place small amounts of are important because such situations will likely occur with an absorbable hemostatic agent, such as Gelfoam (Pharmacia/ increasing frequency in the future as the population ages and Upjohn; Kalamazoo, MI) or Surgicel (Johnson & Johnson; the number of patients taking anticoagulants increases. Arlington, TX) sponges or fibrillar collagen, just under the bony edge. These materials provide some extra bulk that may act as Subdural Hematomas tamponades in areas of bleeding. Several maneuvers during opening of the dura may be use- Although it has been reported (57) that reduced mortality ful for avoiding subsequent problems. The first is to open the can be expected if ASDHs are evacuated within 4 hours, other dura in a slow, controlled manner. Going slowly at this point of surgeons have not been able to replicate this effect (70). Some the operation may seem counterintuitive to the need for rapid patients may fail to improve because of coexisting parenchymal evacuation of a large clot. However, some experienced neuro- brain injury that will not improve after evacuation of a mass traumatologists speculate that a relatively slow dural opening lesion. Furthermore, even rapid progression of a patient may allow a more gradual reduction of the pressure on the through the emergency medical services system and to the cerebral cortex. This gradual equilibration has been assumed to operating room may not be fast enough to reverse damage reduce the likelihood of sudden, massive herniation of brain caused by the mass effect of a clot. Nevertheless, clinical and through the craniotomy opening. laboratory evidence documents the adverse effects of a large Along similar lines, it may be helpful to open the dura in a acute mass lesion on cerebral metabolism (27). Prompt evacu- cruciate manner. Specifically, the four limbs of a cruciate open- ation is not only common sense; it is also consistent with the ing may be made without connecting them at the center of the common clinical observation that patients often improve after “X.” This allows evacuation of the clot from all four quadrants evacuation of large ASDHs. These same arguments apply to of the exposure. If the brain appears to begin swelling slightly, other types of traumatic mass lesions as well. and if intradural bleeding has stopped, these four smaller inci- The use of large craniotomy flaps when performing ASDHs sions can be closed quickly. Alternatively, two of these limbs allows the surgeon to gain access to a variety of potential can be connected to create a small dural flap if access to only a sources of bleeding. These include large draining veins near specific part of the opening is desired. Wider access can be the superior sagittal sinus as well as contused tissue in the gained by connecting all four limbs. If the surgeon wishes to subtemporal and subfrontal areas and the temporal and close quickly, a single stitch in the center can pull all four dural frontal poles. A large craniotomy opening for evacuating an leaves together. Although this approach is especially helpful if ASDH has been a standard recommendation for many years, the surgeon is not initially planning to perform a decompres- but it is worth emphasizing in our present era of tiny incisions sive craniectomy, it is completely compatible with a decision to made possible by image-guidance systems and endoscopic proceed with decompression if unexpected intraoperative instrumentation. The medial part of the scalp incision may be events indicate that it might be helpful. made on or near the midline, but it may be wise to keep the Other surgeons attempt to prevent massive brain swelling by bony opening several centimeters off the midline to avoid incising the dura with a reverse “U” incision anteriorly, inferi- arachnoid granulations and large dural and cortical veins orly, and posteriorly; the dura near the midline is left intact (3). near the midline. The midline placement of the scalp incision They report excellent results in terms of evacuating subdural preserves the option of removing additional bone near the hematomas and parenchymal lesions, with no cases of mas- midline if subsequent uncontrollable bleeding near the supe- sive brain swelling. rior sagittal sinus necessitates more medial exposure. It also ensures a sufficiently wide base for the scalp flap, which pre- vents necrosis of the posterior and superior edges of the flap Decompressive Craniectomy from inadequate blood supply. In the last few decades, interesting swings have occurred in An exception to the general practice of using larger flaps the neurosurgical community’s opinion regarding decompres- may sometimes be found in coagulopathic patients with rela- sive craniectomy. It is clear that decompressive craniectomy tively focal subdural hematomas. Some authorities describe can lower ICP in many cases (Fig. 5). However, it is equally successful clot evacuation in such cases without excessive dif- clear that no well-done, randomized, prospective trial has been ficulty in obtaining hemostasis. completed to answer the question of whether decompressive craniectomy truly improves outcomes for all patients, or even Surgical Technique for certain selected subpopulations (56). Two prospective trials If epidural tack-up sutures are used in an emergency surgery, now in progress may provide important information about many surgeons prefer to wait until closing to place them so as the effectiveness of decompressive craniectomy for TBI not to delay evacuation of a large mass lesion. However, dur- patients (29, 56). ing the opening, brisk epidural bleeding may be encountered Although the potential complications of decompressive immediately upon removal of the bone flap, especially near craniectomy are familiar to those who perform these proce- the midline. The only way to achieve control may be by plac- dures, these issues have only recently received more than a ing numerous, closely spaced epidural tack-up sutures at the cursory mention in the literature. Potential problems include SHC-210 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT www.neurosurgery-online.com
  • 9. SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE trauma operations. Unless the brain is markedly swollen, this practice may not be necessary in many cases. Mildly protruding brain can often tolerate watertight closure of the overlying dura, even if the brain has to be carefully pro- tected and depressed with a malleable retractor during dural closure. Postoperative ICP is often lower than one might expect, which perhaps serves as clinical corrobora- tion of experimental data that suggest decompressive craniectomy may actually increase edema of the under- lying brain (20). A third area that is less controversial is the size of the decompression. The gen- eral rule is “the bigger, the better.” This must be kept in mind during the planning of the initial craniotomy. If the surgeon anticipates even a FIGURE 5. Preoperative and postoperative conventional and xenon-enhanced computed tomographic scans from a slight possibility of leaving patient who underwent decompressive craniectomy. ICP decreased, CPP and global CBF increased, and regional CBF the bone flap off, it is helpful increased dramatically. to position the patient with the head turned as far later- postoperative epidural/subgaleal hematomas, subdural fluid ally as possible. This may require significant turning of the accumulation remote from the craniectomy site, brain injury head (if the cervical spine has been cleared) or positioning the at the edges of the craniectomy from impingement during patient in the lateral position (if cervical spine injury is known outward brain swelling, lack of brain protection under the or has not been excluded). This extensive turning of the head craniectomy site, possible impairment of cerebral metabolism allows access to the posterior and inferior regions of the cranial from lack of overlying cranium, the need for subsequent sur- vault, which are often not well decompressed even by a stan- gery to replace bone, and potential resorption of the bone dard large trauma flap. Another important point is to take the flap, among others. decompression to the floor of the temporal fossa. Extending the inferior margin of the craniectomy down to the temporal Controversies cranial base is recommended for achieving optimal decompres- Several questions exist about the way these operations are sion of the perimesencephalic cisterns (46). This recommenda- performed. The first concerns timing. Some data suggest that tion is consistent with other results indicating that large patients fare poorly if they receive a decompressive craniec- craniectomies are more effective than smaller ones (31). tomy early in their course of treatment (2). It might be better to treat those patients with medical interventions that are as Technique aggressive as possible; if these measures fail to improve out- The importance of performing a sufficiently large decom- come, then surgical decompression seems unlikely to have any pression cannot be emphasized too strongly (Fig. 6). Crani- better results. Other practitioners, however, feel that patients ectomies or dural openings that are too small may cause who arrive in the emergency department with poor neurolog- swollen brain tissue to herniate through the bony defect, ical examinations and diffuse brain swelling as evidenced by thereby causing strangulation, infarction, and creation of addi- CT have little to lose by undergoing prompt decompression. tional brain swelling from inward tracking of the resultant cere- A second controversy involves performing these operations bral edema (Fig. 7). routinely, whenever a patient undergoes a trauma craniotomy. If a patient who has had a recent craniotomy is returned Some surgeons leave bone flaps off as a routine part of their to the operating room for removal of the bone flap, the sur- NEUROSURGERY VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-211
  • 10. VALADKA AND ROBERTSON INTENSIVE CARE UNIT MANAGEMENT Evolution of Neurocritical Care The field of neurocritical care is rapidly becoming a distinct discipline. Traditionally, critical care medicine has been domi- nated by a focus on the heart and lungs. More recently, improved knowledge of central nervous system pathophysiol- ogy, as well as the availability of therapies for previously untreatable conditions such as ischemic stroke, have driven interest in the management of these patients within ICUs. The Neurocritical Care Society was created only a few years ago as a multidisciplinary group with the goal of improving the care FIGURE 6. Bifrontal decompres- FIGURE 7. Contrast-enhanced of patients with life-threatening neurological illnesses (47). sion. The frontal craniectomy computed tomographic scan of a In the last few decades, our knowledge and technology per- could have been extended inferi- patient in whom a bony decom- taining to ICUs have mushroomed (Fig. 8). Unfortunately, this orly, but the surgeon deliberately pression was performed, but the wealth of information sometimes makes it difficult to filter chose not to do so to avoid the dura was not opened widely. important bits of data from the background noise. Knowledge frontal sinus. Necrotic brain tissue can be seen does not necessarily equal wisdom. More information in and of herniating through the defect. itself is not automatically associated with a coordinated direc- tion of patient care, and in fact, it may cause distraction and geon may wish to use a “T” incision to facilitate removal of unnecessary confusion. An intensivist who concentrates on dis- more bone. In general, these “T” incisions begin at the pos- eases of the nervous system may be uniquely able to balance terosuperior part of the existing incision and curve gently management of the nervous system with cardiac, pulmonary, toward the inion. The scalp on the two sides of the “T” can renal, and other critical care issues. be reflected to expose additional bone medially, posteriorly, The growth of knowledge, procedures, and diagnostic tests and inferiorly. This bone can be removed as a separate piece available to intensivists has been intimidating for some neuro- that can be secured to the original bone flap at the time of surgeons. However, a neurosurgeon’s unique expertise and replantation. perspective on the management of his or her patients are more The closing of a decompressive craniectomy is the ideal time than adequate to offset a lack of intimate familiarity with cur- to make preparations for subsequent replacement of the bone rent trends in ventilator or pressor management. The latter flap. Most surgeons perform a duraplasty or dural augmenta- issues can be learned, but a neurosurgeon’s judgment and accu- tion as part of these procedures. It may be wise to lay another mulated wisdom cannot be duplicated by other physicians. sheet of dural substitute over the entire area of exposed dura. Neurosurgeons should be confident that they bring a unique This maneuver prevents adhesions from forming between the and much-needed perspective to the management of their dura and the scalp. These adhesions can make it difficult to patients, no matter how sick those patients may be. After all, expose the craniectomy site during subsequent surgery for most intensivists will not see patients several weeks or months bone flap replacement. A similar precaution may be used to after they leave the ICU, but the neurosurgeon may be in fre- minimize scarring and adhesion of the temporalis muscle to quent contact with such patients and their families for years. the scalp. Careful attention should be paid to the handling This type of long-term feedback is invaluable as a means for and preservation of the temporalis to optimize long-term cos- reevaluating one’s judgment and management practices. metic results. The critical care community has benefited from several arti- In general, bone flaps should be replaced as soon as possible. cles and abstracts that report improved care when ICUs are The determining factor may be the persistence of cerebral administered by board-certified intensivists as opposed to ICUs edema, which may require weeks to subside sufficiently to that are run by other physicians (64). However, some of these allow cranioplasty. For other patients, bone flap replacement studies are methodologically suspect, and the anticipated may be delayed by the presence of intradural CSF collection, advantages of hiring intensive care physicians to manage ICUs which sometimes causes protrusion of the brain through the may not always materialize. For example, it is sometimes craniectomy defect. Extra-axial CSF collections along the mid- assumed that the presence of an intensivist will lead to greater line or at the craniectomy site may respond to CSF drainage via efficiency and thus decreased costs of ICU care. However, the a lumbar drain inserted the day before surgery. Another option exact opposite may occur, as costs may increase significantly at for treating patients with hydrocephalus is insertion of a ven- hospitals that have previously not devoted appropriate triculoperitoneal shunt with a programmable valve. The resist- resources to these types of patients (49). Another uncertainty is ance can initially be set low to facilitate CSF drainage. After whether such reported improvements as decreased costs and cranioplasty, the resistance can be set to normal to prevent shorter lengths of ICU stay are direct results of an intensivist’s excessive CSF drainage from creating an epidural “dead space” presence or whether they instead represent greater institu- under the bone flap. tional adherence to standardized patient management prac- SHC-212 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT www.neurosurgery-online.com
  • 11. SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE Another important variable in this system is the degree of neu- rological sophistication possessed by the eICU doctor. Anticipation versus Reaction Physicians are trained to prevent problems and also to antic- ipate them before they occur. Unfortunately, this goal of being proactive has not always resulted in improved patient out- comes. During the last few decades, well-conducted clinical trials have shown that attempts to prevent intracranial hyper- tension by immediate initiation of therapies that are often effec- tive for treating established intracranial hypertension not only do not improve outcome; they may sometimes actually worsen outcome. The list includes hyperventilation, barbiturates, phar- macological paralysis, hypothermia, and artificial elevation of CPP (19, 28, 44, 52, 67). Decompressive craniectomy might also find its way onto that list if a prospective trial is conducted. FIGURE 8. Complex relationships have been discov- Thus, despite our natural inclination to control a situation by ered between CBF, cerebral metabolic rate of oxygen playing offense and initiating treatments before complications (CMRO2), cerebral arteriovenous difference of oxygen get out of hand, it might be best for us to sit back and play content (AVDO 2 ), hyperemia, hypoperfusion, defense. The best that we can do may be to react immediately ischemia, and infarction. (From, Robertson CS, when circumstances change. Prompt treatment of established Narayan RK, Gokaslan ZL, Pahwa R, Grossman RG, problems may be better for our patients than initiation of treat- Caram P Jr, Allen E: Cerebral arteriovenous oxygen ments for complications that have yet to happen. Of course, difference as an estimate of cerebral blood flow in intensive efforts continue in the search for interventions that comatose patients. J Neurosurg 70:222–230, 1989). are truly effective when given prophylactically. tices, with a resultant reduction in the sometimes expensive Tracheostomy and Ventilator Weaning idiosyncratic variation that exists among practitioners. If the Management of the ABCs (airway, breathing, and circula- latter is true, then the presence of an intensivist per se may not tion) was discussed in the context of prehospital care, but most be as important as the commitment of a hospital and medical of our understanding of these topics comes from research con- staff to reevaluate and refine existing patient management ducted in ICUs. An additional issue that arises in ICUs sur- practices as necessary. rounds the timing of tracheostomy. Many trauma surgeons These external pressures are presently causing difficulty for and intensivists push for early tracheostomy. Many of their some neurosurgeons who have served for years as directors of patients, however, have significant pulmonary problems and their local neurosurgery ICUs. In some cases, they are being do not suffer from brain injuries. It is usually best not to per- displaced as medical directors and even prevented from serv- form any procedures on patients with acute and severe TBI ing as primary physicians for their patients while the patients unless those procedures are essential. Furthermore, TBI are in the ICU. patients will often remain in ICUs longer than other patients, Another practical issue facing ICUs relates to available per- because they require intracranial monitoring. Thus, perform- sonnel. There are at present far too few intensivists to fill cur- ing early tracheostomy may not significantly shorten the rent and projected needs. It remains unclear how recommenda- length of ICU stay in these patients. tions to increase intensivist presence in ICUs will be reconciled Patients who appear to be “waking up” may be given some with the relatively small supply of intensivists available. One extra time to see if they can be given a trial of extubation. The potential solution is an electronic ICU, or “eICU.” In this sys- traditional teaching that a tracheostomy should be performed tem, each bed from several different ICUs is electronically within 2 weeks is based more on dogma than fact. On the other linked to a central area, which may be geographically remote, hand, if it appears that a patient will likely not experience that has continuously available bedside monitoring data from enough neurological recovery to protect his or her airway, it is each linked patient. Thus, a nurse or physician in this central reasonable to proceed expeditiously with a tracheostomy once area can simultaneously monitor many patients in different the patient’s cerebral metabolism appears to have stabilized. ICUs. Each bed may also have a dedicated video camera, microphone, and speaker, and progress notes and orders are Monitoring available via fax or electronic medical record. Different institu- Although detailed monitoring of cerebral pathophysiology is tions report varying degrees of success and satisfaction with not yet performed at many hospitals that treat TBI patients, this model. Obviously, this system cannot handle emergencies such monitoring represents the best way for evaluating a par- that require a physician’s presence at the bedside, such as intu- ticular patient’s metabolic pattern and, when necessary, for bations, central venous access, chest-tube placement, etc. intervening in an appropriate manner (Fig. 9). NEUROSURGERY VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-213
  • 12. VALADKA AND ROBERTSON A concept that is gaining increasing recognition is the importance of regional heterogeneity of cerebral metabolism and the difference between regional and global measures of cerebral metabolism. Even relatively large areas of focal abnor- mality may not affect a global measure of cerebral metabo- lism, such as jugular venous oxygen saturation. Similarly, a focal monitor such as a brain-tissue oxygen sensor may not reveal the presence of a large abnormal area if the focal mon- itor lies within normal tissue. Those who use cerebral monitor- ing devices must be aware of their limitations as well as their potential usefulness. Continuous electroencephalographic monitoring has been reported to detect seizures in more than 20% of patients with moderate and severe TBI during the first 2 weeks postinjury (66). These results suggest that adverse electrophysiological events may often be missed and may represent an important and underappreciated mechanism of secondary brain injury. FIGURE 9. A patient undergoing many different types of cerebral and Intracranial Pressure metabolic monitoring. The most widely used monitoring techniques measure ICP. Parenchymal devices have become popular over the last few decades, but ventriculostomy remains the recommended form oxygen administered via ventilator, transfusion of packed red of ICP monitoring technology. The interested reader is referred cells, and reduction of ICP via evacuation of mass lesions or to the excellent summaries contained in Guidelines for the other interventions. Although it is difficult to conduct high- Management of Severe Traumatic Brain Injury (7), which reviews quality studies that demonstrate improvement in patient out- both the different types of ICP monitoring technology and the come as a result of PbtO2 monitoring, many neurosurgeons basis for using 20 mmHg as the threshold value for treating have experience with at least a few patients for whom this patients with elevated ICP. seemed to be the case. Brain Tissue Oxygenation Cerebral Blood Flow For many years, measurement of cerebral oxygen metabo- The role that CBF plays in influencing outcome from TBI has lism could be performed only via intermittently sampling been intensely scrutinized for many years (Fig. 12). The collec- blood from the jugular bulb and comparing its oxygen content tive efforts of many investigators over many years indicate that to that of arterial blood. Subsequently, jugular venous oximetry CBF passes through several changes after a severe TBI. It is allowed for continuous measurement of the oxygen saturation often quite low during the first few hours after injury. After a of blood flowing out of the brain (58). few hours or days, CBF subsequently increases, often to supra- Although direct monitoring of brain-tissue oxygenation was normal levels. It then gradually decreases and may even pass not even a dream 30 years ago, it is presently a widespread through a phase of vasospasm before it finally normalizes (40). (and increasingly used) monitoring technique. New publica- Xenon-enhanced CT is a powerful technique for obtaining tions and ongoing discussions continue to inform us of the both global and regional quantitative CBF measurements, but proper interpretation of these data, as well as treatment thresh- it is presently not approved by the United States Food and olds and optimal interventions for increasing brain-tissue oxy- Drug Administration. It is hoped that such approval will be gen tension (PbtO2). A PbtO2 reading of 10 mmHg probably forthcoming. Parenchymal or surface monitors use a variety of represents a minimally acceptable value, although some would techniques to assess CBF, such as laser Doppler flowmetry, prefer a higher threshold, such as 15 mmHg or even 20 mmHg. thermal diffusion, and others. These are useful technologies, Although placement of these monitors in uninjured brain but many of them are invasive. Transcranial Doppler sonogra- has been recommended, others have suggested that a more phy is a helpful measure of CBF velocity through the large appropriate strategy is placement in brain that is at risk because arteries of the circle of Willis. Its limitations include a high of adjacent contusions, hematomas, or infarcts (Figs. 10 and degree of dependence on the operator’s skill, and a lack of 11). Some neurosurgeons have taken these monitors to the information about regional metabolic activity. operating room to monitor tissue oxygenation during cere- brovascular procedures or other operations that may require Microdialysis temporary vessel occlusion. Cerebral microdialysis is an invasive Food and Drug Depending upon an individual patient’s situation, appropri- Administration-approved method of measuring biochemical ate ways to address a low PbtO2 value might include elevation changes in brain tissue (Figs. 13 and 14). For example, many of arterial blood pressure, increase in the fraction of inspired investigators have reported that patients experience increases in SHC-214 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT www.neurosurgery-online.com
  • 13. SURGERY OF CEREBRAL TRAUMA AND CRITICAL CARE include the logistics of organ- izing, processing, and storing the many samples; for exam- ple, collecting dialysate every 30 minutes for 5 days gener- ates 240 samples that must be tracked. These can be frozen and stored for later analysis. In general, most ICUs that perform cerebral microdialy- sis use the information not as a primary monitoring tool, but rather as a supplemental source of information that corroborates the impression provided by other monitors and may occasionally serve as an early warning that something is beginning to go wrong. Future applications could include detection of intraparenchymal drug lev- els, indirect measurement of activity of stem cells or cloned genes, and targeted delivery of therapeutic agents. FIGURE 10. PbtO2 catheter (yellow arrow) was placed in a region that appeared to be uninjured. PbtO2 values are Treatment often low immediately after injury, but then begin to increase. When placed in uninjured tissue, these monitors reflect From one perspective, lit- global secondary insults. tle has changed in our man- agement of patients with TBI over the last generation. The most important parts of manage- ment remain prompt detection and immediate correction of secondary insults. Our present approach to the treatment of patients with elevated ICP uses some of the same tools that we used 30 years ago, such as initiation of sedation, induction of pharmacological paralysis, administration of mannitol, drainage of CSF, hyperventilation, and induction of barbiturate coma. Despite intensive and very expensive efforts, no “magic bullet” has been discovered for the “cure” of brain injury. Although this situation may sound bleak, nothing could be further from the truth. A great deal has been learned over the last three decades. Laboratory studies have deepened our understanding of the cellular and molecular events that follow injury. Appropriate preclinical testing has become even more recognized as an essential step to take before new therapies can be brought to clinical trials. Important principles of clinical trial design, execution, and analysis have been identified and FIGURE 11. Placement of a PbtO2 catheter near a contused area. PbtO2 accepted, and these will affect the design of future studies. level decreases as the contusion enlarges. Such focal metabolic changes may Also, the shrinking availability of healthcare dollars in both not be detected by global monitors of cerebral metabolism such as ICP or the clinical and research arenas has led to greater awareness of SjvO2 monitoring. possible conflicts of interest and establishment of appropriate guidelines for interaction of clinical and research physicians lactate, excitatory amino acids, and glycerol and decreases in with industry, while simultaneously emphasizing the impor- glucose and pyruvate during periods of metabolic stress. tant role that industry funding plays in moving forward with Technical difficulties associated with performing microdialysis new technologies. NEUROSURGERY VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT | SHC-215
  • 14. VALADKA AND ROBERTSON Although we have gained a deeper understanding of the precise roles for many new potential treatments, we have also eliminated a few things that were found not to work. Steroids are no longer recommended as part of the treatment of patients with TBI. Similarly, prophylactic hyperventilation is not rec- ommended. The practice of deliberately dehydrating patients to prevent brain swelling has been replaced by an emphasis on maintaining normal intravascular volumes. On the other hand, we have also verified the benefit of some practices, such as administration of prophylactic anticonvulsants during the first week after a patient experiences TBI. Perhaps most importantly, it has become clear over the last few decades that different TBI patients may vary in their patho- FIGURE 12. Relationships between patient outcome, physiological profiles. Three patients who were riding in the cerebral blood flow, and cerebral metabolic rate of oxy- same automobile during a crash can have very different types of gen (CMRO2). (From, Robertson CS, Contant CF, head injury. One may have severe generalized cerebral edema, Gokaslan ZL, Narayan RK, Grossman RG: Cerebral another may have primarily diffuse axonal injury with low ICP, blood flow, arteriovenous oxygen difference, and out- come in head injured patients. J Neurol Neurosurg and a third may have a large mass lesion that requires immedi- Psychiatry 55:594–603, 1992. Reproduced with per- ate surgery. The metabolic picture of the same patient may even mission from the BMJ Publishing Group.) fluctuate from day to day or hour to hour. Ideally, these patients might benefit from different approaches to treatment and from ongoing reassessment and changes in the therapeu- tic plan. However, the sophis- ticated monitoring tech- niques that can guide such physiologically targeted therapy are available in only a few hospitals. We hope that these techniques will spread to more facilities and thereby add to our knowl- edge of how to tailor man- agement to an individual patient’s pathophysiological profile. In the near future, treatment decisions may also be based on a patient’s geno- typically determined antici- pated responses to specific interventions. Hypertonic Saline Recent years have wit- nessed a growing use of interventions that continue to be investigated and debated. Many of these are older treatments that have undergone a resurgence of interest. Hypertonic saline is FIGURE 13. Example of microdialysate changes during global cerebral ischemia. As cerebral perfusion pressure and receiving increasing atten- PbtO2 values decrease, pyruvate and glucose levels also decrease, whereas increases are seen in lactate and glutamate tion for its role in the treat- levels and the lactate-pyruvate ratio. (From, Hlatky R, Valadka AB, Goodman JC, Robertson CS: Patterns of cerebral ment of patients (especially energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21:894–906, 2004.) children) with elevated ICP. SHC-216 | VOLUME 61 | NUMBER 1 | JULY 2007 SUPPLEMENT www.neurosurgery-online.com