SlideShare a Scribd company logo
1 of 14
Download to read offline
GBH Enterprises, Ltd.

Engineering Design Guide:
GBHE-EDG-MAC-1536

Hydrogen Compressors

Information contained in this publication or as otherwise supplied to Users is
believed to be accurate and correct at time of going to press, and is given in
good faith, but it is for the User to satisfy itself of the suitability of the information
for its own particular purpose. GBHE gives no warranty as to the fitness of this
information for any particular purpose and any implied warranty or condition
(statutory or otherwise) is excluded except to the extent that exclusion is
prevented by law. GBHE accepts no liability resulting from reliance on this
information. Freedom under Patent, Copyright and Designs cannot be assumed.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Engineering Design Guide:

Hydrogen Compressors

CONTENTS

SECTION

1

SCOPE

2

2

PHYSICAL PROPERTIES

2

2.1
2.2

3

Data for Pure Hydrogen
Influence of Impurities

2

3.1

Hydrogen from Electrolytic Cells

3

3.2

4

MATERIALS OF CONSTRUCTION

Pure Hydrogen

3

3

4.1

Pulsation

3

4.2

5

DESIGN

Bypass

3

TESTING OR COMMISSIONING RECIPROCATING
COMPRESSORS

4

6

LUBRICATION

4

7

LAYOUT

4

8

REFERENCES

4

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
FIGURES
1

MOLLIER CHART - HYDROGEN

2

COMPRESSIBILITY CHART

3

NELSON DIAGRAM

4

WATER CONTENT IN HYDROGEN FOR OIL-LUBRICATED
COMPRESSORS AS GRAMM/M2 SWEPT CYLINDER AREA

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
1

SCOPE

This Engineering Design Guide describes those requirements for a compressor
centered system which arise from the duty with hydrogen.

2

PHYSICAL PROPERTIES

2.1

Data for Pure Hydrogen
Molecular Weight

2

Critical values:

TK = 33.25°K
PK = 12.95 bar

(Reference I)

VK = 0.0323 m3/kg
Cp = 14.23 kJ/kg/o C at 10°C

Speed of sound:

1286 m/sec @ O°C

Cp/C v = 1.41

(Reference 2)

A Mollier chart is given in Figure I, a compressibility chart on Figure 2.
(Ref 3)

2.2

Influence of Impurities

The density of the hydrogen is so low that small quantities of impurities cause
large increases in density, e.g. the density is doubled by 7.5% N2 in hydrogen.
The consequent effects are:
(a)

Reciprocating Compressors
The increase in density leads to increases in pulsation and also increased
loads on the valves. Both pulsation levels and valve velocities should be
checked when operating on the heaviest gas to be handled.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
(b)

Centrifugal and Axial Compressors
Increase in the density of the gas handled results in a nearly equal
increase in pressure ratio. For this reason the use of centrifugal
compressors on hydrogen rich gases subject to impurities is not
recommended.

3

MATERIALS OF CONSTRUCTION

At temperatures normally encountered with compressors all ferrous materials are
suitable. At temperatures above 200°C and elevated pressures, however, special
steels should be used. A Nelson diagram is given in Figure 3 (Reference 4).
Non-metallic materials are not affected at moderate pressures.
Non-ferrous materials are not attacked by pure hydrogen below 200°C.

3.1

Hydrogen from Electrolytic Cells

Hydrogen from electrolytic cells is:
(a)

Saturated with water

(b)

Contains other impurities (Hg, etc) particularly mercury.

If mercury is carried over, then aluminium and aluminium alloys should not be
used. All non-metallic materials are suitable at moderate pressures.

3.2

Pure Hydrogen

There is limited evidence that extremely pure hydrogen - purer than 99.9% causes the speed of fracture propagation to be increased by several magnitudes.
The presence of a small amount of impurity (oil, water or other gases) eliminates
this effect. The first indication of this phenomenon with reciprocating
compressors is expected to be frequent valve failures as valves are the highest
stressed parts within the compressor cylinder (Reference 5 & 6).

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
4

DESIGN

4.1

Pulsation

The basic pulse (d p = δ CV) is low in systems handling hydrogen because of the
low density - in spite of the higher speed of sound. However, the volume required
for a given attenuation is large; pulsation dampers for hydrogen are therefore
expensive. By keeping velocities low in the pipework pulsation dampers can be
avoided. A relationship between line pressure cylinder arrangement and
permissible velocities is given by:

where
V
P
C
K

4.2

=
=
=
=

velocity in m/sec in the pipe
pressure in bar
speed of sound in m/sec
0.4 for single cylinder, single acting machines, and
0.2 for single cylinder, double acting machines

Bypass

When hydrogen is expanded from high pressures (above 110 bar) it warms up in
the process. However, the effect is small (see Figure. 3).

5

TESTING OR COMMISSIONING RECIPROCATING COMPRESSORS

Reciprocating hydrogen compressors are usually tested on air. Under these
conditions the velocity in the valves will be excessive and leading to excessive
pressure drop. Either valves of a different kind are to be used or other
precautions taken.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
6

LUBRICATION

On lubricated machines the oil film will tend to be starved of oxygen. To replenish
the oxide film on the cylinder wall it is necessary to either operate the machine
periodically on air or to add small quantities of water to the hydrogen or to the oil.
(see Figure 4.) This can be done by adding a small percentage of wet hydrogen
either from another source or by passing some hydrogen through a saturator.

7

LAYOUT

The minimum area classification for machines operating on hydrogen is Division
2 Class B. Machines should preferably be installed in buildings with sufficient
ventilation to prevent the build-up of an explosive mixture under normal
operation. They also ensure that any accidental release of hydrogen is quickly
removed from the building.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
REFERENCES
1

Comprehensive Inorganic Chemistry:
Bailar, J C, Emeleus, H J, Sir Ronald Nyholm, Trotman-Dickenson, A F
Tables of Physical & Chemical Constants

2

Kaye and Laby

3

F Frohlich Kolben Verdichter

4

API 941: Steel for Hydrogen Service at Elevated Temperatures and
Pressures in Petrochemical Refineries and Plants

5

Walter, R J and Chandler, W T:
'Cyclic Crack Growth in ASHE SA 105 Grade 2 Steel in High Pressure
Hydrogen at Ambient Temperature' printed in 'Effect of Hydrogen on
Behavior of Metals', published by AIME 1976, p 273

6

Nelson, H G:
'Hydrogen Induced Slow Crack Growth under Cyclic Loading'
Ibid p 602

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
FIGURE 1

- MOLLIER CHART – HYDROGEN

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
FIGURE 2

- COMPRESSIBILITY CHART

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
FIGURE 3

- NELSON DIAGRAM

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
FIGURE 4 - WATER CONTENT IN HYDROGEN FOR OIL-LUBRICATED
COMPRESSORS AS GRAM/M2 SWEPT CYLINDER AREA

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com

More Related Content

What's hot

DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
Gerard B. Hawkins
 
Pressure Reliveing Devices1
Pressure Reliveing Devices1Pressure Reliveing Devices1
Pressure Reliveing Devices1
Om Pratap Singh
 
AIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGERAIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGER
Ahsan Shakil
 

What's hot (20)

Assement of-bag-filter-vs-esp-cpcb
Assement of-bag-filter-vs-esp-cpcbAssement of-bag-filter-vs-esp-cpcb
Assement of-bag-filter-vs-esp-cpcb
 
Flare technology
Flare technologyFlare technology
Flare technology
 
Eng handbook crosby pressure relief valve engineering handbook
Eng handbook crosby pressure relief valve engineering handbookEng handbook crosby pressure relief valve engineering handbook
Eng handbook crosby pressure relief valve engineering handbook
 
Pipeline Design Philosophy
Pipeline Design PhilosophyPipeline Design Philosophy
Pipeline Design Philosophy
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
 
Boiler Water Circulation Pumps
Boiler Water Circulation PumpsBoiler Water Circulation Pumps
Boiler Water Circulation Pumps
 
Pressure Reliveing Devices1
Pressure Reliveing Devices1Pressure Reliveing Devices1
Pressure Reliveing Devices1
 
Case Study: Refinery Relief and Flare Study
Case Study: Refinery Relief and Flare StudyCase Study: Refinery Relief and Flare Study
Case Study: Refinery Relief and Flare Study
 
NATURAL GAS DEHYDRATION
NATURAL GAS DEHYDRATION NATURAL GAS DEHYDRATION
NATURAL GAS DEHYDRATION
 
basics_of_boiler_design__1674282406.pdf
basics_of_boiler_design__1674282406.pdfbasics_of_boiler_design__1674282406.pdf
basics_of_boiler_design__1674282406.pdf
 
Naphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolNaphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with Methanol
 
SMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case StudySMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case Study
 
Design of Gas and Oil Separator 2023.pdf
Design of Gas and Oil Separator 2023.pdfDesign of Gas and Oil Separator 2023.pdf
Design of Gas and Oil Separator 2023.pdf
 
Overflows and Gravity Drainage Systems
Overflows and Gravity Drainage SystemsOverflows and Gravity Drainage Systems
Overflows and Gravity Drainage Systems
 
Odorant Injection Systems, Sentry Equipment Z10000, Natural Gas Odorizer
Odorant Injection Systems, Sentry Equipment Z10000, Natural Gas OdorizerOdorant Injection Systems, Sentry Equipment Z10000, Natural Gas Odorizer
Odorant Injection Systems, Sentry Equipment Z10000, Natural Gas Odorizer
 
AIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGERAIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGER
 
PSV Sizing - API Based
PSV Sizing - API BasedPSV Sizing - API Based
PSV Sizing - API Based
 
Pressure Relief Systems
Pressure Relief Systems Pressure Relief Systems
Pressure Relief Systems
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
 
Operating Manual - Mole Sieve Adsorbents
Operating Manual - Mole Sieve Adsorbents Operating Manual - Mole Sieve Adsorbents
Operating Manual - Mole Sieve Adsorbents
 

Viewers also liked

Centrifugal Compressors
Centrifugal CompressorsCentrifugal Compressors
Centrifugal Compressors
Gerard B. Hawkins
 
Cooling fin fan vibration calibration and trip point setting
Cooling fin fan vibration calibration and trip point settingCooling fin fan vibration calibration and trip point setting
Cooling fin fan vibration calibration and trip point setting
Manorom Chiewpanich
 
Large Water Pumps
Large Water PumpsLarge Water Pumps
Large Water Pumps
Gerard B. Hawkins
 

Viewers also liked (20)

How to Use the GBHE Mixing Guides
How to Use the GBHE Mixing GuidesHow to Use the GBHE Mixing Guides
How to Use the GBHE Mixing Guides
 
Centrifugal Compressors
Centrifugal CompressorsCentrifugal Compressors
Centrifugal Compressors
 
Lubricated Air Compressors - Operating and Maintenance Procedures Required to...
Lubricated Air Compressors - Operating and Maintenance Procedures Required to...Lubricated Air Compressors - Operating and Maintenance Procedures Required to...
Lubricated Air Compressors - Operating and Maintenance Procedures Required to...
 
Reciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case ExplosionsReciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case Explosions
 
The Preliminary Choice of Fan or Compressor
The Preliminary Choice of Fan or Compressor The Preliminary Choice of Fan or Compressor
The Preliminary Choice of Fan or Compressor
 
Integration of Reciprocating Metering Pumps Into A Process
Integration of Reciprocating Metering Pumps Into A ProcessIntegration of Reciprocating Metering Pumps Into A Process
Integration of Reciprocating Metering Pumps Into A Process
 
Pumps for Hydrocarbon Service
Pumps for Hydrocarbon ServicePumps for Hydrocarbon Service
Pumps for Hydrocarbon Service
 
Selection and Use of Printed Circuit Heat Exchangers
Selection and Use of Printed Circuit Heat ExchangersSelection and Use of Printed Circuit Heat Exchangers
Selection and Use of Printed Circuit Heat Exchangers
 
Mechanical Seals
Mechanical SealsMechanical Seals
Mechanical Seals
 
Mixing of Gas Liquid Systems
Mixing of Gas Liquid SystemsMixing of Gas Liquid Systems
Mixing of Gas Liquid Systems
 
Homogeneous Reactors
Homogeneous ReactorsHomogeneous Reactors
Homogeneous Reactors
 
Cooling fin fan vibration calibration and trip point setting
Cooling fin fan vibration calibration and trip point settingCooling fin fan vibration calibration and trip point setting
Cooling fin fan vibration calibration and trip point setting
 
Vibration Analysis Report
Vibration Analysis ReportVibration Analysis Report
Vibration Analysis Report
 
Ppt pump house one point basic
Ppt pump house one point  basicPpt pump house one point  basic
Ppt pump house one point basic
 
Orifice Restrictors - Design Guidelines
Orifice Restrictors - Design GuidelinesOrifice Restrictors - Design Guidelines
Orifice Restrictors - Design Guidelines
 
Condition Based monitoring Training
Condition Based monitoring  TrainingCondition Based monitoring  Training
Condition Based monitoring Training
 
Large Water Pumps
Large Water PumpsLarge Water Pumps
Large Water Pumps
 
Cost Estimating: Turbo Blowers
Cost Estimating: Turbo BlowersCost Estimating: Turbo Blowers
Cost Estimating: Turbo Blowers
 
Protection Systems for Machines: an Engineering Guide
Protection Systems for Machines: an Engineering GuideProtection Systems for Machines: an Engineering Guide
Protection Systems for Machines: an Engineering Guide
 
Suspensions Processing Guide - Basic Principles & Test Methods
Suspensions Processing Guide - Basic Principles & Test MethodsSuspensions Processing Guide - Basic Principles & Test Methods
Suspensions Processing Guide - Basic Principles & Test Methods
 

Similar to Hydrogen Compressors

Integration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a ProcessIntegration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a Process
Gerard B. Hawkins
 
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
Gerard B. Hawkins
 
Pumps for Ammonium Nitrate Service
Pumps for Ammonium Nitrate Service Pumps for Ammonium Nitrate Service
Pumps for Ammonium Nitrate Service
Gerard B. Hawkins
 
Estimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe SystemsEstimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe Systems
Gerard B. Hawkins
 
Boiler Feedwater Pumps
Boiler Feedwater PumpsBoiler Feedwater Pumps
Boiler Feedwater Pumps
Gerard B. Hawkins
 
Integration of Special Purpose Centrifugal Fans into a Process
Integration of Special Purpose Centrifugal Fans into a ProcessIntegration of Special Purpose Centrifugal Fans into a Process
Integration of Special Purpose Centrifugal Fans into a Process
Gerard B. Hawkins
 
Pipeline Design for Isothermal, Laminar Flow of Non-Newtonian Fluids
Pipeline Design for Isothermal, Laminar Flow of Non-Newtonian FluidsPipeline Design for Isothermal, Laminar Flow of Non-Newtonian Fluids
Pipeline Design for Isothermal, Laminar Flow of Non-Newtonian Fluids
Gerard B. Hawkins
 

Similar to Hydrogen Compressors (20)

Batch Distillation
Batch DistillationBatch Distillation
Batch Distillation
 
Integration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a ProcessIntegration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a Process
 
Design and Simulation of Continuous Distillation Columns
Design and Simulation of Continuous Distillation ColumnsDesign and Simulation of Continuous Distillation Columns
Design and Simulation of Continuous Distillation Columns
 
Gas Mixing
Gas MixingGas Mixing
Gas Mixing
 
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
 
Pumps for Ammonium Nitrate Service
Pumps for Ammonium Nitrate Service Pumps for Ammonium Nitrate Service
Pumps for Ammonium Nitrate Service
 
Estimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe SystemsEstimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe Systems
 
Design and Rating of Trayed Distillation Columns
Design and Rating  of Trayed Distillation ColumnsDesign and Rating  of Trayed Distillation Columns
Design and Rating of Trayed Distillation Columns
 
Data Sources For Calculating Chemical Reaction Equilibria
Data Sources For Calculating Chemical Reaction EquilibriaData Sources For Calculating Chemical Reaction Equilibria
Data Sources For Calculating Chemical Reaction Equilibria
 
Pressure Systems
Pressure SystemsPressure Systems
Pressure Systems
 
Boiler Feedwater Pumps
Boiler Feedwater PumpsBoiler Feedwater Pumps
Boiler Feedwater Pumps
 
Avoiding Stress Corrosion Cracking of Carbon Low Alloy and Austenitic Stainl...
Avoiding Stress Corrosion Cracking of  Carbon Low Alloy and Austenitic Stainl...Avoiding Stress Corrosion Cracking of  Carbon Low Alloy and Austenitic Stainl...
Avoiding Stress Corrosion Cracking of Carbon Low Alloy and Austenitic Stainl...
 
Integration of Special Purpose Centrifugal Fans into a Process
Integration of Special Purpose Centrifugal Fans into a ProcessIntegration of Special Purpose Centrifugal Fans into a Process
Integration of Special Purpose Centrifugal Fans into a Process
 
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTMETHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
 
Distillation Sequences, Complex Columns and Heat Integration
Distillation Sequences, Complex Columns and Heat IntegrationDistillation Sequences, Complex Columns and Heat Integration
Distillation Sequences, Complex Columns and Heat Integration
 
Spray Drying
Spray DryingSpray Drying
Spray Drying
 
Gas Solid Mixing
Gas Solid MixingGas Solid Mixing
Gas Solid Mixing
 
Pipeline Design for Isothermal, Laminar Flow of Non-Newtonian Fluids
Pipeline Design for Isothermal, Laminar Flow of Non-Newtonian FluidsPipeline Design for Isothermal, Laminar Flow of Non-Newtonian Fluids
Pipeline Design for Isothermal, Laminar Flow of Non-Newtonian Fluids
 
VULCAN Series A2ST Advanced Alumina Support Technology
VULCAN Series A2ST Advanced Alumina Support TechnologyVULCAN Series A2ST Advanced Alumina Support Technology
VULCAN Series A2ST Advanced Alumina Support Technology
 
Air Cooled Heat Exchanger Design
Air Cooled Heat Exchanger DesignAir Cooled Heat Exchanger Design
Air Cooled Heat Exchanger Design
 

More from Gerard B. Hawkins

GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
Gerard B. Hawkins
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming
Gerard B. Hawkins
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Gerard B. Hawkins
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
Gerard B. Hawkins
 

More from Gerard B. Hawkins (20)

Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2
 
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
 
101 Things That Can Go Wrong on a Primary Reformer - Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer - Best Practices Guide
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
 
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
 
Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:  Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:
 
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasCalculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
 
Pickling & Passivation
Pickling & PassivationPickling & Passivation
Pickling & Passivation
 
Piping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedurePiping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning Procedure
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
 
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen Plant
 
EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
 
Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción
 
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
 
GBHE Over View jan_13_español
GBHE Over View jan_13_españolGBHE Over View jan_13_español
GBHE Over View jan_13_español
 
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Recently uploaded (20)

Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 

Hydrogen Compressors

  • 1. GBH Enterprises, Ltd. Engineering Design Guide: GBHE-EDG-MAC-1536 Hydrogen Compressors Information contained in this publication or as otherwise supplied to Users is believed to be accurate and correct at time of going to press, and is given in good faith, but it is for the User to satisfy itself of the suitability of the information for its own particular purpose. GBHE gives no warranty as to the fitness of this information for any particular purpose and any implied warranty or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented by law. GBHE accepts no liability resulting from reliance on this information. Freedom under Patent, Copyright and Designs cannot be assumed. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 2. Engineering Design Guide: Hydrogen Compressors CONTENTS SECTION 1 SCOPE 2 2 PHYSICAL PROPERTIES 2 2.1 2.2 3 Data for Pure Hydrogen Influence of Impurities 2 3.1 Hydrogen from Electrolytic Cells 3 3.2 4 MATERIALS OF CONSTRUCTION Pure Hydrogen 3 3 4.1 Pulsation 3 4.2 5 DESIGN Bypass 3 TESTING OR COMMISSIONING RECIPROCATING COMPRESSORS 4 6 LUBRICATION 4 7 LAYOUT 4 8 REFERENCES 4 Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 3. FIGURES 1 MOLLIER CHART - HYDROGEN 2 COMPRESSIBILITY CHART 3 NELSON DIAGRAM 4 WATER CONTENT IN HYDROGEN FOR OIL-LUBRICATED COMPRESSORS AS GRAMM/M2 SWEPT CYLINDER AREA Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 4. 1 SCOPE This Engineering Design Guide describes those requirements for a compressor centered system which arise from the duty with hydrogen. 2 PHYSICAL PROPERTIES 2.1 Data for Pure Hydrogen Molecular Weight 2 Critical values: TK = 33.25°K PK = 12.95 bar (Reference I) VK = 0.0323 m3/kg Cp = 14.23 kJ/kg/o C at 10°C Speed of sound: 1286 m/sec @ O°C Cp/C v = 1.41 (Reference 2) A Mollier chart is given in Figure I, a compressibility chart on Figure 2. (Ref 3) 2.2 Influence of Impurities The density of the hydrogen is so low that small quantities of impurities cause large increases in density, e.g. the density is doubled by 7.5% N2 in hydrogen. The consequent effects are: (a) Reciprocating Compressors The increase in density leads to increases in pulsation and also increased loads on the valves. Both pulsation levels and valve velocities should be checked when operating on the heaviest gas to be handled. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 5. (b) Centrifugal and Axial Compressors Increase in the density of the gas handled results in a nearly equal increase in pressure ratio. For this reason the use of centrifugal compressors on hydrogen rich gases subject to impurities is not recommended. 3 MATERIALS OF CONSTRUCTION At temperatures normally encountered with compressors all ferrous materials are suitable. At temperatures above 200°C and elevated pressures, however, special steels should be used. A Nelson diagram is given in Figure 3 (Reference 4). Non-metallic materials are not affected at moderate pressures. Non-ferrous materials are not attacked by pure hydrogen below 200°C. 3.1 Hydrogen from Electrolytic Cells Hydrogen from electrolytic cells is: (a) Saturated with water (b) Contains other impurities (Hg, etc) particularly mercury. If mercury is carried over, then aluminium and aluminium alloys should not be used. All non-metallic materials are suitable at moderate pressures. 3.2 Pure Hydrogen There is limited evidence that extremely pure hydrogen - purer than 99.9% causes the speed of fracture propagation to be increased by several magnitudes. The presence of a small amount of impurity (oil, water or other gases) eliminates this effect. The first indication of this phenomenon with reciprocating compressors is expected to be frequent valve failures as valves are the highest stressed parts within the compressor cylinder (Reference 5 & 6). Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 6. 4 DESIGN 4.1 Pulsation The basic pulse (d p = δ CV) is low in systems handling hydrogen because of the low density - in spite of the higher speed of sound. However, the volume required for a given attenuation is large; pulsation dampers for hydrogen are therefore expensive. By keeping velocities low in the pipework pulsation dampers can be avoided. A relationship between line pressure cylinder arrangement and permissible velocities is given by: where V P C K 4.2 = = = = velocity in m/sec in the pipe pressure in bar speed of sound in m/sec 0.4 for single cylinder, single acting machines, and 0.2 for single cylinder, double acting machines Bypass When hydrogen is expanded from high pressures (above 110 bar) it warms up in the process. However, the effect is small (see Figure. 3). 5 TESTING OR COMMISSIONING RECIPROCATING COMPRESSORS Reciprocating hydrogen compressors are usually tested on air. Under these conditions the velocity in the valves will be excessive and leading to excessive pressure drop. Either valves of a different kind are to be used or other precautions taken. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 7. 6 LUBRICATION On lubricated machines the oil film will tend to be starved of oxygen. To replenish the oxide film on the cylinder wall it is necessary to either operate the machine periodically on air or to add small quantities of water to the hydrogen or to the oil. (see Figure 4.) This can be done by adding a small percentage of wet hydrogen either from another source or by passing some hydrogen through a saturator. 7 LAYOUT The minimum area classification for machines operating on hydrogen is Division 2 Class B. Machines should preferably be installed in buildings with sufficient ventilation to prevent the build-up of an explosive mixture under normal operation. They also ensure that any accidental release of hydrogen is quickly removed from the building. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 8. REFERENCES 1 Comprehensive Inorganic Chemistry: Bailar, J C, Emeleus, H J, Sir Ronald Nyholm, Trotman-Dickenson, A F Tables of Physical & Chemical Constants 2 Kaye and Laby 3 F Frohlich Kolben Verdichter 4 API 941: Steel for Hydrogen Service at Elevated Temperatures and Pressures in Petrochemical Refineries and Plants 5 Walter, R J and Chandler, W T: 'Cyclic Crack Growth in ASHE SA 105 Grade 2 Steel in High Pressure Hydrogen at Ambient Temperature' printed in 'Effect of Hydrogen on Behavior of Metals', published by AIME 1976, p 273 6 Nelson, H G: 'Hydrogen Induced Slow Crack Growth under Cyclic Loading' Ibid p 602 Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 9. FIGURE 1 - MOLLIER CHART – HYDROGEN Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 10. FIGURE 2 - COMPRESSIBILITY CHART Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 11. FIGURE 3 - NELSON DIAGRAM Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 12. FIGURE 4 - WATER CONTENT IN HYDROGEN FOR OIL-LUBRICATED COMPRESSORS AS GRAM/M2 SWEPT CYLINDER AREA Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 13. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 14. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com