SlideShare ist ein Scribd-Unternehmen logo
1 von 63
Downloaden Sie, um offline zu lesen
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
JEWRIA AKRAIWN TIMWN
EFARMOGH SE DEDOMENA BROQOPTWSHS
LIAGKAS GEWRGIOS
TMHMA STATISTIKHS & ANALOGISTIKWN -
QRHMATOOIKONOMIKWN MAJHMATIKWN
PANEPISTHMIOU AIGAIOU
PTUQIAKH ERGASIA, SAMOS 2013
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H Jewr–a Akra–wn Tim∏n apotele– xeqwrisvtÏ klàdo thc
svtatisvtik†c
Anàptuxh jewrhtik∏n kai svtatisvtik∏n montËlwn pou
svqet–zontai me thn emfànisvh akra–wn parathr†svewn
UpologisvmÏc thc pijanÏthtac pragmatopo–hsvhc akra–wn †
svpàniwn gegonÏtwn
Montelopo–hsvh mËsvw thc GenikeumËnhc katanom†c Akra–wn
Tim∏n (GEV) kai thc GenikeumËnhc katanom†c Pareto (GPD)
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc Block Maxima
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc Block Maxima
'Esvtw anexàrthtec t.m X1, X2, . . . , Xm ⇠ F (àgnwsvth)
Mporo‘me na jewr†svoume Ïti oi X1, X2, . . . , Xm, m = nk
qwr–zontai sve k to pl†joc uposv‘nola (block) apÏ n
parathr†sveic to kajËna
H mËjodoc Block Maxima qwr–zei ta dedomËna sve megàla
kommàtia (blocks) kai svth svunËqeia epilËgei th mËgisvth
(elàqisvth) parat†rhsvh sve kàje block
Sun†jwc ta blocks kajor–zontai me bàsvh kàpoia qronik†
per–odo (hmËra, m†na, Ëtoc, ktl)
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc Block Maxima
Sumbol–zoume me Y1, Y2, . . . , Yk tic mËgisvtec timËc sve kajËna
apÏ autà ta k uposv‘nola, svugkekrimËna
Yi = max X(i 1)n+1, X(i 1)n+2, . . . , X(i 1)n+m , i = 1, 2, . . . , k
EpomËnwc ta Yi ⇠ GEV , diÏti P
⇣
Yi dn
cn
 z
⌘
⇡ G (z) ,
efÏsvon upàrqoun oi akolouj–ec dn,cn
'Ara, h efarmog† thc mejÏdou proÙpojËtei thn l†yh twn
mËgisvtwn parathr†svewn apÏ isvomegËjh uposv‘nola twn
dedomËnwn kai thn prosvarmog† touc svthn GEV
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc Block Maxima
Sq†ma : DedomËna broqÏptwsvhc tou svtajmo‘ thc Nàxou me thn
epilog† twn Block Maxima
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc Block Maxima
Sq†ma : Et†svia mËgisvta broqÏptwsvhc tou svtajmo‘ thc Nàxou
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc Block Maxima
Pleonekt†mata
Oi jewrhtikËc upojËsveic e–nai ligÏtero kr–svimec svthn pràxh
H anexarthsv–a twn meg–svtwn mpore– na epiteuqje– me thn
epilog† megàlou megËjouc block
Pio e‘kolo na efarmosvte–
Meionekt†mata
Oi abebaiÏthtec twn ektimht∏n mpore– na e–nai megàlec lÏgw
tou mikro‘ megËjouc tou de–gmatoc
(Mikr† apodotikÏthta)
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc Block Maxima
Pleonekt†mata
Oi jewrhtikËc upojËsveic e–nai ligÏtero kr–svimec svthn pràxh
H anexarthsv–a twn meg–svtwn mpore– na epiteuqje– me thn
epilog† megàlou megËjouc block
Pio e‘kolo na efarmosvte–
Meionekt†mata
Oi abebaiÏthtec twn ektimht∏n mpore– na e–nai megàlec lÏgw
tou mikro‘ megËjouc tou de–gmatoc
(Mikr† apodotikÏthta)
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
'Esvtw X1, X2, . . . , Xn ⇠ F thc opo–ac jËloume na
melet†svoume thn dexià ourà
H mËjodoc POT basv–zetai svtic X1, X2, . . . , Xn pou
uperba–noun Ëna kat∏fli, Ësvtw u
Ja prËpei na basvisvto‘me svthn katanom† thc upËrbasvhc miac
t.m Xi pànw apÏ Ëna kat∏fli u, dedomËnou Ïti h Xi Ëqei
uperbe– to u:
Fu(y) = P (X u  y | X > u) = F(u+y) F(u)
1 F(u) , y > 0
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
Gia thn epilog† tou bËltisvtou katwfl–ou u antimetwp–zoume ta
probl†mata:
Eàn to u den Ëqei epilege– arketà megàlo, tÏte upàrqei
k–ndunoc h Fu na mhn prosvegg–zetai ikanopoihtikà apo thn
GPD
Gia mia pol‘ uyhl† tim† tou u, o arijmÏc twn tim∏n pou
uperba–noun e–nai pol‘ mikrÏc kai kata svunËpeia oi ektimhtËc
mac Ëqoun megàlh diak‘mansvh
Gia mia tim† tou katwfl–ou, oi ektimhtËc pou prok‘ptoun
parousviàzoun megàlh merolhy–a
Ja prËpei wc kat∏fli na epilËxoume to mikrÏtero u ∏svte
Fu ⇡ GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
Gia thn bËltisvth epilog† tou katwfl–ou upàrqoun oi teqnikËc
pou basv–zontai sve katàllhla graf†mata:
Mean Residual Life plot
Threshold choice plot
L-moment plot
Dispersion index plot
Hill plot
'Eqontac prosvdior–svei to kat∏fli, mporo‘me na elËgxoume th
svumperiforà thc ouràc thc katanom†c mËsvw enÏc QQ-plot.
Sth svugkekrimËnh melËth ja parousviàsvoume d‘o mejÏdouc
epilog†c bËltisvtou u:
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
Mean Residual Life plot
Basv–zetai svto gegonÏc Ïti, an Ëna kat∏fli uo e–nai arketà
megàlo ∏svte Fuo ⇡ GPD, tÏte profan∏c Fu ⇡ GPD, 8u > uo.
'Ara kai oi mËsvec timËc twn Fu kai GPD ja prËpei na e–nai –svec
(mean excess function):
e(u) = E (X u | X > u) = sv⇤
1 k = sv+k(u m)
1 k , u > uo
H e (u) mpore– e‘kola na ektimhje– apÏ thn empeirik† mËsvh
uperbàllousva svunàrthsvh:
ˆe(u) = 1
nu
P
i:Xi >u
(Xi u)
Ïpou nu e–nai to pl†joc twn Xi pou uperba–noun to u
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
To gràfhma twn svhme–wn (u, ˆe (u)) ja prËpei na e–nai per–pou
grammikÏ gia u uo
Sq†ma : Mean residual life plot tou svtajmo‘ thc Nàxou
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
Threshold choice plot
Ektimo‘me tic paramËtrouc k, sv⇤ thc GPD gia diàforec timËc
tou katwfl–ou u
An isvq‘ei Ïti Fu ⇡ GPD ja prËpei h ekt–mhsvh tou k na mhn
ephreàzetai apÏ to kat∏fli, en∏ h ekt–mhsvh tou
sv⇤ = sv+k (u m) na metabàlletai grammikà wc proc to u
Mporo‘me kai pàli na epilËxoume to mikrÏtero u pou
ikanopoie– Ïla ta parapànw
Se arketà megàlo kat∏fli u:
H paràmetroc svq†matoc k kai h tropopoihmËnh paràmetroc
kl–makac (sv ku) e–nai anexàrthtec tou katwfl–ou
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
Sq†ma : Threshold choice plot tou svtajmo‘ thc Nàxou
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
Sq†ma : Diàgramma svhme–wn tou svtajmo‘ thc Nàxou me epilegmËno to
kat∏fli
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
Pleonekt†mata
Pio apotelesvmatik† an Ëna ‘mikrÏ’ an∏tato Ïrio
dikaiologe–tai
(PerisvsvÏterec anexàrthtec uperbàsveic apÏ ta block maxima)
Meionekt†mata
H paradoq† thc anexarthsv–ac e–nai kr–svimh svthn pràxh.
Qreiàzetai teqnikËc apÏ-omadopo–hsvhc (declustering)
Qreiàzontai ep–svhc diagnwsvtikà gia thn epilog† tou
katwfl–ou. H epilog† tou e–nai kàpwc asvaf†c svthn pràxh
LigÏtero e‘kolo na efarmosvte–
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc POT
Pleonekt†mata
Pio apotelesvmatik† an Ëna ‘mikrÏ’ an∏tato Ïrio
dikaiologe–tai
(PerisvsvÏterec anexàrthtec uperbàsveic apÏ ta block maxima)
Meionekt†mata
H paradoq† thc anexarthsv–ac e–nai kr–svimh svthn pràxh.
Qreiàzetai teqnikËc apÏ-omadopo–hsvhc (declustering)
Qreiàzontai ep–svhc diagnwsvtikà gia thn epilog† tou
katwfl–ou. H epilog† tou e–nai kàpwc asvaf†c svthn pràxh
LigÏtero e‘kolo na efarmosvte–
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
UpÏ orisvmËnec svunj†kec kanonikÏthtac, h sveirà twn mËgisvtwn
tim∏n (Block Maxima) akoloujo‘n asvumptwtikà thn GenikeumËnh
katanom† Akra–wn Tim∏n (GEV), me sv.p.p:
G(z : m, sv, k) =
8
<
:
exp

1 + k z m
sv
1
k
,
exp
⇥
exp z m
sv
⇤
k 6= 0
k = 0
Ïpou 1 + k z m
sv > 0, m✏R e–nai h paràmetroc jËsvhc, sv > 0 h
paràmetroc kl–makac kai k h paràmetroc svq†matoc.
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GEV qwr–zetai sve tre–c epimËrouc oikogËneiec katanom∏n :
an k > 0 h GEV pa–rnei th morf† thc Frechet me barià ourà
an k < 0 th morf† thc Weibull , fragmËnh svto m k/sv
an k = 0 th morf† thc Gumbel katanom†c me lept† ourà
Sq†ma : GEV oikogËneiec katanom∏n
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
Eàn X1, X2, . . . , XT e–nai t.m me koin† svunàrthsvh katanom†c
F, to u (T) = F 1 (1 1/T) , dhlad† prÏkeitai gia to
(1 1/T) posvosvtia–o svhme–o thc F katanom†c. Isvq‘ei h
svqËsvh P [X1 > u (T)] = 1 F (u (T)) = 1/T, to opo–o
onomàzetai ep–pedo epanaforàc T-qrÏnwn.
Gia thn katanom† GEV oi ektim†sveic twn akra–wn
p-posvosvtia–wn svhme–wn (Coles, 2001) upolog–zontai:
zp =
(
m sv
k
⇣
1 [ log (1 p)] k
⌘
,
m svlog [ log (1 p)] ,
k 6= 0
k = 0
Ïpou zp = F 1 (1 p) , 0 < p < 1. H metablht† zp onomàzetai
ep–pedo epanaforàc pou svqet–zetai me thn per–odo epanaforàc
1/p.
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H GenikeumËnh Katanom† Pareto (GPD)
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H GenikeumËnh Katanom† Pareto (GPD)
H GenikeumËnh Katanom† Pareto (GPD) gia Ëna arketà uyhlÏ
kat∏fli u (POT), me svunàrthsvh katanom†c uperbàsvewn (X u)
dedomËnou Ïti X > u, prosvegg–zetai apÏ th svqËsvh:
H(y) = P (X u | X > u) =
(
1 1 + k y
sv⇤
1
k
+
,
1 exp y
sv⇤ ,
k 6= 0
k = 0
pou or–zetai svto sv‘nolo y : y > 0, 1 + y y
sv⇤ > 0 me
sv⇤ = sv + k (u m).
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H GenikeumËnh Katanom† Pareto (GPD)
H GPD anàloga me thn tim† pou pa–rnei h paràmetroc k:
an k > 0 tÏte ekte–netai dexià wc to àpeiro
an k < 0 Ëqei ànw Ïrio svthr–gmatoc to u sv⇤
/k
an k = 0 ekful–zetai svthn Ekjetik† katanom† me paràmetro
1/sv⇤
Sq†ma : GPD oikogËneiec katanom∏n
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H GenikeumËnh Katanom† Pareto (GPD)
Gia thn katanom† GPD, oi ektim†sveic twn pijanot†twn na
svumbo‘n gegonÏta pËra apÏ to e‘roc twn parathro‘menwn
dedomËnwn, dhlad† twn p-posvosvtia–wn svhme–wn (Coles, 2001)
upolog–zontai me qr†svh twn exisv∏svewn:
zp =
( sv⇤
k p k 1
sv⇤log
⇣
1
p
⌘ k 6= 0
k = 0
Ïpou zp = F 1 (1 p) , 0 < p < 1.
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
'Esvtw ta block maxima Y1, Y2 . . . , Yn ⇠ GEV . H svunàrthsvh
logarijmik†c pijanofàneiac twn Yi , ja e–nai:
an k 6= 0 tÏte
lGEV (m,sv,k) = n log (sv)
1 + 1
k
Pn
i=1 log
⇥
1 + k yi m
sv
⇤ Pn
i=1

1 + k yi m
sv
1
k
me 1 + k yi m
sv > 0 , 8i = 1, 2, . . . , n
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
an k = 0 tÏte
lGumbel (m,sv) = n log (sv)
Pn
i=1
yi m
sv
Pn
i=1 exp yi m
sv
Mia dusvkol–a gia thn ekt–mhsvh twn paramËtrwn tou montËlou
GEV me th mËjodo thc mËgisvthc pijanofàneiac, ofe–letai svto Ïti
den plhro‘ntai oi proupojËsveic gia thn efarmog† thc
kanonikÏthtac. AutÏ svhma–nei Ïti ta gnwsvtà asvumptwtikà
apotelËsvmata thc pijanofàneiac den efarmÏzontai autÏmata.
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
To prÏblhma autÏ Ëqei melethje– leptomer∏c (Smith, 1985) me
ta akÏlouja apotelËsvmata:
an k > 0.5 oi ektim†sveic thc mËgisvthc pijanofàneiac Ëqoun
tic svun†jeic asvumptwtikËc idiÏthtec
an 1 < k < 0.5 oi ektim†sveic sve genikËc grammËc mporo‘n
na epiteuqjo‘n, allà den Ëqoun tic asvumptwtikËc idiÏthtec
an k < 1 oi ektim†sveic den mporo‘n na upologisvto‘n
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
Me th megisvtopo–hsvh thc svunart†svhc logarijmik†c
pijanofàneiac, pa–rnoume tic mËgisvtec ektim†sveic pijanofàneiac
ˆj0 =
⇣
ˆm, ˆsv, ˆk
⌘
. H beltisvtopo–hsvh aut∏n g–netai me arijmhtik†
beltisvtopo–hsvh twn algor–jmwn. Dhlad† gia n ! 1, h katanom†
twn ektimht∏n mËgisvthc pijanofàneiac ˆj0 (d-diasvtàsvewn)
svugkl–nei svth kanonik† katanom†:
ˆj0 ⇠ Nd
⇣
j0, IE (j0) 1
⌘
me IE (j) na isvo‘tai me to ant–svtrofo tou parathro‘menou p–naka
plhrofor–ac pou upolog–svthke apÏ thn logarijmik† pijanofàneia
ei,j (j) = E
n
@2
@ji@jx
` (j)
o
:
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
IE (j) =
0
B
B
B
B
@
e1,1 (j) · · · e1,d (j)
...
... ei,j (j)
...
ej,i (j)
...
ed,1 (j) · · · ed,d (j)
1
C
C
C
C
A
kai svun†jwc o parapànw p–nakac upolog–zetai katà thn diàrkeia
thc diadikasv–ac beltisvtopo–hsvhc. Ta d.e upolog–zontai apÏ thn
ekt–mhsvh ˆwi,j tou parathro‘menou p–naka plhrofor–ac, sve (1-a)
diàsvthma empisvtosv‘nhc kai gia ˆj mpore– na upologisvte– wc:
ˆji ± z↵
2
p
ˆwi,i = ˆji ± z↵
2
r
Var
⇣
ˆji
⌘
Ïpou to z↵
2
e–nai to 1 ↵
2 posvosvthmÏrio thc tupopoihmËnhc
kanonik†c katanom†c kai to SEi =
r
Var
⇣
ˆji
⌘
e–nai to tupikÏ
svfàlma gia thn i-osvt† paràmetro.
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
Gia to montËlo thc GenikeumËnhc katanom†c Pareto (GPD)
lambànontac upÏyhn Ïti to de–gma mac (Y1, Y2 . . . , Yn) proËrqetai
apÏ to montËlo twn uperbàsvewn pànw apÏ Ëna uyhlÏ kat∏fli
(POT), h svunàrthsvh logarijmik†c pijanofàneiac d–netai apÏ tic
parakàtw svqËsveic:
an k 6= 0 tÏte
lGPD (sv⇤, k) = nu log (sv⇤) 1 + 1
k
Pnu
i=1
yi u
sv⇤
an k = 0 tÏte
lGPD (sv⇤) = nu log (sv⇤)
Pnu
i=1
yi u
sv⇤
Ïpou to u e–nai to kat∏fli, to nu o arijmÏc twn parathr†svewn
pou uperba–noun to Ïrio u kai to sv⇤ = sv + k (u m).
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
Ep–svhc, oi ektim†sveic thc mËgisvthc pijanofàneiac gia to montËlo
(GPD) Ëqei melethje– leptomer∏c (Smith, 1984):
an k < 0.5 oi ektim†sveic e–nai asvumptwtikà kanonikà
katanemhmËnec, me tic asvumptwtikËc diakumànsveic na ftànoun
to kàtw fràgma Cramer-Rao kàtw apÏ orisvmËnec
katàllhlec svunj†kec kanonikÏthtac, Ëqoume

ˆsvMLE
ˆkMLE
s N
✓
sv
k
, n 1

2sv2 (1 k) sv (1 k)
sv (1 k) (1 k)2
◆
an k 0.5 oi ektim†sveic qarakthr–zontai wc mh
kanonikopoihmËnec, dedomËnou Ïti oi svunj†kec kanonikÏthtac
den ikanopoio‘ntai kai svth svugkekrimËnh per–ptwsvh
upàrqoun probl†mata svthn sv‘gklisvh
an k > 1 oi ektim†sveic den upàrqoun, epeid† h svunàrthsvh
pijanofàneiac kontà svto akra–o svhme–o te–nei svto àpeiro wc
x prosveggisvtikà svto sv
k
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc twn L-rop∏n (L-moments)
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc twn L-rop∏n (L-moments)
Oi L-ropËc upolog–zontai apÏ grammiko‘c svunduasvmo‘c twn
taxinomhmËnwn tim∏n twn dedomËnwn
Parousviàzoun mikrÏterh deigmatik† metablhtÏthta apÏ tic
ektim†sveic twn kanonik∏n rop∏n
Oi L-ropËc Ëqoun orisvte– gia m–a katanom† pijanot†twn,
allà svth pràxh prËpei na ektimhjo‘n me bàsvh Ëna
peperasvmËno de–gma
Se Ëna diatetagmËno de–gma X1:n  X2:n  . . .  Xn:n , me n
to mËgejoc tou de–gmatoc, h ektim†tria thc pijanÏthtac twn
svtajmisvmËnwn rop∏n br e–nai amerÏlhpth ektim†tria twn br ,
me:
lr+1 =
Pr
k=0 P⇤
r,kbk
Ïpou to r = 0, 1, 2, . . . , n 1
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc twn L-rop∏n (L-moments)
EidikÏtera, h l1 metrà thn jËsvh tou mËsvou tic svugkekrimËnhc
katanom†c pou meletàme (L-jËsvhc), h l2 metrà thn kl–maka
(L-kl–makac), h l3 metrà thn asvummetr–a (L-asvummetr–ac) kai h l4
metrà thn k‘rtwsvh (L-k‘rtwsvhc). Genikà
br = n 1
Pn
j=r+1
(j 1)(j 2)...(j r)
(n 1)(n 2)...(n r) xj:n
Oi deigmatikËc L-ropËc, lr e–nai amerÏlhptoi ektimhtËc twn lr kai
ep–svhc oi L-ropËc twn analogi∏n d–nontai apÏ:
tr = lr
l2
me r = 3, 4, 5, . . . kai ep–svhc t = l1
l2
e–nai h L-svuntelesvt†c
diak‘mansvhc (L-Cv), t3 = l3
l2
h L-asvummetr–ac (L-Cs) kai t4 = l4
l2
h
L-k‘rtwsvhc (L-Ck).
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc twn L-rop∏n (L-moments)
Oi Hosking kai Wallis (1993, 1997) parËqoun odhg–ec gia thn
ektËlesvh thc qwrik†c anàlusvhc svuqnÏthtac qrhsvimopoi∏ntac tic
L-ropËc kai perigràfontai sve tËsvsvera b†mata:
1 exËtasvh twn dedomËnwn (tesvt asvumbatÏthtac, Di ),
(Discordancy test)
2 prosvdiorisvmÏ twn omoiogen∏n perioq∏n (testing of regional
homogeneity)
3 epilog† thc qwrik†c katanom†c
4 ekt–mhsvh thc qwrik†c katanom†c svuqnot†twn
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc twn L-rop∏n (L-moments)
Oi ektim†sveic twn paramËtrwn thc GEV me th mËjodo twn
L-rop∏n d–nontai wc:
ˆm = l1 +
ˆsv
h
G
⇣
1 + ˆk
⌘
-1
i
ˆk
ˆsv = l2
ˆk
(1 2 ˆk
)G(1+ˆk)
ˆk = 7.8590c + 2.9554c2
Ep–svhc, oi ektim†sveic twn paramËtrwn thc GPD e–nai:
ˆm = l1
⇣
2 + ˆk
⌘
l2
ˆsv =
⇣
1 + ˆk
⌘ ⇣
2 + ˆk
⌘
l2
ˆk = 1 3t3
t3+1
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc twn TL-rop∏n (TL-moments)
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc twn TL-rop∏n (TL-moments)
Oi TL-ropËc upolog–zontai apÏ grammiko‘c svunduasvmo‘c
twn taxinomhmËnwn tim∏n twn dedomËnwn
H mËjodoc twn TL-rop∏n e–nai ousviasvtikà h mËjodoc twn
L-rop∏n svthn opo–a h E (Xr k:r ) antikajisvtàtai apÏ thn
E (Xr+t k:r+2t), 8r 1 , Ïpou t = 1, 2, 3, . . . na e–nai h
perikommËnh (trimmed) rop† pou proËrqetai apÏ Ëna de–gma.
Oi TL-ropËc e–nai mia epËktasvh twn L-rop∏n, afo‘ gia t = 0
mac d–nei tic klasvikËc L-ropËc
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc twn TL-rop∏n (TL-moments)
'Eqei apodeiqje– (Elamir & Seheult, 2003) Ïti oi TL-ropËc
⇣
l
(t)
r
⌘
pou proËrqontai apÏ Ëna t.d X1, X2, . . . , Xn megËjouc n, me
ajroisvtik† svunàrthsvh Qx (u) = F 1
x (u) kai dedomËnou Ïti
X1:n  X2:n  . . .  Xn:n or–zontai wc ex†c:
l
(t)
r = 1
r
Pr 1
k=0 ( 1)k
✓
r 1
k
◆
E (Xr+t k:r+2t)
Ïpou,
E (Xi:r ) = r!
(i 1)!(r 1)!
R 1
0 x (F) Fi 1 (1 F)r i
dF
r = 1, 2, . . . , n 2t. AutÏ de–qnei Ïti oi l
(t)
r ropËc e–nai Ënac
amerÏlhptoc ektimht†c twn l
(t)
r rop∏n.
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
H mËjodoc twn TL-rop∏n (TL-moments)
Oi deigmatikËc TL-ropËc gia t = 1, 2, 3, . . . d–nontai anologikà:
l
(t)
r =
1
r
Pn t
i=t+1
2
6
6
6
4
Pr 1
k=0( 1)k
0
@
r 1
k
1
A
0
@
i 1
r + t 1 k
1
A
0
@
n i
t + k
1
A
0
@
n
r + 2t
1
A
3
7
7
7
5
xi:n
Oi TL-ropËc twn analogi∏n (t = 1, 2, 3, . . .) ekfràzoun akrib∏c
ta –dia me aut† twn analogi∏n twn L-rop∏n,
t
(t)
2 =
l
(t)
2
l
(t)
1
e–nai h TL-svuntelesvt†c kl–makac (TL-Cv)
t
(t)
3 =
l
(t)
3
l
(t)
2
h TL-svuntelesvt†c asvummetr–ac (TL-Cs)
t
(t)
4 =
l
(t)
4
l
(t)
2
e–nai h TL-k‘rtwsvhc (TL-Ck).
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Perioq† melËthc kai dedomËnwn
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Perioq† melËthc kai dedomËnwn
Hmer†svia dedomËna broqÏptwsvhc (mm) pËnte Ellhnik∏n
pÏlewn gia qronik† per–odo apÏ to 1955 e∏c 2010 (20.451
timËc)
Perilambànontai h pÏlh twn Kuj†rwn, Làrisvac, M†lou,
Mutil†nhc kai Nàxou
Sq†ma : Grafik† apeikÏnisvh twn jËsvewn gia touc pËnte Ellhniko‘c
svtajmo‘c
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Prosvarmog† twn dedomËnwn svthn GEV
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Prosvarmog† twn dedomËnwn svthn GEV
56 Block 1955-2010 ˆm ˆsv ˆk
K‘jhra MLE 43.8 16.6 0.24
mm L-moms 44.6 18.5 -0.12
TL-moms 43.4 /43.0 19.0 /19.1 -0.21 /-0.27
Làrisva MLE 33.4 13.5 0.31
mm L-moms 33.5 14.0 -0.26
TL-moms 32.7 /32.6 12.6 /11.9 -0.45 /-0.55
M†loc MLE 39.4 12.8 0.16
mm L-moms 39.2 12.8 -0.17
TL-moms 39.7 /40.1 12.7 /12.5 -0.11 /-0.03
Mutil†nh MLE 56.7 18.5 0.02
mm L-moms 56.0 17.0 -0.11
TL-moms 56.7 /57.2 14.6 /14.0 -0.11 /-0.12
Nàxoc MLE 34.5 11.8 0.22
mm L-moms 34.8 12.8 -0.13
TL-moms 34.5 /34.5 13.3 /13.9 -0.14/-0.07
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Prosvarmog† twn dedomËnwn svthn GEV
Sq†ma : Diagnwsvtikà diagràmmata gia Ëlegqo kal†c prosvarmog†c me
MLE
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Prosvarmog† twn dedomËnwn svthn GEV
AsvumbatÏthta Di D
(1)
i /D
(2)
i
L-moms TL-moms
K‘jhra 1.07 0.82/0.53
Làrisva 1.27 1.31/1.18
M†loc 0.64 1.20/1.33
Mutil†nh 1.18 1.33/1.25
Nàxoc 0.83 0.34/0.70
Z-tesvt ZGEV
L-moms 0.12
TL-moms 1.69 / 3.48
OmoiogËneia L-moms TL-moms
H1 0.94 3.63 /5.88
H2 -0.90 0.15 /0.79
H3 -0.37 0.36 /0.42
P–nakac : Tesvt asvumbatÏthtac (an Di > 1.33 asvumbatà), tesvt
omoiogËneiac (an Hj < 1 gia j = 1, 2, 3, omoiogen†c) kai Z-tesvt (an
ZGEV
< 1.64 tÏte prosvarmÏzetai svthn katanom†)
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Prosvarmog† twn dedomËnwn svthn GEV
Sq†ma : Diàgramma analogi∏n twn L-rop∏n
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Prosvarmog† twn dedomËnwn svthn GPD
1 JEWRIA AKRAIWN TIMWN
Eisvagwg† svth Jewr–a Akra–wn Tim∏n
H mËjodoc Block Maxima
H mËjodoc POT
H GenikeumËnh katanom† Akra–wn Tim∏n (GEV)
H GenikeumËnh Katanom† Pareto (GPD)
H mËjodoc MËgisvthc Pijanofàneiac (MLE)
H mËjodoc twn L-rop∏n (L-moments)
H mËjodoc twn TL-rop∏n (TL-moments)
2 EFARMOGH SE BROQOPTWSH
Perioq† melËthc kai dedomËnwn
Prosvarmog† twn dedomËnwn svthn GEV
Prosvarmog† twn dedomËnwn svthn GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Prosvarmog† twn dedomËnwn svthn GPD
POT 1955-2010 Uperbàsveic ˆsv ˆk
K‘jhra MLE 17.4 0.11
32 mm L-moms 117 17.3 -0.13
TL-moms 15.2 /14.5 -0.26 /-0.31
Làrisva MLE 12.1 0.26
31 mm L-moms 83 11.6 -0.27
TL-moms 10.4 /11.0 -0.37 /-0.29
M†loc MLE 14.0 0.08
36 mm L-moms 74 11.6 -0.17
TL-moms 12.4 /14.3 -0.06 /0.13
Mutil†nh MLE 16.9 0.10
49 mm L-moms 80 14.9 -0.17
TL-moms 14.6 /16.3 -0.18 /-0.04
Nàxoc MLE 12.3 0.10
26 mm L-moms 117 12.4 -0.10
TL-moms 12.5 /13.0 -0.09/-0.04
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Prosvarmog† twn dedomËnwn svthn GPD
Sq†ma : Diagnwsvtikà diagràmmata gia Ëlegqo kal†c prosvarmog†c me
MLE
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Prosvarmog† twn dedomËnwn svthn GPD
Sq†ma : Diàgramma analogi∏n twn L-rop∏n
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Sumperàsvmata - Katanom∏n
H ekt–mhsvh thc paramËtrou k
e–nai jetik† me th mËjodo MLE
arnhtik† me th mËjodo L-rop∏n, TL-rop∏n
Gia th jetik† tim†
h GEV pa–rnei th morf† thc Frechet katanom†c
h GPD ekte–netai dexià wc to àpeiro
Gia th arnhtik† tim†
h GEV pa–rnei th morf† thc Weibull katanom†c
h GPD Ëqei ànw Ïrio svthr–gmatoc to u sv⇤
/k
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Sumperàsvmata - Qwrik†c Anàlusvhc
H qwrik† anàlusvh svuqnot†twn twn mejodologi∏n L-rop∏n kai
TL-rop∏n mac Ëdeixe Ïti
oi pËnte svtajmo– e–nai svtatisvtikà apodekto– wc omoiogenËc
(tesvt asvumbatÏthtac kai eterogËneiac)
me to Z-tesvt oi L-ropËc paràgoun kal‘tera apotelËsvmata
gia th montelopo–hsvh et†sviwn broqopt∏svewn svth GEV (oi
TL-ropËc Ïqi kal† prosvarmog†)
gia timËc pànw apÏ Ëna kat∏fli oi L-ropËc kai oi
TL-ropËc prosvarmÏzontai kal‘tera svth GPD
JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata
Sumperàsvmata - EpipËdou epanaforàc
Nàxoc (GEV) 5et∏n 10et∏n 20et∏n 50et∏n 100et∏n
MLE 55.6 69.1 84.4 108.4 129.9
L-moms 55.6 68.7 81.9 101.0 116.9
TL-moms (t=1) 56.9 70.0 83.9 104.2 121.2
TL-moms (t=2) 56.7 68.8 81.0 97.7 111.0
Nàxoc (GPD) 5et∏n 10et∏n 20et∏n 50et∏n 100et∏n
MLE 58.8 70.1 82.3 99.8 114.2
L-moms 47.3 57.9 69.3 85.8 99.4
TL-moms (t=1) 47.3 57.8 69.0 85.1 98.2
TL-moms (t=2) 47.1 56.9 67.0 80.8 91.6
P–nakac : Ep–pedo epanaforàc (mm) tou svtajmo‘ thc Nàxou
Bibliograf–a
Coles, S.G. (2001). An introduction to statistical modelling
of extreme values. Springer series in Statistics, Springer,
Berlin.
Elamir, E.A.H. and Seheult, A.H. (2003). Trimmed
L-moments. Computational Statistics & Data Analysis, 43,
299-314.
Hosking, J.R.M. (1990). L-moments: analysis and
estimation of distributions using linear combinations of
order statistics. Journal of the Royal Statistical Society,
Series B, 52, 105-124.
Hosking, J.R.M. and Wallis, J.R. (1993). Some statistics
useful in regional frequency analysis. Water Resources
Research, 29, 271-281.
Bibliograf–a
Hosking, J.R.M. and Wallis, J.R. (1997). Regional frequency
analysis: an approach based on L-moments. Cambridge
University Press, Cambridge, U.K.
Kotz, S. and Nadarajah, S. (2000). Extreme Value
Distributions: Theory and Applications. Imperial College
Press, London.
Reiss, R. and Thomas, M. (2001;2007). Statistical Analysis
of Extreme Values, with Application to Insurance, Finance,
Hydrology and Other Fields. 2nd edition; 3nd edition,
Birkhuser Verlag.
Shabri, A.B., Daud, Z.M. and Ariff, N.M. (2011). Regional
analysis of annual maximum rainfall using TL-moments
method. Theor Appl Climatol, 104, 561-570.

Weitere ähnliche Inhalte

Was ist angesagt?

Naidunia ePaper 24 March 2016
Naidunia ePaper 24 March 2016Naidunia ePaper 24 March 2016
Naidunia ePaper 24 March 2016Jitendra Kumar
 
Naidunia ePaper 24 February 2016
Naidunia ePaper 24 February 2016Naidunia ePaper 24 February 2016
Naidunia ePaper 24 February 2016Jitendra Kumar
 
Naidunia ePaper 9 June 2016
Naidunia ePaper 9 June 2016Naidunia ePaper 9 June 2016
Naidunia ePaper 9 June 2016Jitendra Kumar
 
Naidunia ePaper 22 March 2016
Naidunia ePaper 22 March 2016Naidunia ePaper 22 March 2016
Naidunia ePaper 22 March 2016Jitendra Kumar
 
Naidunia ePaper 24 May 2016
Naidunia ePaper 24 May 2016Naidunia ePaper 24 May 2016
Naidunia ePaper 24 May 2016Jitendra Kumar
 
Docdownloader.com diseo de-una-prueba
Docdownloader.com diseo de-una-pruebaDocdownloader.com diseo de-una-prueba
Docdownloader.com diseo de-una-pruebaClaudia Cantillo
 
Naidunia ePaper 14 June 2016
Naidunia ePaper 14 June 2016Naidunia ePaper 14 June 2016
Naidunia ePaper 14 June 2016Jitendra Kumar
 
Naidunia ePaper 3 May 2016
Naidunia ePaper 3 May 2016Naidunia ePaper 3 May 2016
Naidunia ePaper 3 May 2016Jitendra Kumar
 
Naidunia ePaper 7 April 2016
Naidunia ePaper 7 April 2016Naidunia ePaper 7 April 2016
Naidunia ePaper 7 April 2016Jitendra Kumar
 
Naidunia ePaper 5 April 2016
Naidunia ePaper 5 April 2016Naidunia ePaper 5 April 2016
Naidunia ePaper 5 April 2016Jitendra Kumar
 
Naidunia ePaper 25 May 2016
Naidunia ePaper 25 May 2016Naidunia ePaper 25 May 2016
Naidunia ePaper 25 May 2016Jitendra Kumar
 
Naidunia ePaper 10 June 2016
Naidunia ePaper 10 June 2016Naidunia ePaper 10 June 2016
Naidunia ePaper 10 June 2016Jitendra Kumar
 
Naidunia ePaper 16 March 2016
Naidunia ePaper 16 March 2016Naidunia ePaper 16 March 2016
Naidunia ePaper 16 March 2016Jitendra Kumar
 
Naidunia ePaper 4 April 2016
Naidunia ePaper 4 April 2016Naidunia ePaper 4 April 2016
Naidunia ePaper 4 April 2016Jitendra Kumar
 
Naidunia ePaper 21 March 2016
Naidunia ePaper 21 March 2016Naidunia ePaper 21 March 2016
Naidunia ePaper 21 March 2016Jitendra Kumar
 
Naidunia ePaper 18 March 2016
Naidunia ePaper 18 March 2016Naidunia ePaper 18 March 2016
Naidunia ePaper 18 March 2016Jitendra Kumar
 
မဟာသတိပဌာန္
မဟာသတိပဌာန္မဟာသတိပဌာန္
မဟာသတိပဌာန္minnyo
 

Was ist angesagt? (20)

Naidunia ePaper 24 March 2016
Naidunia ePaper 24 March 2016Naidunia ePaper 24 March 2016
Naidunia ePaper 24 March 2016
 
Naidunia ePaper 24 February 2016
Naidunia ePaper 24 February 2016Naidunia ePaper 24 February 2016
Naidunia ePaper 24 February 2016
 
Naidunia ePaper 9 June 2016
Naidunia ePaper 9 June 2016Naidunia ePaper 9 June 2016
Naidunia ePaper 9 June 2016
 
Naidunia ePaper 22 March 2016
Naidunia ePaper 22 March 2016Naidunia ePaper 22 March 2016
Naidunia ePaper 22 March 2016
 
Naidunia ePaper 24 May 2016
Naidunia ePaper 24 May 2016Naidunia ePaper 24 May 2016
Naidunia ePaper 24 May 2016
 
Pg 0021
Pg 0021Pg 0021
Pg 0021
 
Docdownloader.com diseo de-una-prueba
Docdownloader.com diseo de-una-pruebaDocdownloader.com diseo de-una-prueba
Docdownloader.com diseo de-una-prueba
 
Naidunia ePaper 14 June 2016
Naidunia ePaper 14 June 2016Naidunia ePaper 14 June 2016
Naidunia ePaper 14 June 2016
 
Naidunia ePaper 3 May 2016
Naidunia ePaper 3 May 2016Naidunia ePaper 3 May 2016
Naidunia ePaper 3 May 2016
 
Naidunia ePaper 7 April 2016
Naidunia ePaper 7 April 2016Naidunia ePaper 7 April 2016
Naidunia ePaper 7 April 2016
 
Naidunia ePaper 5 April 2016
Naidunia ePaper 5 April 2016Naidunia ePaper 5 April 2016
Naidunia ePaper 5 April 2016
 
Naidunia ePaper 25 May 2016
Naidunia ePaper 25 May 2016Naidunia ePaper 25 May 2016
Naidunia ePaper 25 May 2016
 
Pg 0139
Pg 0139Pg 0139
Pg 0139
 
Naidunia ePaper 10 June 2016
Naidunia ePaper 10 June 2016Naidunia ePaper 10 June 2016
Naidunia ePaper 10 June 2016
 
Naidunia ePaper 16 March 2016
Naidunia ePaper 16 March 2016Naidunia ePaper 16 March 2016
Naidunia ePaper 16 March 2016
 
Naidunia ePaper 4 April 2016
Naidunia ePaper 4 April 2016Naidunia ePaper 4 April 2016
Naidunia ePaper 4 April 2016
 
Pg 0020
Pg 0020Pg 0020
Pg 0020
 
Naidunia ePaper 21 March 2016
Naidunia ePaper 21 March 2016Naidunia ePaper 21 March 2016
Naidunia ePaper 21 March 2016
 
Naidunia ePaper 18 March 2016
Naidunia ePaper 18 March 2016Naidunia ePaper 18 March 2016
Naidunia ePaper 18 March 2016
 
မဟာသတိပဌာန္
မဟာသတိပဌာန္မဟာသတိပဌာန္
မဟာသတိပဌာန္
 

Andere mochten auch

Conheça novo meme da internet
Conheça novo meme da internetConheça novo meme da internet
Conheça novo meme da internetMarcio Wolfarth
 
Het gebruik van gestandaardiseerde vragenlijsten in de huisartsenpraktijk voo...
Het gebruik van gestandaardiseerde vragenlijsten in de huisartsenpraktijk voo...Het gebruik van gestandaardiseerde vragenlijsten in de huisartsenpraktijk voo...
Het gebruik van gestandaardiseerde vragenlijsten in de huisartsenpraktijk voo...Stefanie_VM
 
Instrucciones de Montaje y Mantenimiento de una Piscina Gre (7 languages)
Instrucciones de Montaje y Mantenimiento de una Piscina Gre (7 languages)Instrucciones de Montaje y Mantenimiento de una Piscina Gre (7 languages)
Instrucciones de Montaje y Mantenimiento de una Piscina Gre (7 languages)PiscinasDesmontables.es
 
Certificaten Katrien Broeckx
Certificaten Katrien BroeckxCertificaten Katrien Broeckx
Certificaten Katrien BroeckxKatrien Broeckx
 
Tupac amaru shakur
Tupac amaru shakurTupac amaru shakur
Tupac amaru shakurdoragk
 
Presentazione calcio (zakaria baslam 3 A lab inf.)
Presentazione calcio  (zakaria baslam 3 A lab inf.)Presentazione calcio  (zakaria baslam 3 A lab inf.)
Presentazione calcio (zakaria baslam 3 A lab inf.)alessandrogemo
 
Occupancy permits are poorly written
Occupancy permits are poorly writtenOccupancy permits are poorly written
Occupancy permits are poorly writtenBrett Allen
 
La tierra en miniatura
La tierra en miniaturaLa tierra en miniatura
La tierra en miniaturaEl del Alma
 

Andere mochten auch (19)

Conheça novo meme da internet
Conheça novo meme da internetConheça novo meme da internet
Conheça novo meme da internet
 
UNIQUE EMPORIA
UNIQUE EMPORIAUNIQUE EMPORIA
UNIQUE EMPORIA
 
Het gebruik van gestandaardiseerde vragenlijsten in de huisartsenpraktijk voo...
Het gebruik van gestandaardiseerde vragenlijsten in de huisartsenpraktijk voo...Het gebruik van gestandaardiseerde vragenlijsten in de huisartsenpraktijk voo...
Het gebruik van gestandaardiseerde vragenlijsten in de huisartsenpraktijk voo...
 
Instrucciones de Montaje y Mantenimiento de una Piscina Gre (7 languages)
Instrucciones de Montaje y Mantenimiento de una Piscina Gre (7 languages)Instrucciones de Montaje y Mantenimiento de una Piscina Gre (7 languages)
Instrucciones de Montaje y Mantenimiento de una Piscina Gre (7 languages)
 
KL
KLKL
KL
 
Certificaten Katrien Broeckx
Certificaten Katrien BroeckxCertificaten Katrien Broeckx
Certificaten Katrien Broeckx
 
greek
greekgreek
greek
 
Jacuzzis Hinchables (3 languages)
Jacuzzis Hinchables (3 languages)Jacuzzis Hinchables (3 languages)
Jacuzzis Hinchables (3 languages)
 
Happy fingers
Happy fingersHappy fingers
Happy fingers
 
Tupac amaru shakur
Tupac amaru shakurTupac amaru shakur
Tupac amaru shakur
 
Presentazione calcio (zakaria baslam 3 A lab inf.)
Presentazione calcio  (zakaria baslam 3 A lab inf.)Presentazione calcio  (zakaria baslam 3 A lab inf.)
Presentazione calcio (zakaria baslam 3 A lab inf.)
 
Occupancy permits are poorly written
Occupancy permits are poorly writtenOccupancy permits are poorly written
Occupancy permits are poorly written
 
La tierra en miniatura
La tierra en miniaturaLa tierra en miniatura
La tierra en miniatura
 
Text
TextText
Text
 
SCHFH_DesignUpdate_1516 (1)
SCHFH_DesignUpdate_1516 (1)SCHFH_DesignUpdate_1516 (1)
SCHFH_DesignUpdate_1516 (1)
 
Ode to nature
Ode to natureOde to nature
Ode to nature
 
ft_CreativeBooklet
ft_CreativeBookletft_CreativeBooklet
ft_CreativeBooklet
 
SD pages
SD pagesSD pages
SD pages
 
Referenční a informační služby
Referenční a informační službyReferenční a informační služby
Referenční a informační služby
 

Liagkas_presentation

  • 1. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata JEWRIA AKRAIWN TIMWN EFARMOGH SE DEDOMENA BROQOPTWSHS LIAGKAS GEWRGIOS TMHMA STATISTIKHS & ANALOGISTIKWN - QRHMATOOIKONOMIKWN MAJHMATIKWN PANEPISTHMIOU AIGAIOU PTUQIAKH ERGASIA, SAMOS 2013
  • 2. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 3. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Eisvagwg† svth Jewr–a Akra–wn Tim∏n 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 4. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Eisvagwg† svth Jewr–a Akra–wn Tim∏n H Jewr–a Akra–wn Tim∏n apotele– xeqwrisvtÏ klàdo thc svtatisvtik†c Anàptuxh jewrhtik∏n kai svtatisvtik∏n montËlwn pou svqet–zontai me thn emfànisvh akra–wn parathr†svewn UpologisvmÏc thc pijanÏthtac pragmatopo–hsvhc akra–wn † svpàniwn gegonÏtwn Montelopo–hsvh mËsvw thc GenikeumËnhc katanom†c Akra–wn Tim∏n (GEV) kai thc GenikeumËnhc katanom†c Pareto (GPD)
  • 5. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc Block Maxima 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 6. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc Block Maxima 'Esvtw anexàrthtec t.m X1, X2, . . . , Xm ⇠ F (àgnwsvth) Mporo‘me na jewr†svoume Ïti oi X1, X2, . . . , Xm, m = nk qwr–zontai sve k to pl†joc uposv‘nola (block) apÏ n parathr†sveic to kajËna H mËjodoc Block Maxima qwr–zei ta dedomËna sve megàla kommàtia (blocks) kai svth svunËqeia epilËgei th mËgisvth (elàqisvth) parat†rhsvh sve kàje block Sun†jwc ta blocks kajor–zontai me bàsvh kàpoia qronik† per–odo (hmËra, m†na, Ëtoc, ktl)
  • 7. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc Block Maxima Sumbol–zoume me Y1, Y2, . . . , Yk tic mËgisvtec timËc sve kajËna apÏ autà ta k uposv‘nola, svugkekrimËna Yi = max X(i 1)n+1, X(i 1)n+2, . . . , X(i 1)n+m , i = 1, 2, . . . , k EpomËnwc ta Yi ⇠ GEV , diÏti P ⇣ Yi dn cn  z ⌘ ⇡ G (z) , efÏsvon upàrqoun oi akolouj–ec dn,cn 'Ara, h efarmog† thc mejÏdou proÙpojËtei thn l†yh twn mËgisvtwn parathr†svewn apÏ isvomegËjh uposv‘nola twn dedomËnwn kai thn prosvarmog† touc svthn GEV
  • 8. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc Block Maxima Sq†ma : DedomËna broqÏptwsvhc tou svtajmo‘ thc Nàxou me thn epilog† twn Block Maxima
  • 9. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc Block Maxima Sq†ma : Et†svia mËgisvta broqÏptwsvhc tou svtajmo‘ thc Nàxou
  • 10. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc Block Maxima Pleonekt†mata Oi jewrhtikËc upojËsveic e–nai ligÏtero kr–svimec svthn pràxh H anexarthsv–a twn meg–svtwn mpore– na epiteuqje– me thn epilog† megàlou megËjouc block Pio e‘kolo na efarmosvte– Meionekt†mata Oi abebaiÏthtec twn ektimht∏n mpore– na e–nai megàlec lÏgw tou mikro‘ megËjouc tou de–gmatoc (Mikr† apodotikÏthta)
  • 11. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc Block Maxima Pleonekt†mata Oi jewrhtikËc upojËsveic e–nai ligÏtero kr–svimec svthn pràxh H anexarthsv–a twn meg–svtwn mpore– na epiteuqje– me thn epilog† megàlou megËjouc block Pio e‘kolo na efarmosvte– Meionekt†mata Oi abebaiÏthtec twn ektimht∏n mpore– na e–nai megàlec lÏgw tou mikro‘ megËjouc tou de–gmatoc (Mikr† apodotikÏthta)
  • 12. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 13. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT 'Esvtw X1, X2, . . . , Xn ⇠ F thc opo–ac jËloume na melet†svoume thn dexià ourà H mËjodoc POT basv–zetai svtic X1, X2, . . . , Xn pou uperba–noun Ëna kat∏fli, Ësvtw u Ja prËpei na basvisvto‘me svthn katanom† thc upËrbasvhc miac t.m Xi pànw apÏ Ëna kat∏fli u, dedomËnou Ïti h Xi Ëqei uperbe– to u: Fu(y) = P (X u  y | X > u) = F(u+y) F(u) 1 F(u) , y > 0
  • 14. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT Gia thn epilog† tou bËltisvtou katwfl–ou u antimetwp–zoume ta probl†mata: Eàn to u den Ëqei epilege– arketà megàlo, tÏte upàrqei k–ndunoc h Fu na mhn prosvegg–zetai ikanopoihtikà apo thn GPD Gia mia pol‘ uyhl† tim† tou u, o arijmÏc twn tim∏n pou uperba–noun e–nai pol‘ mikrÏc kai kata svunËpeia oi ektimhtËc mac Ëqoun megàlh diak‘mansvh Gia mia tim† tou katwfl–ou, oi ektimhtËc pou prok‘ptoun parousviàzoun megàlh merolhy–a Ja prËpei wc kat∏fli na epilËxoume to mikrÏtero u ∏svte Fu ⇡ GPD
  • 15. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT Gia thn bËltisvth epilog† tou katwfl–ou upàrqoun oi teqnikËc pou basv–zontai sve katàllhla graf†mata: Mean Residual Life plot Threshold choice plot L-moment plot Dispersion index plot Hill plot 'Eqontac prosvdior–svei to kat∏fli, mporo‘me na elËgxoume th svumperiforà thc ouràc thc katanom†c mËsvw enÏc QQ-plot. Sth svugkekrimËnh melËth ja parousviàsvoume d‘o mejÏdouc epilog†c bËltisvtou u:
  • 16. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT Mean Residual Life plot Basv–zetai svto gegonÏc Ïti, an Ëna kat∏fli uo e–nai arketà megàlo ∏svte Fuo ⇡ GPD, tÏte profan∏c Fu ⇡ GPD, 8u > uo. 'Ara kai oi mËsvec timËc twn Fu kai GPD ja prËpei na e–nai –svec (mean excess function): e(u) = E (X u | X > u) = sv⇤ 1 k = sv+k(u m) 1 k , u > uo H e (u) mpore– e‘kola na ektimhje– apÏ thn empeirik† mËsvh uperbàllousva svunàrthsvh: ˆe(u) = 1 nu P i:Xi >u (Xi u) Ïpou nu e–nai to pl†joc twn Xi pou uperba–noun to u
  • 17. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT To gràfhma twn svhme–wn (u, ˆe (u)) ja prËpei na e–nai per–pou grammikÏ gia u uo Sq†ma : Mean residual life plot tou svtajmo‘ thc Nàxou
  • 18. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT Threshold choice plot Ektimo‘me tic paramËtrouc k, sv⇤ thc GPD gia diàforec timËc tou katwfl–ou u An isvq‘ei Ïti Fu ⇡ GPD ja prËpei h ekt–mhsvh tou k na mhn ephreàzetai apÏ to kat∏fli, en∏ h ekt–mhsvh tou sv⇤ = sv+k (u m) na metabàlletai grammikà wc proc to u Mporo‘me kai pàli na epilËxoume to mikrÏtero u pou ikanopoie– Ïla ta parapànw Se arketà megàlo kat∏fli u: H paràmetroc svq†matoc k kai h tropopoihmËnh paràmetroc kl–makac (sv ku) e–nai anexàrthtec tou katwfl–ou
  • 19. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT Sq†ma : Threshold choice plot tou svtajmo‘ thc Nàxou
  • 20. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT Sq†ma : Diàgramma svhme–wn tou svtajmo‘ thc Nàxou me epilegmËno to kat∏fli
  • 21. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT Pleonekt†mata Pio apotelesvmatik† an Ëna ‘mikrÏ’ an∏tato Ïrio dikaiologe–tai (PerisvsvÏterec anexàrthtec uperbàsveic apÏ ta block maxima) Meionekt†mata H paradoq† thc anexarthsv–ac e–nai kr–svimh svthn pràxh. Qreiàzetai teqnikËc apÏ-omadopo–hsvhc (declustering) Qreiàzontai ep–svhc diagnwsvtikà gia thn epilog† tou katwfl–ou. H epilog† tou e–nai kàpwc asvaf†c svthn pràxh LigÏtero e‘kolo na efarmosvte–
  • 22. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc POT Pleonekt†mata Pio apotelesvmatik† an Ëna ‘mikrÏ’ an∏tato Ïrio dikaiologe–tai (PerisvsvÏterec anexàrthtec uperbàsveic apÏ ta block maxima) Meionekt†mata H paradoq† thc anexarthsv–ac e–nai kr–svimh svthn pràxh. Qreiàzetai teqnikËc apÏ-omadopo–hsvhc (declustering) Qreiàzontai ep–svhc diagnwsvtikà gia thn epilog† tou katwfl–ou. H epilog† tou e–nai kàpwc asvaf†c svthn pràxh LigÏtero e‘kolo na efarmosvte–
  • 23. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 24. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) UpÏ orisvmËnec svunj†kec kanonikÏthtac, h sveirà twn mËgisvtwn tim∏n (Block Maxima) akoloujo‘n asvumptwtikà thn GenikeumËnh katanom† Akra–wn Tim∏n (GEV), me sv.p.p: G(z : m, sv, k) = 8 < : exp  1 + k z m sv 1 k , exp ⇥ exp z m sv ⇤ k 6= 0 k = 0 Ïpou 1 + k z m sv > 0, m✏R e–nai h paràmetroc jËsvhc, sv > 0 h paràmetroc kl–makac kai k h paràmetroc svq†matoc.
  • 25. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GEV qwr–zetai sve tre–c epimËrouc oikogËneiec katanom∏n : an k > 0 h GEV pa–rnei th morf† thc Frechet me barià ourà an k < 0 th morf† thc Weibull , fragmËnh svto m k/sv an k = 0 th morf† thc Gumbel katanom†c me lept† ourà Sq†ma : GEV oikogËneiec katanom∏n
  • 26. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) Eàn X1, X2, . . . , XT e–nai t.m me koin† svunàrthsvh katanom†c F, to u (T) = F 1 (1 1/T) , dhlad† prÏkeitai gia to (1 1/T) posvosvtia–o svhme–o thc F katanom†c. Isvq‘ei h svqËsvh P [X1 > u (T)] = 1 F (u (T)) = 1/T, to opo–o onomàzetai ep–pedo epanaforàc T-qrÏnwn. Gia thn katanom† GEV oi ektim†sveic twn akra–wn p-posvosvtia–wn svhme–wn (Coles, 2001) upolog–zontai: zp = ( m sv k ⇣ 1 [ log (1 p)] k ⌘ , m svlog [ log (1 p)] , k 6= 0 k = 0 Ïpou zp = F 1 (1 p) , 0 < p < 1. H metablht† zp onomàzetai ep–pedo epanaforàc pou svqet–zetai me thn per–odo epanaforàc 1/p.
  • 27. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H GenikeumËnh Katanom† Pareto (GPD) 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 28. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H GenikeumËnh Katanom† Pareto (GPD) H GenikeumËnh Katanom† Pareto (GPD) gia Ëna arketà uyhlÏ kat∏fli u (POT), me svunàrthsvh katanom†c uperbàsvewn (X u) dedomËnou Ïti X > u, prosvegg–zetai apÏ th svqËsvh: H(y) = P (X u | X > u) = ( 1 1 + k y sv⇤ 1 k + , 1 exp y sv⇤ , k 6= 0 k = 0 pou or–zetai svto sv‘nolo y : y > 0, 1 + y y sv⇤ > 0 me sv⇤ = sv + k (u m).
  • 29. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H GenikeumËnh Katanom† Pareto (GPD) H GPD anàloga me thn tim† pou pa–rnei h paràmetroc k: an k > 0 tÏte ekte–netai dexià wc to àpeiro an k < 0 Ëqei ànw Ïrio svthr–gmatoc to u sv⇤ /k an k = 0 ekful–zetai svthn Ekjetik† katanom† me paràmetro 1/sv⇤ Sq†ma : GPD oikogËneiec katanom∏n
  • 30. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H GenikeumËnh Katanom† Pareto (GPD) Gia thn katanom† GPD, oi ektim†sveic twn pijanot†twn na svumbo‘n gegonÏta pËra apÏ to e‘roc twn parathro‘menwn dedomËnwn, dhlad† twn p-posvosvtia–wn svhme–wn (Coles, 2001) upolog–zontai me qr†svh twn exisv∏svewn: zp = ( sv⇤ k p k 1 sv⇤log ⇣ 1 p ⌘ k 6= 0 k = 0 Ïpou zp = F 1 (1 p) , 0 < p < 1.
  • 31. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc MËgisvthc Pijanofàneiac (MLE) 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 32. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc MËgisvthc Pijanofàneiac (MLE) 'Esvtw ta block maxima Y1, Y2 . . . , Yn ⇠ GEV . H svunàrthsvh logarijmik†c pijanofàneiac twn Yi , ja e–nai: an k 6= 0 tÏte lGEV (m,sv,k) = n log (sv) 1 + 1 k Pn i=1 log ⇥ 1 + k yi m sv ⇤ Pn i=1  1 + k yi m sv 1 k me 1 + k yi m sv > 0 , 8i = 1, 2, . . . , n
  • 33. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc MËgisvthc Pijanofàneiac (MLE) an k = 0 tÏte lGumbel (m,sv) = n log (sv) Pn i=1 yi m sv Pn i=1 exp yi m sv Mia dusvkol–a gia thn ekt–mhsvh twn paramËtrwn tou montËlou GEV me th mËjodo thc mËgisvthc pijanofàneiac, ofe–letai svto Ïti den plhro‘ntai oi proupojËsveic gia thn efarmog† thc kanonikÏthtac. AutÏ svhma–nei Ïti ta gnwsvtà asvumptwtikà apotelËsvmata thc pijanofàneiac den efarmÏzontai autÏmata.
  • 34. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc MËgisvthc Pijanofàneiac (MLE) To prÏblhma autÏ Ëqei melethje– leptomer∏c (Smith, 1985) me ta akÏlouja apotelËsvmata: an k > 0.5 oi ektim†sveic thc mËgisvthc pijanofàneiac Ëqoun tic svun†jeic asvumptwtikËc idiÏthtec an 1 < k < 0.5 oi ektim†sveic sve genikËc grammËc mporo‘n na epiteuqjo‘n, allà den Ëqoun tic asvumptwtikËc idiÏthtec an k < 1 oi ektim†sveic den mporo‘n na upologisvto‘n
  • 35. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc MËgisvthc Pijanofàneiac (MLE) Me th megisvtopo–hsvh thc svunart†svhc logarijmik†c pijanofàneiac, pa–rnoume tic mËgisvtec ektim†sveic pijanofàneiac ˆj0 = ⇣ ˆm, ˆsv, ˆk ⌘ . H beltisvtopo–hsvh aut∏n g–netai me arijmhtik† beltisvtopo–hsvh twn algor–jmwn. Dhlad† gia n ! 1, h katanom† twn ektimht∏n mËgisvthc pijanofàneiac ˆj0 (d-diasvtàsvewn) svugkl–nei svth kanonik† katanom†: ˆj0 ⇠ Nd ⇣ j0, IE (j0) 1 ⌘ me IE (j) na isvo‘tai me to ant–svtrofo tou parathro‘menou p–naka plhrofor–ac pou upolog–svthke apÏ thn logarijmik† pijanofàneia ei,j (j) = E n @2 @ji@jx ` (j) o :
  • 36. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc MËgisvthc Pijanofàneiac (MLE) IE (j) = 0 B B B B @ e1,1 (j) · · · e1,d (j) ... ... ei,j (j) ... ej,i (j) ... ed,1 (j) · · · ed,d (j) 1 C C C C A kai svun†jwc o parapànw p–nakac upolog–zetai katà thn diàrkeia thc diadikasv–ac beltisvtopo–hsvhc. Ta d.e upolog–zontai apÏ thn ekt–mhsvh ˆwi,j tou parathro‘menou p–naka plhrofor–ac, sve (1-a) diàsvthma empisvtosv‘nhc kai gia ˆj mpore– na upologisvte– wc: ˆji ± z↵ 2 p ˆwi,i = ˆji ± z↵ 2 r Var ⇣ ˆji ⌘ Ïpou to z↵ 2 e–nai to 1 ↵ 2 posvosvthmÏrio thc tupopoihmËnhc kanonik†c katanom†c kai to SEi = r Var ⇣ ˆji ⌘ e–nai to tupikÏ svfàlma gia thn i-osvt† paràmetro.
  • 37. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc MËgisvthc Pijanofàneiac (MLE) Gia to montËlo thc GenikeumËnhc katanom†c Pareto (GPD) lambànontac upÏyhn Ïti to de–gma mac (Y1, Y2 . . . , Yn) proËrqetai apÏ to montËlo twn uperbàsvewn pànw apÏ Ëna uyhlÏ kat∏fli (POT), h svunàrthsvh logarijmik†c pijanofàneiac d–netai apÏ tic parakàtw svqËsveic: an k 6= 0 tÏte lGPD (sv⇤, k) = nu log (sv⇤) 1 + 1 k Pnu i=1 yi u sv⇤ an k = 0 tÏte lGPD (sv⇤) = nu log (sv⇤) Pnu i=1 yi u sv⇤ Ïpou to u e–nai to kat∏fli, to nu o arijmÏc twn parathr†svewn pou uperba–noun to Ïrio u kai to sv⇤ = sv + k (u m).
  • 38. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc MËgisvthc Pijanofàneiac (MLE) Ep–svhc, oi ektim†sveic thc mËgisvthc pijanofàneiac gia to montËlo (GPD) Ëqei melethje– leptomer∏c (Smith, 1984): an k < 0.5 oi ektim†sveic e–nai asvumptwtikà kanonikà katanemhmËnec, me tic asvumptwtikËc diakumànsveic na ftànoun to kàtw fràgma Cramer-Rao kàtw apÏ orisvmËnec katàllhlec svunj†kec kanonikÏthtac, Ëqoume  ˆsvMLE ˆkMLE s N ✓ sv k , n 1  2sv2 (1 k) sv (1 k) sv (1 k) (1 k)2 ◆ an k 0.5 oi ektim†sveic qarakthr–zontai wc mh kanonikopoihmËnec, dedomËnou Ïti oi svunj†kec kanonikÏthtac den ikanopoio‘ntai kai svth svugkekrimËnh per–ptwsvh upàrqoun probl†mata svthn sv‘gklisvh an k > 1 oi ektim†sveic den upàrqoun, epeid† h svunàrthsvh pijanofàneiac kontà svto akra–o svhme–o te–nei svto àpeiro wc x prosveggisvtikà svto sv k
  • 39. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc twn L-rop∏n (L-moments) 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 40. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc twn L-rop∏n (L-moments) Oi L-ropËc upolog–zontai apÏ grammiko‘c svunduasvmo‘c twn taxinomhmËnwn tim∏n twn dedomËnwn Parousviàzoun mikrÏterh deigmatik† metablhtÏthta apÏ tic ektim†sveic twn kanonik∏n rop∏n Oi L-ropËc Ëqoun orisvte– gia m–a katanom† pijanot†twn, allà svth pràxh prËpei na ektimhjo‘n me bàsvh Ëna peperasvmËno de–gma Se Ëna diatetagmËno de–gma X1:n  X2:n  . . .  Xn:n , me n to mËgejoc tou de–gmatoc, h ektim†tria thc pijanÏthtac twn svtajmisvmËnwn rop∏n br e–nai amerÏlhpth ektim†tria twn br , me: lr+1 = Pr k=0 P⇤ r,kbk Ïpou to r = 0, 1, 2, . . . , n 1
  • 41. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc twn L-rop∏n (L-moments) EidikÏtera, h l1 metrà thn jËsvh tou mËsvou tic svugkekrimËnhc katanom†c pou meletàme (L-jËsvhc), h l2 metrà thn kl–maka (L-kl–makac), h l3 metrà thn asvummetr–a (L-asvummetr–ac) kai h l4 metrà thn k‘rtwsvh (L-k‘rtwsvhc). Genikà br = n 1 Pn j=r+1 (j 1)(j 2)...(j r) (n 1)(n 2)...(n r) xj:n Oi deigmatikËc L-ropËc, lr e–nai amerÏlhptoi ektimhtËc twn lr kai ep–svhc oi L-ropËc twn analogi∏n d–nontai apÏ: tr = lr l2 me r = 3, 4, 5, . . . kai ep–svhc t = l1 l2 e–nai h L-svuntelesvt†c diak‘mansvhc (L-Cv), t3 = l3 l2 h L-asvummetr–ac (L-Cs) kai t4 = l4 l2 h L-k‘rtwsvhc (L-Ck).
  • 42. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc twn L-rop∏n (L-moments) Oi Hosking kai Wallis (1993, 1997) parËqoun odhg–ec gia thn ektËlesvh thc qwrik†c anàlusvhc svuqnÏthtac qrhsvimopoi∏ntac tic L-ropËc kai perigràfontai sve tËsvsvera b†mata: 1 exËtasvh twn dedomËnwn (tesvt asvumbatÏthtac, Di ), (Discordancy test) 2 prosvdiorisvmÏ twn omoiogen∏n perioq∏n (testing of regional homogeneity) 3 epilog† thc qwrik†c katanom†c 4 ekt–mhsvh thc qwrik†c katanom†c svuqnot†twn
  • 43. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc twn L-rop∏n (L-moments) Oi ektim†sveic twn paramËtrwn thc GEV me th mËjodo twn L-rop∏n d–nontai wc: ˆm = l1 + ˆsv h G ⇣ 1 + ˆk ⌘ -1 i ˆk ˆsv = l2 ˆk (1 2 ˆk )G(1+ˆk) ˆk = 7.8590c + 2.9554c2 Ep–svhc, oi ektim†sveic twn paramËtrwn thc GPD e–nai: ˆm = l1 ⇣ 2 + ˆk ⌘ l2 ˆsv = ⇣ 1 + ˆk ⌘ ⇣ 2 + ˆk ⌘ l2 ˆk = 1 3t3 t3+1
  • 44. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc twn TL-rop∏n (TL-moments) 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 45. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc twn TL-rop∏n (TL-moments) Oi TL-ropËc upolog–zontai apÏ grammiko‘c svunduasvmo‘c twn taxinomhmËnwn tim∏n twn dedomËnwn H mËjodoc twn TL-rop∏n e–nai ousviasvtikà h mËjodoc twn L-rop∏n svthn opo–a h E (Xr k:r ) antikajisvtàtai apÏ thn E (Xr+t k:r+2t), 8r 1 , Ïpou t = 1, 2, 3, . . . na e–nai h perikommËnh (trimmed) rop† pou proËrqetai apÏ Ëna de–gma. Oi TL-ropËc e–nai mia epËktasvh twn L-rop∏n, afo‘ gia t = 0 mac d–nei tic klasvikËc L-ropËc
  • 46. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc twn TL-rop∏n (TL-moments) 'Eqei apodeiqje– (Elamir & Seheult, 2003) Ïti oi TL-ropËc ⇣ l (t) r ⌘ pou proËrqontai apÏ Ëna t.d X1, X2, . . . , Xn megËjouc n, me ajroisvtik† svunàrthsvh Qx (u) = F 1 x (u) kai dedomËnou Ïti X1:n  X2:n  . . .  Xn:n or–zontai wc ex†c: l (t) r = 1 r Pr 1 k=0 ( 1)k ✓ r 1 k ◆ E (Xr+t k:r+2t) Ïpou, E (Xi:r ) = r! (i 1)!(r 1)! R 1 0 x (F) Fi 1 (1 F)r i dF r = 1, 2, . . . , n 2t. AutÏ de–qnei Ïti oi l (t) r ropËc e–nai Ënac amerÏlhptoc ektimht†c twn l (t) r rop∏n.
  • 47. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata H mËjodoc twn TL-rop∏n (TL-moments) Oi deigmatikËc TL-ropËc gia t = 1, 2, 3, . . . d–nontai anologikà: l (t) r = 1 r Pn t i=t+1 2 6 6 6 4 Pr 1 k=0( 1)k 0 @ r 1 k 1 A 0 @ i 1 r + t 1 k 1 A 0 @ n i t + k 1 A 0 @ n r + 2t 1 A 3 7 7 7 5 xi:n Oi TL-ropËc twn analogi∏n (t = 1, 2, 3, . . .) ekfràzoun akrib∏c ta –dia me aut† twn analogi∏n twn L-rop∏n, t (t) 2 = l (t) 2 l (t) 1 e–nai h TL-svuntelesvt†c kl–makac (TL-Cv) t (t) 3 = l (t) 3 l (t) 2 h TL-svuntelesvt†c asvummetr–ac (TL-Cs) t (t) 4 = l (t) 4 l (t) 2 e–nai h TL-k‘rtwsvhc (TL-Ck).
  • 48. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Perioq† melËthc kai dedomËnwn 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 49. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Perioq† melËthc kai dedomËnwn Hmer†svia dedomËna broqÏptwsvhc (mm) pËnte Ellhnik∏n pÏlewn gia qronik† per–odo apÏ to 1955 e∏c 2010 (20.451 timËc) Perilambànontai h pÏlh twn Kuj†rwn, Làrisvac, M†lou, Mutil†nhc kai Nàxou Sq†ma : Grafik† apeikÏnisvh twn jËsvewn gia touc pËnte Ellhniko‘c svtajmo‘c
  • 50. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Prosvarmog† twn dedomËnwn svthn GEV 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 51. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Prosvarmog† twn dedomËnwn svthn GEV 56 Block 1955-2010 ˆm ˆsv ˆk K‘jhra MLE 43.8 16.6 0.24 mm L-moms 44.6 18.5 -0.12 TL-moms 43.4 /43.0 19.0 /19.1 -0.21 /-0.27 Làrisva MLE 33.4 13.5 0.31 mm L-moms 33.5 14.0 -0.26 TL-moms 32.7 /32.6 12.6 /11.9 -0.45 /-0.55 M†loc MLE 39.4 12.8 0.16 mm L-moms 39.2 12.8 -0.17 TL-moms 39.7 /40.1 12.7 /12.5 -0.11 /-0.03 Mutil†nh MLE 56.7 18.5 0.02 mm L-moms 56.0 17.0 -0.11 TL-moms 56.7 /57.2 14.6 /14.0 -0.11 /-0.12 Nàxoc MLE 34.5 11.8 0.22 mm L-moms 34.8 12.8 -0.13 TL-moms 34.5 /34.5 13.3 /13.9 -0.14/-0.07
  • 52. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Prosvarmog† twn dedomËnwn svthn GEV Sq†ma : Diagnwsvtikà diagràmmata gia Ëlegqo kal†c prosvarmog†c me MLE
  • 53. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Prosvarmog† twn dedomËnwn svthn GEV AsvumbatÏthta Di D (1) i /D (2) i L-moms TL-moms K‘jhra 1.07 0.82/0.53 Làrisva 1.27 1.31/1.18 M†loc 0.64 1.20/1.33 Mutil†nh 1.18 1.33/1.25 Nàxoc 0.83 0.34/0.70 Z-tesvt ZGEV L-moms 0.12 TL-moms 1.69 / 3.48 OmoiogËneia L-moms TL-moms H1 0.94 3.63 /5.88 H2 -0.90 0.15 /0.79 H3 -0.37 0.36 /0.42 P–nakac : Tesvt asvumbatÏthtac (an Di > 1.33 asvumbatà), tesvt omoiogËneiac (an Hj < 1 gia j = 1, 2, 3, omoiogen†c) kai Z-tesvt (an ZGEV < 1.64 tÏte prosvarmÏzetai svthn katanom†)
  • 54. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Prosvarmog† twn dedomËnwn svthn GEV Sq†ma : Diàgramma analogi∏n twn L-rop∏n
  • 55. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Prosvarmog† twn dedomËnwn svthn GPD 1 JEWRIA AKRAIWN TIMWN Eisvagwg† svth Jewr–a Akra–wn Tim∏n H mËjodoc Block Maxima H mËjodoc POT H GenikeumËnh katanom† Akra–wn Tim∏n (GEV) H GenikeumËnh Katanom† Pareto (GPD) H mËjodoc MËgisvthc Pijanofàneiac (MLE) H mËjodoc twn L-rop∏n (L-moments) H mËjodoc twn TL-rop∏n (TL-moments) 2 EFARMOGH SE BROQOPTWSH Perioq† melËthc kai dedomËnwn Prosvarmog† twn dedomËnwn svthn GEV Prosvarmog† twn dedomËnwn svthn GPD
  • 56. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Prosvarmog† twn dedomËnwn svthn GPD POT 1955-2010 Uperbàsveic ˆsv ˆk K‘jhra MLE 17.4 0.11 32 mm L-moms 117 17.3 -0.13 TL-moms 15.2 /14.5 -0.26 /-0.31 Làrisva MLE 12.1 0.26 31 mm L-moms 83 11.6 -0.27 TL-moms 10.4 /11.0 -0.37 /-0.29 M†loc MLE 14.0 0.08 36 mm L-moms 74 11.6 -0.17 TL-moms 12.4 /14.3 -0.06 /0.13 Mutil†nh MLE 16.9 0.10 49 mm L-moms 80 14.9 -0.17 TL-moms 14.6 /16.3 -0.18 /-0.04 Nàxoc MLE 12.3 0.10 26 mm L-moms 117 12.4 -0.10 TL-moms 12.5 /13.0 -0.09/-0.04
  • 57. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Prosvarmog† twn dedomËnwn svthn GPD Sq†ma : Diagnwsvtikà diagràmmata gia Ëlegqo kal†c prosvarmog†c me MLE
  • 58. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Prosvarmog† twn dedomËnwn svthn GPD Sq†ma : Diàgramma analogi∏n twn L-rop∏n
  • 59. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Sumperàsvmata - Katanom∏n H ekt–mhsvh thc paramËtrou k e–nai jetik† me th mËjodo MLE arnhtik† me th mËjodo L-rop∏n, TL-rop∏n Gia th jetik† tim† h GEV pa–rnei th morf† thc Frechet katanom†c h GPD ekte–netai dexià wc to àpeiro Gia th arnhtik† tim† h GEV pa–rnei th morf† thc Weibull katanom†c h GPD Ëqei ànw Ïrio svthr–gmatoc to u sv⇤ /k
  • 60. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Sumperàsvmata - Qwrik†c Anàlusvhc H qwrik† anàlusvh svuqnot†twn twn mejodologi∏n L-rop∏n kai TL-rop∏n mac Ëdeixe Ïti oi pËnte svtajmo– e–nai svtatisvtikà apodekto– wc omoiogenËc (tesvt asvumbatÏthtac kai eterogËneiac) me to Z-tesvt oi L-ropËc paràgoun kal‘tera apotelËsvmata gia th montelopo–hsvh et†sviwn broqopt∏svewn svth GEV (oi TL-ropËc Ïqi kal† prosvarmog†) gia timËc pànw apÏ Ëna kat∏fli oi L-ropËc kai oi TL-ropËc prosvarmÏzontai kal‘tera svth GPD
  • 61. JEWRIA AKRAIWN TIMWN EFARMOGH SE BROQOPTWSH Sumperàsvmata Sumperàsvmata - EpipËdou epanaforàc Nàxoc (GEV) 5et∏n 10et∏n 20et∏n 50et∏n 100et∏n MLE 55.6 69.1 84.4 108.4 129.9 L-moms 55.6 68.7 81.9 101.0 116.9 TL-moms (t=1) 56.9 70.0 83.9 104.2 121.2 TL-moms (t=2) 56.7 68.8 81.0 97.7 111.0 Nàxoc (GPD) 5et∏n 10et∏n 20et∏n 50et∏n 100et∏n MLE 58.8 70.1 82.3 99.8 114.2 L-moms 47.3 57.9 69.3 85.8 99.4 TL-moms (t=1) 47.3 57.8 69.0 85.1 98.2 TL-moms (t=2) 47.1 56.9 67.0 80.8 91.6 P–nakac : Ep–pedo epanaforàc (mm) tou svtajmo‘ thc Nàxou
  • 62. Bibliograf–a Coles, S.G. (2001). An introduction to statistical modelling of extreme values. Springer series in Statistics, Springer, Berlin. Elamir, E.A.H. and Seheult, A.H. (2003). Trimmed L-moments. Computational Statistics & Data Analysis, 43, 299-314. Hosking, J.R.M. (1990). L-moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B, 52, 105-124. Hosking, J.R.M. and Wallis, J.R. (1993). Some statistics useful in regional frequency analysis. Water Resources Research, 29, 271-281.
  • 63. Bibliograf–a Hosking, J.R.M. and Wallis, J.R. (1997). Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge, U.K. Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications. Imperial College Press, London. Reiss, R. and Thomas, M. (2001;2007). Statistical Analysis of Extreme Values, with Application to Insurance, Finance, Hydrology and Other Fields. 2nd edition; 3nd edition, Birkhuser Verlag. Shabri, A.B., Daud, Z.M. and Ariff, N.M. (2011). Regional analysis of annual maximum rainfall using TL-moments method. Theor Appl Climatol, 104, 561-570.