SlideShare ist ein Scribd-Unternehmen logo
1 von 66
Downloaden Sie, um offline zu lesen
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
“Structural robustness: definitions, examples and
consequence based assessment of structures”
Konstantinos Gkoumas, Ph.D., P.E.
Corso di Dottorato: introduzione all'ottimizzazione
strutturale
Prof.-Ing. Franco Bontempi
Dipartimento di Ingegneria Strutturale e Geotecnica
Dottorato di Ricerca in Ingegneria delle Strutture
Rome, June 21 2014
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Index
Ottimizzazione Strutturale
franco.bontempi@uniroma1.it
Ottimizzazione Strutturale
franco.bontempi@uniroma1.it
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Personal
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Ronan Point Tower Block– May 16, 1968
Description:
- apartments building;
- built between 1966 and 1968;
- 64 m tall with 22 story;
- walls, floors, and staircases was precast
concrete;
- each floor was supported directly by the walls
in the lower stories, (bearing walls system).
The event:
- May 16, 1968 a gas explosion blew out an
outer panel of the 18th floor,
- the loss of the bearing wall causes the
progressive collapse of the upper floors,
- the impact of the upper floors’ debris caused
the progressive collapse of the lower floors.
Cause Damage Pr. Collapse
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Description:
- apartments building;
- precast concrete wall and floor components
was the structural bearing system;
- ductile detailing and effective ties between
the precast components.
Cause Damage Pr. Collapse
The event:
- June 25, 1996 9 tons of
TNTeq detonated in
front of the building;
- the exterior wall was
entirely destroyed;
- collapse did not
progress beyond areas
of first damage.
Khobar Towers Bombing – June 25, 1996
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Description:
- office facility for the Deutsche Bank in
Manhattan;
- constructed in the early ‘70s in steel-framed
structure moment connected, 130 m tall, 40
story and 2 subterranean levels;
The event:
- On September 11, 2011, the WTC towers
debris impact on a building’s façade,
- heavy damage between the 9th and the 23rd
floor, the column was lost from the 9th and
the 18th floor;
- the framing system was able to support
and redistribute the loads.
Deutsche Bank Building – September 11, 2001
Cause Damage Pr. Collapse
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Probability of progressive collapse from an abnormal event
P(F) = P(D|H) P(F|DH)P(H) x x
damage is caused in
the structure
damage spreads in
the structure
occurrence of
critical event
occurrence of broad
or global collapse
STRUCTURAL INTEGRITY (ISO/FDS 2394)
COLLAPSE RESISTANCE (Starossek&Wolff 2005)
Faber (2006)
STRUCTURALNON STRUCTURAL
MEASURES
HAZARD
References: Ellingwood, B.R. and Dusenberry, D.O. (2005), “Building design for abnormal loads and progressive
collapse”, Comput-Aided Civ. Inf., 20(3), 194-205.
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Reference: Bontempi, F. (2005) Frameworks for structural analysis, In: Innovation in Civil and Structural
Engineering Topping, BHV ed., pp. 1-24
HPLC
High Probability –
Low Consequences
LPHC
Low Probability –
High Consequences
Complexity
Non linear issues and
interaction mechanisms
Designapproach:
StochasticDeterministic
QUALITATIVE RISK
ANALYSIS
PROBABILISTIC
RISK ANALYSIS
PRAGMATIC
ANALYSIS OF
RISK SCENARIOS
Secondary
design
Primary
design
Low Probability – High Consequences Events
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
References: Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.).
London: Penguin. p. 400. ISBN 1-84614045-5.
A Black Swan is an event with the following three attributes.
1. First, it is an outlier, as it lies outside the realm of regular expectations,
because nothing in the past can convincingly point to its possibility.
Rarity -The event is a surprise (to the observer).
2. Second, it carries an extreme 'impact'.
Extreme “impact” - the event has a major effect.
3. Third, in spite of its outlier status, human nature makes us concoct
explanations for its occurrence after the fact, making it explainable and
predictable.
Retrospective (though not prospective) predictability - After the first
recorded instance of the event, it is rationalized by hindsight, as if it could
have been expected; that is, the relevant data were available but
unaccounted for in risk mitigation programs. The same is true for the
personal perception by individuals.
Black Swans
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
QUALITY
DAMAGE or ERROR
REQUIRED PERFORMANCE
NOMINAL
PERFORMANCE
NOMINAL SITUATION
Structural Robustness
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
• Capacity of a construction to exhibit regular
decrease of its structural quality as a consequence
of negative causes.
• It implies:
a) some smoothness of the decrease of
structural performance due to negative
events (intensive feature);
b) some limited spatial spread of the
rupture (extensive feature).
Structural Robustness
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Qualitative definitions of structural robustness
[EN 1991-1-7: 2006 ]: ability of a structure to withstand actions due
to fires, explosions, impacts or consequences
of human errors, without suffering damages
disproportionate to the triggering causes
[SEI 2007,
Beton Kalender 2008]: insensitivity of the structure to local failure
structure B
d
P
s
STRUCTURE B:
P
s
ROBUSTNESS CURVES
P (performance)
structure A
STRUCTURE A
damaged
integer
DP
damaged
more performant, less resistant
integer
(damage level)
DPDP
more performant, less robust less performant, more robust
Structural Robustness
A B
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
CommonULS&SLS
VerificationFormat
Structural Robustness
Assessment
1st level:
Material Point
2nd level:
Element
Section
3rd level:
Structural
Element
4th level:
Structural
System
Structural robustness in design
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
STRUCTURAL DESIGN
PRIMARY SECONDARY TERTIARY
LOADS
DEAD X
LIVE X
SNOW X
EARTHQUAKE X
FIRE X X
EXPLOSIONS X X
“BLACK SWAN” X
Member-based
structural design
Consequence-based
structural design
Black Swan event:
- unpredictable,
- large impact on community,
- easy to predict after its occurrence.
References:
Nafday, AM. (2011) Consequence-based structural
design approach for black swan events. Structural
Safety, 33(1): 108-114.
Structural robustness in design
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Uncertainty in the likelihood that
the harmful consequences of a
particular event will be realized
Uncertainty in the consequences
related to the specific event
Primary
design
Secondary
design
Tertiary
design
Structural robustness in design
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
STRUCTURE
& LOADS
Collapse
Mechanism
NO SWAY
“IMPLOSION”
OF THE
STRUCTURE
“EXPLOSION”
OF THE
STRUCTURE
is a process in which
objects are destroyed by
collapsing on themselves
is a process
NOT CONFINED
SWAY
Bad VS Good collapse
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Initial load-bearing element failure that
triggers the rigid fall of a part of the
structure onto another and leads to a
sequential impacts on the rest of the
structure, that collapses on itself.
Characteristic feature is the force
redistribution into alternative paths,
impulsive loading due to sudden element
failure and force concentration in elements
to fail next.
Zipper Domino
Section Instability Mixed
Pancake
Initial cross-section cut and stress
concentration that cause the rupture of
further cross-sectional parts (fast fracture)
and failure progression throughout the
entire section.
Initial element rigid overturning and
falling over another element, that, by
means of transformation of potential into
kinetic energy, trigger the overturning of
the following element.
The destabilization of some load-carrying
elements in compression due to an initial
failure of stabilizing elements can trigger a
failure progression throughout the
structure.
Some collapses are less amenable to
generalization because the relative
importance of the contributing basic
categories of collapse can vary and
combine in progression of failures.
- DOMINO + PANCAKE
(e.g. A.P.Murrah Building, Building
during Izmit Earquake)
- ZIPPER + INSTABILITY
(e.g. cable-stayed bridges)
Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse
susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica)
Collapse types
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Initial load-bearing element failure that
triggers the rigid fall of a part of the
structure onto another and leads to a
sequential impacts on the rest of the
structure, that collapses on itself.
Characteristic feature is the force
redistribution into alternative paths,
impulsive loading due to sudden element
failure and force concentration in elements
to fail next.
Zipper Domino
Section Instability Mixed
Pancake
Initial cross-section cut and stress
concentration that cause the rupture of
further cross-sectional parts (fast fracture)
and failure progression throughout the
entire section.
Initial element rigid overturning and
falling over another element, that, by
means of transformation of potential into
kinetic energy, trigger the overturning of
the following element.
The destabilization of some load-carrying
elements in compression due to an initial
failure of stabilizing elements can trigger a
failure progression throughout the
structure.
Some collapses are less amenable to
generalization because the relative
importance of the contributing basic
categories of collapse can vary and
combine in progression of failures.
- DOMINO + PANCAKE
(e.g. A.P.Murrah Building, Building
during Izmit Earquake)
- ZIPPER + INSTABILITY
(e.g. cable-stayed bridges)
Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse
susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica)
Collapse types
Islamabad Earthquake 2005
Münsterland, 2005
Viaduct after earthquake
Izmit Earthquake
1999
Tanker S.S. Schenectady, 1941
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
The Boeing B-17 Flying Fortress collided with another aircraft during World War II and, although
sustaining large amount of structural damage, landed safely, due to the high redundancy of the
fuselage connections.
Design Strategy #1: Continuity (robust behavior-redundancy)
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
On July 1945 a B-25 bomber crashed into the Empire State Building, The impact of the plane
created a 5.5x6 m hole in the side of the tower. This crash caused extensive damage to the
masonry exterior and the interior steel structure of the building.
The 278 m building was rocked by the impact but resist the impact in consequence of the
intrinsic redundancy of its framed system.
Plane crash on the Empire
State Building, 1945
Design Strategy #1: Continuity (robust behavior-redundancy)
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Design Strategy #2: Segmentation (Compartmentalization)
A service-induced damage led to explosive decompression and loss of large portion of fuselage
skin when small fatigue crack suddenly linked together. The subsequent fracture was eventually
arrested by fuselage frame structure and the craft landed safely.
Aloha Boeing 737, April 1988
(compartmentalization by strengthening)
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Design Strategy #2: Segmentation (Compartmentalization)
The partial collapse, started in the roof and due design and execution errors, stoped at the two joints
which separated the collapsing section from the adjacent structures.
A higher continuity could have unlikely sustained the forces during collapse, since the construction
deficiencies affected also adjacent sections.
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
References:
(EN 1991-1-7 2006): "Eurocode 1 – Actions on structures, Part 1-7: General actions – accidental actions." Comité
European de Normalization (CEN).
(Bontempi F, Giuliani L, Gkoumas K, 2007): "Handling the exceptions: robustness assessment of a complex structural
system.“, Invited Lecture, Structural Engineering, Mechanics and Computation (SEMC) 3, 1747-1752.
(Starossek U, 2009): “Progressive collapse of structures.” London: Thomas Telford Publishing, 2009.
Definitions:
1- "The ability of a structure to withstand events like fire, explosions,
impact or the consequences of human error without being damaged to an
extent disproportionate to the original cause." (EN 1991-1-7 2006)
2- "The robustness of a structure, intended as its ability not to suffer
disproportionate damages as a result of limited initial failure, is an
intrinsic requirement, inherent to the structural system organization."
(Bontempi F, Giuliani L, Gkoumas K, 2007)
3- “Robustness is defined as insensitivity to local failure." (Starossek U,
2009)
Structural Robustness
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
References:
(ASCE 7-05 2005): "Minimum design loads for buildings and other structures." American Society of Civil Engineers
(ASCE).
(GSA 2003): "Progressive collapse analysis and design guidelines for new federal office buildings and major
modernization projects." General Services Administration (GSA).
(UFC 4-010-01 2003): "DoD minimum antiterrorism standards for buildings." Department of Defense (DoD).
Progressive Collapse
Definitions:
1-"Progressive collapse is defined as the spread of an initial local failure
from element to element resulting, eventually, in the collapse of an entire
structure or a disproportionate large part of it." (ASCE 7-05 2005)
2- "A progressive collapse is a situation where local failure of a primary
structural component leads to the collapse of adjoining members which, in
turn, leads to additional collapse. Hence, the total collapse is
disproportionate to the original cause." (GSA 2003)
3-"Progressive collapse: a chain reaction failure of building members to an
extent disproportionate to the original localized damage." (UFC 4-010-01
2003)
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
References:
Arup (2011), Review of international research on structural robustness and disproportionate collapse, London,
Department for Communities and Local Government.
Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr.
Fac., 24(6), 519-528.
Observations:
− A progressive collapse is one which develops in a progressive manner akin to the collapse
of a row of dominos.
− A disproportionate collapse is one which is judged (by some measure defined by the
observer) to be disproportionate to the initial cause. This is merely a judgement made on
observations of the consequences of the damage which results from the initiating events.
− A collapse may be progressive in nature but not necessarily disproportionate in its extents,
for example if arrested after it progresses through a number of structural bays. Vice versa, a
collapse may be disproportionate but not necessarily progressive if, for example, the
collapse is limited in its extents to a single structural bay but the structural bays are large.
− The terms of disproportionate collapse and progressive collapse are often used
interchangeably because disproportionate collapse often occurs in a progressive manner
and progressive collapse can be disproportionate.
Progressive Collapse VS Disproportionate Collapse
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Robustness and collapse resistance in a dependability framework
Sgambi, L., Gkoumas, K. and Bontempi, F. (2012), “Genetic
algorithms for the dependability assurance in the design of a long-
span suspension bridge”, Comput-Aided Civ. Inf., 27(9), 655-675.
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
The currently available design strategies and methods to
prevent disproportionate collapse are as follows:
− Prevent local failure of key elements (direct design)
− Specific local resistance
− Non-structural protective measures
− Presume local failure (direct design)
− Alternative load paths
− Isolation by segmentation
− Prescriptive design rules (indirect design)
Reference:
Starossek, U. 2008. Collapse resistance and robustness of bridges. IABMAS’08: 4th International Conference on
Bridge Maintenance, Safety, and Management Seoul, Korea, July 13-17, 2008
Measures against disproportionate collapse
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Reference:
Giuliani, L., 2012. Structural safety in case of extreme actions. International Journal of Lifecycle Performance Engineering
IJLCPE Special Issue on: "Performance and Robustness of Complex Structural Systems", Guest Editor Franco Bontempi, ISSN
(Online): 2043-8656 - ISSN (Print): 2043-8648.
Design strategies against progressive collapse
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
RISK-BASED
[Faber, 2005]
R
I
inddir
dir
rob
R
R
+
=
direct risk
indirect riskDAMAGE-BASED
∑
=
=
n
1i
'
i
i
)K(tr
)K(tr
.Deg.Stiff
ithelement stiffness matrix
(integer state)
damaged
elements
ithelement stiffness
matrix (damaged state)
[Yan&Chang, 2006] [Biondini &
Frangopol, 2008]
1
0
∆Φ
∆Φ
ρ =Φ
∆ energy between intact
and damaged system
(backward pseudo-loads)
∆ energy between intact
and damaged system
(forward pseudo-loads)
Indirect
Risk
Direct
Risk
Indirect
Risk
Direct
Risk
Reference:
Olmati, P., Brando, F., Gkoumas, K. “Robustness assessment of a Steel Truss Bridge”, ASCE/SEI Structures Congress,
Pittsburgh, Pennsylvania, May 2-4, 2013.
B
A Withstand actions, events
Withstand damages
Structural Robustness assessment
TOPOLOGY-BASED ENERGY-BASEDOther:
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
[Baker et al. 2008]
R
I
inddir
dir
rob
R
R
+
=
direct risk
indirect risk
Reference:
Baker J.W., Schubert M., Faber M.H., (2008). On the Assessment of Robustness, Journal of Structural Safety, Volume
30, Issue 3, pp. 253-267, DOI:10.1016/j.strusafe.2006.11.004
“A robust system is considered to be one where indirect
risks do not contribute significantly to the total system
risk”
Rdir˃˃Rind
Rdir: associati con il danni iniziali
Rind: associati con danni successivi
EXBD: Exposure before damage
D : Damage
D : No Damage
F : Probability of system failure
Cdir : Direct consequences
Cind: Indirect consequences
Risk Based Structural Robustness assessment
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
− ≥ 0
member-based design
− ≥ 0limit state design
Resistance (probabilistic) Solicitation (probabilistic)
Resistance (design values) Solicitation (design values)
(1 − ) − ≥ 0
Member consequence factor based design
0 ≤ ≤ 1
• Cf quantifies the influence that a loss of a structural element has on the load carrying capacity.
• Cf provides to the single structural member an additional load carrying capacity, in function of the
nominal design (not extreme) loads that can be used for contrasting unexpected and extreme loads.
• Essentially, if Cf tends to 1, the member is more likely to be important to the structural system;
instead if Cf tends to 0, the member is more likely to be unimportant to the structural system.
Member consequence factor and robustness assessment
0EγγRγγ kEMEk
1
Rd
1
MR ≥− ∑−−
0E)R(*)C1( kEdMEk
1
Rd
1
MRf ≥γγ−γγ− ∑−−
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
• The structure is subjected to a set of damage scenarios and the consequence of the
damages is evaluated by the member consequence factor ( ) that for
convenience can be easily expressed in percentage.
• For damage scenario is intended the failure of one or more structural elements.
• Robustness can be expressed as the complement to 100 of , intended as the
effective coefficient that affects directly the resistance.
• is evaluated by the maximum percentage difference of the structural stiffness
matrix eigenvalues of the damaged and undamaged configurations of the structure.
=
−
100
!"#
where, and are respectively the i-th eigenvalue of the structural stiffness
matrix in the undamaged and damaged configuration, and N is the total number of the
eigenvalues.
Member consequence factor and robustness assessment
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
• The corresponding robustness index ( ) is therefore defined as:
=1 -
• Values of Cf close to 100% mean that the failure of the structural member most
likely causes a global structural collapse.
• Low values of Cf do not necessarily mean that the structure survives after the failure
of the structural member: this is something that must be established by additional
analysis that considers the loss of the specific structural member.
• A value of Cf close to 0% means that the structure has a good structural
robustness.
The proposed method for computing the consequence factors, for different reasons,
should not be used for:
1. Structures that have high concentrated masses (especially non-structural masses) in
a particular zone; and,
2. Structures that have cable structural system (e.g., tensile structures, suspension
bridges).
Member consequence factor and robustness assessment
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Cost of robustness measures ≤ Reduction of failure consequences
• The objective function for optimization may be very complex
and depend on the type of the structural system, robustness
measures, characteristics of failure consequences and
probabilities of occurrence and intensities of various hazards.
• If the total cost of robustness measures exceeds the reduction
in failure consequences, then the system may be considered as
robust but uneconomic. In such a situation, probabilistic
methods of risk assessment may be effectively used
Reference:
COST Action TU0601 Robustness of Structures STRUCTURAL ROBUSTNESS DESIGN FOR PRACTISING
ENGINEERS. EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY, Editor T. D. Gerard Canisius.
Robustness in Optimization
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Reference:
Casciati, S. and Faravelli, L. (2008) Building a Robustness Index. Robustness of Structures COST Action TU0601,
1st Workshop, February 4-5, ETH Zurich, Switzerland.
Robustness in Optimization
Example: Hierarchy of the failure modes (“weak beam/strong column”)
...develop the less catastrophic failure
modes first.
...ranking the failure modes in terms of
a hierarchy in such a way that the less
harmful ones are generated at lower
loading levels
Objective function:
Robustness term:
Pfi: probability of the i-th failure mode
m: number of failure modes
A robust structure requires the plastic moment of the column, MPc, being larger than the
one of the beam, MPb; that is, Z = MPc– MPb≥ 0
µc, σc, µb, σb: means and the standard deviations of the plastic moments of the columns and
of the beam, respectively.
To ensure robustness, the index I needs to be kept positive. The objective is, therefore, to
minimize FI=-I.
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Stiffness matrix
Kun λi
un
Eigenvalues
Kdam λi
dam
Consequence factor
Robustness indexRscenario= 100 - Cf
scenario
N1i
un
i
dam
i
un
iscenario
f 100
)(
maxC
−=






λ
λ−λ
=
Structural Robustness assessment - overview
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
ka
kb
x
y
K%& =
10 0
0 10
C(!
1 = 0% C(*
1 = 30%
R1 = 70%
R1 = 100 − C(
1N: total eigenvalues number
i: single eigenvalue number
a and b: elements
a
b
N1i
un
i
dam
i
un
iscenario
f 100
)(
maxC
−=






λ
λ−λ
=
K./0
=
10 0
0 7
Scenario 1
Single damage – analytic calculation
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
• Single bay frame structure with a diagonal beam brace, composed in total of 5
members
• IPE 300, S235 steel, one meter length, pinned boundary conditions.
The evaluated scenarios consist in the removal of elements 1, 2 and 3 sequentially, so the
damage is cumulative: this means that the each scenario includes the damage from the
previous one.
Cumulative damage – numerical assessment
DSj = Σi=(1-j) di
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Cumulative damage – numerical assessment
• star-shaped structure – 8 members - pipe cross section - 20 centimeters outside
diameter - 20 millimeters thickness - S235 steel.
• members 1, 3, 5, and 7 are 0.5 meters long and members 2, 4, 6, and 8 are 0.7
meters long.
All the members are connected to each other by a fixed type connection. Also the boundary
conditions are of the fixed type and the structure is plane.
DSj = Σi=(1-j) di
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
• Built 1967
• 3 spans, 1067 feet long
• 1977 – new wearing surface
• 1998 – curbs and railings replaced
I-35 West Bridge, Minneapolis, MN
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
North
Downtown
I-35 West Bridge, Minneapolis, MNPhotofromaircraftflyingoverhead.
• At 6:05 pm on August 1st 2007 Bridge Collapsed
• 13 People killed & approximately 145 Injured
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
I-35 W bridge
I-35 West Bridge, Minneapolis, MN
NTSB 2007
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Undamaged
Damaged
scenario
I-35 West Bridge, Minneapolis, MN – damage scenarios
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
I-35 West Bridge, Minneapolis, MN – damage scenarios
3D
2D
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
d1
d2d3
d4
d5
d7
d6
37
59
42 45
35 38
23
63
41
58 55
65 62
77
0
20
40
60
80
100
1 2 3 4 5 6 7
Robustness%
Scenario
Cf max Robustness
1 2 3 4 5 6 7
Scenario
Cf max Robustness
Damage scenario
d1 d2 d3 d4 d5 d6 d7
DSj = di
I-35 West Bridge, Minneapolis, MN – single damage
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
d1
d2d3
d4
d5
d7
d6
83 87 88
53
60
86
64
17 13 12
47
40
14
36
0
20
40
60
80
100
1 2 3 4 5 6 7
Robustness%
Scenario
Cf max Robustness
Damage scenario
d1 d2 d3 d4 d5 d6 d7
I-35 West Bridge, Minneapolis, MN/ enhanced– single damage
DSj = di
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
References
Alashker, Y., Li, H. and El-Tawil, S. (2011), “Approximations in Progressive Collapse Modeling”, J. Struct. Eng.- ASCE, 137(9), 914-924.
Arup (2011), Review of international research on structural robustness and disproportionate collapse, London: Department for
Communities and Local Government.
ASCE 7-05 (2005), Minimum design loads for buildings and other structures, American Society of Civil Engineers (ASCE).
Biondini, F. and Frangopol, D. (2009), “Lifetime reliability-based optimization of reinforced concrete cross-sections under corrosion”,
Struct. Saf., 31(6), 483-489.
Biondini, F., Frangopol, D.M. and Restelli, S. (2008), “On structural robustness, redundancy and static indeterminancy”, Proceedings of
the 2008 Structures Congress, April 24-26, 2008, Vancouver, BC, Canada.
Bontempi, F. and Giuliani, L. (2008), “Nonlinear dynamic analysis for the structural robustness assessment of a complex structural
system”, Proceedings of the 2008 Structures Congress, April 24-26, 2008, Vancouver, BC, Canada.
Bontempi, F., Giuliani, L. and Gkoumas, K. (2007), “Handling the exceptions: dependability of systems and structural robustness”, Invited
Lecture, Proceedings of the 3rd International Conference on Structural Engineering, Mechanics and Computation (SEMC), Cape Town,
South Africa, September 10-12.
Brando, F., Testa, R.B. and Bontempi, F. (2010), “Multilevel structural analysis for robustness assessment of a steel truss bridge”, Bridge
Maintenance, Safety, Management and Life-Cycle Optimization - Frangopol, Sause and Kusko (eds), Taylor & Francis Group, London,
ISBN 978-0-415-87786-2.
Canisius, T.D.G., Sorensen, J.D. and Baker, J.W. (2007), “Robustness of structural systems - A new focus for the Joint Committee on
Structural Safety (JCSS)”, Proceedings of the 10th Int. Conf. on Applications of Statistics and Probability in Civil Engineering
(ICASP10), Taylor and Francis, London.
Casciati, S. and Faravelli, L. (2008) Building a Robustness Index. Robustness of Structures COST Action TU0601, 1st Workshop,
February 4-5, 2008, ETH Zurich, Zurich, Switzerland.
Cha, E. J. and Ellingwood, B. R. (2012), “Risk-averse decision-making for civil infrastructure exposed to low-probability, high-
consequence events”, Reliab. Eng. Syst. Safe., 104(1), 27-35.
Choi, J-h. and Chang, D-k. (2009), “Prevention of progressive collapse for building structures to member disappearance by accidental
actions”, J. Loss Prevent. Proc., 22(6), 1016-1019.
COST (2011), TU0601 - Structural Robustness Design for Practising Engineers, Canisius, T.D.G. (Editor).
Crosti, C. and Duthinh, D. (2012), “Simplified gusset plate model for failure prediction of truss bridges”, Bridge Maintenance, Safety,
Management, Resilience and Sustainability - Proceedings of the 6th International Conference on Bridge Maintenance, Safety and
Management, IABMAS 2012, Italy, Stresa, 8-12 July 2012.
Crosti, C., Duthinh, D. and Simiu, E. (2011), “Risk consistency and synergy in multihazard design”, J. Struct. Eng.- ASCE, 137(8), 844-
849.
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
References
DoD - Department of Defense (2009), Unified Facilities Criteria (UFC). Report No. UFC 4-023-03: Design of buildings to resist
progressive collapse. Washington DC: National Institute of Building Sciences.
Ellingwood, B. (2002), “Load and resistance factor criteria for progressive collapse design”, Proceedings of Workshop on Prevention of
Progressive Collapse, National Institute of Building Sciences, Washington, D.C
Ellingwood, B.R. and Dusenberry, D.O. (2005), “Building design for abnormal loads and progressive collapse”, Comput-Aided Civ. Inf.,
20(3), 194-205.
Ellingwood, B.R., Smilowitz, R., Dusenberry, D.O., Duthinh, D. and Carino, N.J. (2007), Report No. NISTIR 7396: Best practices for
reducing the potential for progressive collapse in buildings. Washington DC: National Institute of Standards and Technology (NIST)
EN 1990 (2002), Eurocode - Basis of structural design.
Faber, M.H. and Stewart, M.G. (2003), “Risk assessment for civil engineering facilities: critical overview and discussion”, Reliab. Eng.
Syst. Safe., 80(2), 173-184.
FHWA (2011), Framework for Improving Resilience of Bridge Design, Publication No IF-11-016.
Galal, K. and El-Sawy, T. (2010), “Effect of retrofit strategies on mitigating progressive collapse of steel frame structures”, J. Constr. Steel
Res., 66(4), 520-531.
Ghosn, M. and Moses, F. (1998), NCHRP Report 406: Redundancy in Highway Bridge Superstructures, TRB, National Research Council,
Washington, D.C.
Giuliani, L. (2012), “Structural safety in case of extreme actions”, Special Issue on: “Performance and Robustness of Complex Structural
Systems”, Int. J. of Lifecycle Performance Engineering (IJLCPE), 1(1), 22-40.
GSA - General Service Administration (2003), Progressive collapse analysis and design guidelines for new federal office buildings and
major modernization project, Washington DC: GSA.
Hoffman, S. T. and Fahnestock, L. A. (2011), “Behavior of multi-story steel buildings under dynamic column loss scenarios”, Steel
Compos. Struc., 11(2), 149-168.
HSE - Health and Safety Executive (2001), Reducing risks, protecting people, HSE’s decision-making process, United King: Crown
copyright.
Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A. (2008a), “Progressive collapse of multi-storey buildings due to
sudden column loss - Part I: Simplified assessment framework”, Eng. Struct., 30(5), 1308-1318.
Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A. (2008b), “Progressive collapse of multi-storey buildings due to
sudden column loss - Part II: Application”, Eng. Struct., 30(5), 1424-1438.
Kim, J. and Kim, T. (2009), “Assessment of progressive collapse-resisting capacity of steel moment frames”, J. Constr. Steel Res., 65(1),
169-179.
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
References
Kwasniewski, L. (2010), “Nonlinear dynamic simulations of progressive collapse for a multistory building”, Eng. Struct., 32(5), 1223-
1235.
Malla, R.B., Agarwal, P. and Ahmad, R. (2011), “Dynamic analysis methodology for progressive failure of truss structures considering
inelastic postbuckling cyclic member behavior”, Eng. Struct., 33(5), 1503-1513.
Miyachi, K., Nakamura, S. and Manda, A. (2012), “Progressive collapse analysis of steel truss bridges and evaluation of ductility”, J.
Constr. Steel Res., 78, 192-200.
Nafday, A.M. (2008), “System Safety Performance Metrics for Skeletal Structures”, J. Struct. Eng.- ASCE, 134(3), 499-504.
Nafday, A.M. (2011), “Consequence-based structural design approach for black swan events”, Struct. Saf., 33(1), 108-114.
Olmati, P., Gkoumas, K., Brando, F., Cao, L. (2013) “Consequence-based robustness assessment of a steel truss bridge”, Steel and
Composite Structures, An International Journal, 14(4), 379-395.
Rezvani, F. H. and Asgarian, B. (2012), “Element loss analysis of concentrically braced frames considering structural performance
criteria”, Steel Compos. Struc., 12(3), 231-248.
Saydam, D. and Frangopol, D. M. (2011), “Time-dependent performance indicators of damaged bridge superstructures”, Eng. Struct.,
33(9), 2458-2471.
Starossek, U. (2009), Progressive collapse of structures, London: Thomas Telford Publishing.
Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr. Fac. 24(6), 519-528.
Starossek, U. and Haberland, M. (2012), “Robustness of structures”, Special Issue on: “Performance and Robustness of Complex
Structural Systems”, Int. J. of Lifecycle Performance Engineering (IJLCPE), 1(1), 3-21.
Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.). London: Penguin. p. 400. ISBN 1-
84614045-5.
Yuan, W. and Tan, K. H. (2011), “Modeling of progressive collapse of a multi-storey structure using a spring-mass-damper system”,
Struct. Eng. Mech., 37(1), 79-93.
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
Acknowledgements
- Luisa Giuliani, PhD. Associate Professor, DTU, Denmark.
- Francesca Brando, PhD. Senior Engineer, Thornton Tomasetti, NY.
- Pierluigi Olmati, PhD. Post-doc, Surrey University, UK.
Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014
Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D.
“Structural robustness: definitions, examples and
consequence based assessment of structures”
Konstantinos Gkoumas, Ph.D., P.E.
Corso di Dottorato: introduzione all'ottimizzazione
strutturale
Prof.-Ing. Franco Bontempi
Dipartimento di Ingegneria Strutturale e Geotecnica
Dottorato di Ricerca in Ingegneria delle Strutture
Rome, June 21 2014

Weitere ähnliche Inhalte

Andere mochten auch

Appunti del corso di dottorato: Ottimizzazione Strutturale / Structural Optim...
Appunti del corso di dottorato: Ottimizzazione Strutturale / Structural Optim...Appunti del corso di dottorato: Ottimizzazione Strutturale / Structural Optim...
Appunti del corso di dottorato: Ottimizzazione Strutturale / Structural Optim...Franco Bontempi
 
GIORNATA DI STUDIO IN ONORE DI MARCELLO CIAMPOLI
GIORNATA DI STUDIO IN ONORE DI MARCELLO CIAMPOLIGIORNATA DI STUDIO IN ONORE DI MARCELLO CIAMPOLI
GIORNATA DI STUDIO IN ONORE DI MARCELLO CIAMPOLIFranco Bontempi
 
An ingenuous look at structural optimization - Uno sguardo ingenuo sull’ottim...
An ingenuous look at structural optimization - Uno sguardo ingenuo sull’ottim...An ingenuous look at structural optimization - Uno sguardo ingenuo sull’ottim...
An ingenuous look at structural optimization - Uno sguardo ingenuo sull’ottim...Franco Bontempi
 
Simulazioni numeriche di urti su barriere di sicurezza new jersey poste a bo...
Simulazioni numeriche di urti  su barriere di sicurezza new jersey poste a bo...Simulazioni numeriche di urti  su barriere di sicurezza new jersey poste a bo...
Simulazioni numeriche di urti su barriere di sicurezza new jersey poste a bo...Franco Bontempi
 
PSA lezione 8 ottobre 2014 A marked
PSA lezione 8 ottobre 2014 A markedPSA lezione 8 ottobre 2014 A marked
PSA lezione 8 ottobre 2014 A markedFranco Bontempi
 
Coupling between human behaviour and combustion
Coupling between human behaviour and combustionCoupling between human behaviour and combustion
Coupling between human behaviour and combustionFranco Bontempi
 
Il ruolo delle strutture nella protezione passiva contro l'incendio
Il ruolo delle strutture nella protezione passiva contro l'incendioIl ruolo delle strutture nella protezione passiva contro l'incendio
Il ruolo delle strutture nella protezione passiva contro l'incendioFranco Bontempi
 
Ph.D. Thesis project of Paolo E. Sebastiani PBEE - Mala Rijeka Viaduct
Ph.D. Thesis project of Paolo E. Sebastiani PBEE - Mala Rijeka ViaductPh.D. Thesis project of Paolo E. Sebastiani PBEE - Mala Rijeka Viaduct
Ph.D. Thesis project of Paolo E. Sebastiani PBEE - Mala Rijeka ViaductFranco Bontempi
 
IF CRASC'15 - secondo annuncio
IF CRASC'15 - secondo annuncioIF CRASC'15 - secondo annuncio
IF CRASC'15 - secondo annuncioFranco Bontempi
 
Finite element and analytical approaches for predicting the structural respon...
Finite element and analytical approaches for predicting the structural respon...Finite element and analytical approaches for predicting the structural respon...
Finite element and analytical approaches for predicting the structural respon...Franco Bontempi
 
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTYBLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTYFranco Bontempi
 
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...Franco Bontempi
 
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILEANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILEFranco Bontempi
 
Comparison of time domain techniques for the evaluation of the response and t...
Comparison of time domain techniques for the evaluation of the response and t...Comparison of time domain techniques for the evaluation of the response and t...
Comparison of time domain techniques for the evaluation of the response and t...Franco Bontempi
 
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - BontempiApplicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - BontempiFranco Bontempi
 
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere.
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere.UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere.
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere.Franco Bontempi
 
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...Franco Bontempi
 
Self powered sensor for smart sustainable buildings - SHARE OR DIE July 2014
Self powered sensor for smart sustainable buildings - SHARE OR DIE July 2014Self powered sensor for smart sustainable buildings - SHARE OR DIE July 2014
Self powered sensor for smart sustainable buildings - SHARE OR DIE July 2014Franco Bontempi
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Franco Bontempi
 

Andere mochten auch (20)

Appunti del corso di dottorato: Ottimizzazione Strutturale / Structural Optim...
Appunti del corso di dottorato: Ottimizzazione Strutturale / Structural Optim...Appunti del corso di dottorato: Ottimizzazione Strutturale / Structural Optim...
Appunti del corso di dottorato: Ottimizzazione Strutturale / Structural Optim...
 
GIORNATA DI STUDIO IN ONORE DI MARCELLO CIAMPOLI
GIORNATA DI STUDIO IN ONORE DI MARCELLO CIAMPOLIGIORNATA DI STUDIO IN ONORE DI MARCELLO CIAMPOLI
GIORNATA DI STUDIO IN ONORE DI MARCELLO CIAMPOLI
 
Bontempi AICC2005
Bontempi AICC2005Bontempi AICC2005
Bontempi AICC2005
 
An ingenuous look at structural optimization - Uno sguardo ingenuo sull’ottim...
An ingenuous look at structural optimization - Uno sguardo ingenuo sull’ottim...An ingenuous look at structural optimization - Uno sguardo ingenuo sull’ottim...
An ingenuous look at structural optimization - Uno sguardo ingenuo sull’ottim...
 
Simulazioni numeriche di urti su barriere di sicurezza new jersey poste a bo...
Simulazioni numeriche di urti  su barriere di sicurezza new jersey poste a bo...Simulazioni numeriche di urti  su barriere di sicurezza new jersey poste a bo...
Simulazioni numeriche di urti su barriere di sicurezza new jersey poste a bo...
 
PSA lezione 8 ottobre 2014 A marked
PSA lezione 8 ottobre 2014 A markedPSA lezione 8 ottobre 2014 A marked
PSA lezione 8 ottobre 2014 A marked
 
Coupling between human behaviour and combustion
Coupling between human behaviour and combustionCoupling between human behaviour and combustion
Coupling between human behaviour and combustion
 
Il ruolo delle strutture nella protezione passiva contro l'incendio
Il ruolo delle strutture nella protezione passiva contro l'incendioIl ruolo delle strutture nella protezione passiva contro l'incendio
Il ruolo delle strutture nella protezione passiva contro l'incendio
 
Ph.D. Thesis project of Paolo E. Sebastiani PBEE - Mala Rijeka Viaduct
Ph.D. Thesis project of Paolo E. Sebastiani PBEE - Mala Rijeka ViaductPh.D. Thesis project of Paolo E. Sebastiani PBEE - Mala Rijeka Viaduct
Ph.D. Thesis project of Paolo E. Sebastiani PBEE - Mala Rijeka Viaduct
 
IF CRASC'15 - secondo annuncio
IF CRASC'15 - secondo annuncioIF CRASC'15 - secondo annuncio
IF CRASC'15 - secondo annuncio
 
Finite element and analytical approaches for predicting the structural respon...
Finite element and analytical approaches for predicting the structural respon...Finite element and analytical approaches for predicting the structural respon...
Finite element and analytical approaches for predicting the structural respon...
 
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTYBLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
 
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
 
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILEANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
ANALISI STRUTTURALE DI PONTI E DI OPERE COMPLESSE DI INGEGNERIA CIVILE
 
Comparison of time domain techniques for the evaluation of the response and t...
Comparison of time domain techniques for the evaluation of the response and t...Comparison of time domain techniques for the evaluation of the response and t...
Comparison of time domain techniques for the evaluation of the response and t...
 
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - BontempiApplicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
 
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere.
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere.UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere.
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere.
 
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
 
Self powered sensor for smart sustainable buildings - SHARE OR DIE July 2014
Self powered sensor for smart sustainable buildings - SHARE OR DIE July 2014Self powered sensor for smart sustainable buildings - SHARE OR DIE July 2014
Self powered sensor for smart sustainable buildings - SHARE OR DIE July 2014
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
 

Ähnlich wie Structural Robustness and Optimization Seminar

Structural robustness and sustainability of structures:concepts and case stud...
Structural robustness and sustainability of structures:concepts and case stud...Structural robustness and sustainability of structures:concepts and case stud...
Structural robustness and sustainability of structures:concepts and case stud...Franco Bontempi Org Didattica
 
2015.05.06 corso di ottimizzazione kg rc2
2015.05.06 corso di ottimizzazione kg rc22015.05.06 corso di ottimizzazione kg rc2
2015.05.06 corso di ottimizzazione kg rc2Konstantinos Gkoumas
 
Olmati and Giuliani
Olmati and GiulianiOlmati and Giuliani
Olmati and GiulianiStroNGER2012
 
Vulnerability assessment of precast concrete cladding wall panels for police ...
Vulnerability assessment of precast concrete cladding wall panels for police ...Vulnerability assessment of precast concrete cladding wall panels for police ...
Vulnerability assessment of precast concrete cladding wall panels for police ...Franco Bontempi
 
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdfSEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdfJulio Terrones
 
Resume - Rossella Venezia
Resume - Rossella VeneziaResume - Rossella Venezia
Resume - Rossella VeneziaRossellaVenezia
 
Performance-Based Seismic Assessment for Loss Estimation of Isolated Bridges
Performance-Based Seismic Assessment for Loss Estimation of Isolated BridgesPerformance-Based Seismic Assessment for Loss Estimation of Isolated Bridges
Performance-Based Seismic Assessment for Loss Estimation of Isolated BridgesFranco Bontempi Org Didattica
 
Ph.D. Course on DWACS Sapienza _ september 2017_ ANIV
Ph.D. Course on DWACS Sapienza _ september 2017_ ANIVPh.D. Course on DWACS Sapienza _ september 2017_ ANIV
Ph.D. Course on DWACS Sapienza _ september 2017_ ANIVFranco Bontempi
 
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...Franco Bontempi Org Didattica
 

Ähnlich wie Structural Robustness and Optimization Seminar (20)

Robustness 20 11 2014
Robustness 20 11 2014Robustness 20 11 2014
Robustness 20 11 2014
 
PSA - Lezione del 29 ottobre 2014 - ROBUSTEZZA
PSA - Lezione del 29 ottobre 2014 - ROBUSTEZZAPSA - Lezione del 29 ottobre 2014 - ROBUSTEZZA
PSA - Lezione del 29 ottobre 2014 - ROBUSTEZZA
 
Structural robustness: concepts and applications.
Structural robustness: concepts and applications.Structural robustness: concepts and applications.
Structural robustness: concepts and applications.
 
Structural robustness and sustainability of structures:concepts and case stud...
Structural robustness and sustainability of structures:concepts and case stud...Structural robustness and sustainability of structures:concepts and case stud...
Structural robustness and sustainability of structures:concepts and case stud...
 
2015.05.06 corso di ottimizzazione kg rc2
2015.05.06 corso di ottimizzazione kg rc22015.05.06 corso di ottimizzazione kg rc2
2015.05.06 corso di ottimizzazione kg rc2
 
STRUCTURAL DESIGN FROM EMPIRICAL TRADITION
STRUCTURAL DESIGN FROM EMPIRICAL TRADITIONSTRUCTURAL DESIGN FROM EMPIRICAL TRADITION
STRUCTURAL DESIGN FROM EMPIRICAL TRADITION
 
Olmati and Giuliani
Olmati and GiulianiOlmati and Giuliani
Olmati and Giuliani
 
ICOSSAR PO et al
ICOSSAR PO et alICOSSAR PO et al
ICOSSAR PO et al
 
Vulnerability assessment of precast concrete cladding wall panels for police ...
Vulnerability assessment of precast concrete cladding wall panels for police ...Vulnerability assessment of precast concrete cladding wall panels for police ...
Vulnerability assessment of precast concrete cladding wall panels for police ...
 
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdfSEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
 
gazepidisf_masonry
gazepidisf_masonrygazepidisf_masonry
gazepidisf_masonry
 
Resume - Rossella Venezia
Resume - Rossella VeneziaResume - Rossella Venezia
Resume - Rossella Venezia
 
Ph.D. Course DWECS La Sapienza - September 2017
Ph.D. Course  DWECS  La Sapienza - September 2017Ph.D. Course  DWECS  La Sapienza - September 2017
Ph.D. Course DWECS La Sapienza - September 2017
 
Performance-Based Seismic Assessment for Loss Estimation of Isolated Bridges
Performance-Based Seismic Assessment for Loss Estimation of Isolated BridgesPerformance-Based Seismic Assessment for Loss Estimation of Isolated Bridges
Performance-Based Seismic Assessment for Loss Estimation of Isolated Bridges
 
Bostenaru2 Icsa2010
Bostenaru2 Icsa2010Bostenaru2 Icsa2010
Bostenaru2 Icsa2010
 
Ph.D. Course on DWACS Sapienza _ september 2017_ ANIV
Ph.D. Course on DWACS Sapienza _ september 2017_ ANIVPh.D. Course on DWACS Sapienza _ september 2017_ ANIV
Ph.D. Course on DWACS Sapienza _ september 2017_ ANIV
 
Olmati et al.
Olmati et al.Olmati et al.
Olmati et al.
 
2017.05.01 CV Panagiotou
2017.05.01 CV Panagiotou2017.05.01 CV Panagiotou
2017.05.01 CV Panagiotou
 
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
 
StroNGER / march 2014
StroNGER / march 2014StroNGER / march 2014
StroNGER / march 2014
 

Mehr von Franco Bontempi

84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdfFranco Bontempi
 
PGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfPGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfFranco Bontempi
 
PGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfPGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfFranco Bontempi
 
La realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneLa realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneFranco Bontempi
 
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.Franco Bontempi
 
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSRISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSFranco Bontempi
 
Approccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiApproccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiFranco Bontempi
 
PGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfPGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfFranco Bontempi
 
PGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfPGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfFranco Bontempi
 
PGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfPGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfFranco Bontempi
 
Fenomeni di instabilita'
Fenomeni di instabilita'Fenomeni di instabilita'
Fenomeni di instabilita'Franco Bontempi
 
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioIntroduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioFranco Bontempi
 
FB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFranco Bontempi
 
Gestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - AntenneGestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - AntenneFranco Bontempi
 
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdfPGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdfFranco Bontempi
 
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdfPGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdfFranco Bontempi
 

Mehr von Franco Bontempi (20)

84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf
 
PGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfPGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdf
 
PGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfPGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdf
 
La realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneLa realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzione
 
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
 
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSRISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
 
Approccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiApproccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi ponti
 
PGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfPGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdf
 
PGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfPGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdf
 
PGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfPGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdf
 
PSA_MF_05_05_23.pdf
PSA_MF_05_05_23.pdfPSA_MF_05_05_23.pdf
PSA_MF_05_05_23.pdf
 
PSA_MF_04_05_23.pdf
PSA_MF_04_05_23.pdfPSA_MF_04_05_23.pdf
PSA_MF_04_05_23.pdf
 
Fenomeni di instabilita'
Fenomeni di instabilita'Fenomeni di instabilita'
Fenomeni di instabilita'
 
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioIntroduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
 
FB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdf
 
Gestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - AntenneGestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
 
Esplosioni.
Esplosioni.Esplosioni.
Esplosioni.
 
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdfPGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
 
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdfPGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
 
INCENDIO
INCENDIOINCENDIO
INCENDIO
 

Kürzlich hochgeladen

NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...Amil Baba Dawood bangali
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
The SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsThe SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsDILIPKUMARMONDAL6
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptNarmatha D
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfRajuKanojiya4
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 

Kürzlich hochgeladen (20)

NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
The SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsThe SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teams
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.ppt
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdf
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 

Structural Robustness and Optimization Seminar

  • 1. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. “Structural robustness: definitions, examples and consequence based assessment of structures” Konstantinos Gkoumas, Ph.D., P.E. Corso di Dottorato: introduzione all'ottimizzazione strutturale Prof.-Ing. Franco Bontempi Dipartimento di Ingegneria Strutturale e Geotecnica Dottorato di Ricerca in Ingegneria delle Strutture Rome, June 21 2014
  • 2. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Index
  • 5. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Personal
  • 6. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References
  • 7. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 8. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Ronan Point Tower Block– May 16, 1968 Description: - apartments building; - built between 1966 and 1968; - 64 m tall with 22 story; - walls, floors, and staircases was precast concrete; - each floor was supported directly by the walls in the lower stories, (bearing walls system). The event: - May 16, 1968 a gas explosion blew out an outer panel of the 18th floor, - the loss of the bearing wall causes the progressive collapse of the upper floors, - the impact of the upper floors’ debris caused the progressive collapse of the lower floors. Cause Damage Pr. Collapse
  • 9. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Description: - apartments building; - precast concrete wall and floor components was the structural bearing system; - ductile detailing and effective ties between the precast components. Cause Damage Pr. Collapse The event: - June 25, 1996 9 tons of TNTeq detonated in front of the building; - the exterior wall was entirely destroyed; - collapse did not progress beyond areas of first damage. Khobar Towers Bombing – June 25, 1996
  • 10. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Description: - office facility for the Deutsche Bank in Manhattan; - constructed in the early ‘70s in steel-framed structure moment connected, 130 m tall, 40 story and 2 subterranean levels; The event: - On September 11, 2011, the WTC towers debris impact on a building’s façade, - heavy damage between the 9th and the 23rd floor, the column was lost from the 9th and the 18th floor; - the framing system was able to support and redistribute the loads. Deutsche Bank Building – September 11, 2001 Cause Damage Pr. Collapse
  • 11. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Probability of progressive collapse from an abnormal event P(F) = P(D|H) P(F|DH)P(H) x x damage is caused in the structure damage spreads in the structure occurrence of critical event occurrence of broad or global collapse STRUCTURAL INTEGRITY (ISO/FDS 2394) COLLAPSE RESISTANCE (Starossek&Wolff 2005) Faber (2006) STRUCTURALNON STRUCTURAL MEASURES HAZARD References: Ellingwood, B.R. and Dusenberry, D.O. (2005), “Building design for abnormal loads and progressive collapse”, Comput-Aided Civ. Inf., 20(3), 194-205.
  • 12. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 13. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Reference: Bontempi, F. (2005) Frameworks for structural analysis, In: Innovation in Civil and Structural Engineering Topping, BHV ed., pp. 1-24 HPLC High Probability – Low Consequences LPHC Low Probability – High Consequences Complexity Non linear issues and interaction mechanisms Designapproach: StochasticDeterministic QUALITATIVE RISK ANALYSIS PROBABILISTIC RISK ANALYSIS PRAGMATIC ANALYSIS OF RISK SCENARIOS Secondary design Primary design Low Probability – High Consequences Events
  • 14. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. References: Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.). London: Penguin. p. 400. ISBN 1-84614045-5. A Black Swan is an event with the following three attributes. 1. First, it is an outlier, as it lies outside the realm of regular expectations, because nothing in the past can convincingly point to its possibility. Rarity -The event is a surprise (to the observer). 2. Second, it carries an extreme 'impact'. Extreme “impact” - the event has a major effect. 3. Third, in spite of its outlier status, human nature makes us concoct explanations for its occurrence after the fact, making it explainable and predictable. Retrospective (though not prospective) predictability - After the first recorded instance of the event, it is rationalized by hindsight, as if it could have been expected; that is, the relevant data were available but unaccounted for in risk mitigation programs. The same is true for the personal perception by individuals. Black Swans
  • 15. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 16. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. QUALITY DAMAGE or ERROR REQUIRED PERFORMANCE NOMINAL PERFORMANCE NOMINAL SITUATION Structural Robustness
  • 17. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. • Capacity of a construction to exhibit regular decrease of its structural quality as a consequence of negative causes. • It implies: a) some smoothness of the decrease of structural performance due to negative events (intensive feature); b) some limited spatial spread of the rupture (extensive feature). Structural Robustness
  • 18. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Qualitative definitions of structural robustness [EN 1991-1-7: 2006 ]: ability of a structure to withstand actions due to fires, explosions, impacts or consequences of human errors, without suffering damages disproportionate to the triggering causes [SEI 2007, Beton Kalender 2008]: insensitivity of the structure to local failure structure B d P s STRUCTURE B: P s ROBUSTNESS CURVES P (performance) structure A STRUCTURE A damaged integer DP damaged more performant, less resistant integer (damage level) DPDP more performant, less robust less performant, more robust Structural Robustness A B
  • 19. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 20. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. CommonULS&SLS VerificationFormat Structural Robustness Assessment 1st level: Material Point 2nd level: Element Section 3rd level: Structural Element 4th level: Structural System Structural robustness in design
  • 21. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. STRUCTURAL DESIGN PRIMARY SECONDARY TERTIARY LOADS DEAD X LIVE X SNOW X EARTHQUAKE X FIRE X X EXPLOSIONS X X “BLACK SWAN” X Member-based structural design Consequence-based structural design Black Swan event: - unpredictable, - large impact on community, - easy to predict after its occurrence. References: Nafday, AM. (2011) Consequence-based structural design approach for black swan events. Structural Safety, 33(1): 108-114. Structural robustness in design
  • 22. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Uncertainty in the likelihood that the harmful consequences of a particular event will be realized Uncertainty in the consequences related to the specific event Primary design Secondary design Tertiary design Structural robustness in design
  • 23. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 24. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. STRUCTURE & LOADS Collapse Mechanism NO SWAY “IMPLOSION” OF THE STRUCTURE “EXPLOSION” OF THE STRUCTURE is a process in which objects are destroyed by collapsing on themselves is a process NOT CONFINED SWAY Bad VS Good collapse
  • 25. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Initial load-bearing element failure that triggers the rigid fall of a part of the structure onto another and leads to a sequential impacts on the rest of the structure, that collapses on itself. Characteristic feature is the force redistribution into alternative paths, impulsive loading due to sudden element failure and force concentration in elements to fail next. Zipper Domino Section Instability Mixed Pancake Initial cross-section cut and stress concentration that cause the rupture of further cross-sectional parts (fast fracture) and failure progression throughout the entire section. Initial element rigid overturning and falling over another element, that, by means of transformation of potential into kinetic energy, trigger the overturning of the following element. The destabilization of some load-carrying elements in compression due to an initial failure of stabilizing elements can trigger a failure progression throughout the structure. Some collapses are less amenable to generalization because the relative importance of the contributing basic categories of collapse can vary and combine in progression of failures. - DOMINO + PANCAKE (e.g. A.P.Murrah Building, Building during Izmit Earquake) - ZIPPER + INSTABILITY (e.g. cable-stayed bridges) Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica) Collapse types
  • 26. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Initial load-bearing element failure that triggers the rigid fall of a part of the structure onto another and leads to a sequential impacts on the rest of the structure, that collapses on itself. Characteristic feature is the force redistribution into alternative paths, impulsive loading due to sudden element failure and force concentration in elements to fail next. Zipper Domino Section Instability Mixed Pancake Initial cross-section cut and stress concentration that cause the rupture of further cross-sectional parts (fast fracture) and failure progression throughout the entire section. Initial element rigid overturning and falling over another element, that, by means of transformation of potential into kinetic energy, trigger the overturning of the following element. The destabilization of some load-carrying elements in compression due to an initial failure of stabilizing elements can trigger a failure progression throughout the structure. Some collapses are less amenable to generalization because the relative importance of the contributing basic categories of collapse can vary and combine in progression of failures. - DOMINO + PANCAKE (e.g. A.P.Murrah Building, Building during Izmit Earquake) - ZIPPER + INSTABILITY (e.g. cable-stayed bridges) Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica) Collapse types Islamabad Earthquake 2005 Münsterland, 2005 Viaduct after earthquake Izmit Earthquake 1999 Tanker S.S. Schenectady, 1941
  • 27. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. The Boeing B-17 Flying Fortress collided with another aircraft during World War II and, although sustaining large amount of structural damage, landed safely, due to the high redundancy of the fuselage connections. Design Strategy #1: Continuity (robust behavior-redundancy)
  • 28. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. On July 1945 a B-25 bomber crashed into the Empire State Building, The impact of the plane created a 5.5x6 m hole in the side of the tower. This crash caused extensive damage to the masonry exterior and the interior steel structure of the building. The 278 m building was rocked by the impact but resist the impact in consequence of the intrinsic redundancy of its framed system. Plane crash on the Empire State Building, 1945 Design Strategy #1: Continuity (robust behavior-redundancy)
  • 29. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Design Strategy #2: Segmentation (Compartmentalization) A service-induced damage led to explosive decompression and loss of large portion of fuselage skin when small fatigue crack suddenly linked together. The subsequent fracture was eventually arrested by fuselage frame structure and the craft landed safely. Aloha Boeing 737, April 1988 (compartmentalization by strengthening)
  • 30. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Design Strategy #2: Segmentation (Compartmentalization) The partial collapse, started in the roof and due design and execution errors, stoped at the two joints which separated the collapsing section from the adjacent structures. A higher continuity could have unlikely sustained the forces during collapse, since the construction deficiencies affected also adjacent sections.
  • 31. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 32. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. References: (EN 1991-1-7 2006): "Eurocode 1 – Actions on structures, Part 1-7: General actions – accidental actions." Comité European de Normalization (CEN). (Bontempi F, Giuliani L, Gkoumas K, 2007): "Handling the exceptions: robustness assessment of a complex structural system.“, Invited Lecture, Structural Engineering, Mechanics and Computation (SEMC) 3, 1747-1752. (Starossek U, 2009): “Progressive collapse of structures.” London: Thomas Telford Publishing, 2009. Definitions: 1- "The ability of a structure to withstand events like fire, explosions, impact or the consequences of human error without being damaged to an extent disproportionate to the original cause." (EN 1991-1-7 2006) 2- "The robustness of a structure, intended as its ability not to suffer disproportionate damages as a result of limited initial failure, is an intrinsic requirement, inherent to the structural system organization." (Bontempi F, Giuliani L, Gkoumas K, 2007) 3- “Robustness is defined as insensitivity to local failure." (Starossek U, 2009) Structural Robustness
  • 33. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. References: (ASCE 7-05 2005): "Minimum design loads for buildings and other structures." American Society of Civil Engineers (ASCE). (GSA 2003): "Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects." General Services Administration (GSA). (UFC 4-010-01 2003): "DoD minimum antiterrorism standards for buildings." Department of Defense (DoD). Progressive Collapse Definitions: 1-"Progressive collapse is defined as the spread of an initial local failure from element to element resulting, eventually, in the collapse of an entire structure or a disproportionate large part of it." (ASCE 7-05 2005) 2- "A progressive collapse is a situation where local failure of a primary structural component leads to the collapse of adjoining members which, in turn, leads to additional collapse. Hence, the total collapse is disproportionate to the original cause." (GSA 2003) 3-"Progressive collapse: a chain reaction failure of building members to an extent disproportionate to the original localized damage." (UFC 4-010-01 2003)
  • 34. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. References: Arup (2011), Review of international research on structural robustness and disproportionate collapse, London, Department for Communities and Local Government. Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr. Fac., 24(6), 519-528. Observations: − A progressive collapse is one which develops in a progressive manner akin to the collapse of a row of dominos. − A disproportionate collapse is one which is judged (by some measure defined by the observer) to be disproportionate to the initial cause. This is merely a judgement made on observations of the consequences of the damage which results from the initiating events. − A collapse may be progressive in nature but not necessarily disproportionate in its extents, for example if arrested after it progresses through a number of structural bays. Vice versa, a collapse may be disproportionate but not necessarily progressive if, for example, the collapse is limited in its extents to a single structural bay but the structural bays are large. − The terms of disproportionate collapse and progressive collapse are often used interchangeably because disproportionate collapse often occurs in a progressive manner and progressive collapse can be disproportionate. Progressive Collapse VS Disproportionate Collapse
  • 35. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Robustness and collapse resistance in a dependability framework Sgambi, L., Gkoumas, K. and Bontempi, F. (2012), “Genetic algorithms for the dependability assurance in the design of a long- span suspension bridge”, Comput-Aided Civ. Inf., 27(9), 655-675.
  • 36. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 37. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. The currently available design strategies and methods to prevent disproportionate collapse are as follows: − Prevent local failure of key elements (direct design) − Specific local resistance − Non-structural protective measures − Presume local failure (direct design) − Alternative load paths − Isolation by segmentation − Prescriptive design rules (indirect design) Reference: Starossek, U. 2008. Collapse resistance and robustness of bridges. IABMAS’08: 4th International Conference on Bridge Maintenance, Safety, and Management Seoul, Korea, July 13-17, 2008 Measures against disproportionate collapse
  • 38. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Reference: Giuliani, L., 2012. Structural safety in case of extreme actions. International Journal of Lifecycle Performance Engineering IJLCPE Special Issue on: "Performance and Robustness of Complex Structural Systems", Guest Editor Franco Bontempi, ISSN (Online): 2043-8656 - ISSN (Print): 2043-8648. Design strategies against progressive collapse
  • 39. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 40. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. RISK-BASED [Faber, 2005] R I inddir dir rob R R + = direct risk indirect riskDAMAGE-BASED ∑ = = n 1i ' i i )K(tr )K(tr .Deg.Stiff ithelement stiffness matrix (integer state) damaged elements ithelement stiffness matrix (damaged state) [Yan&Chang, 2006] [Biondini & Frangopol, 2008] 1 0 ∆Φ ∆Φ ρ =Φ ∆ energy between intact and damaged system (backward pseudo-loads) ∆ energy between intact and damaged system (forward pseudo-loads) Indirect Risk Direct Risk Indirect Risk Direct Risk Reference: Olmati, P., Brando, F., Gkoumas, K. “Robustness assessment of a Steel Truss Bridge”, ASCE/SEI Structures Congress, Pittsburgh, Pennsylvania, May 2-4, 2013. B A Withstand actions, events Withstand damages Structural Robustness assessment TOPOLOGY-BASED ENERGY-BASEDOther:
  • 41. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. [Baker et al. 2008] R I inddir dir rob R R + = direct risk indirect risk Reference: Baker J.W., Schubert M., Faber M.H., (2008). On the Assessment of Robustness, Journal of Structural Safety, Volume 30, Issue 3, pp. 253-267, DOI:10.1016/j.strusafe.2006.11.004 “A robust system is considered to be one where indirect risks do not contribute significantly to the total system risk” Rdir˃˃Rind Rdir: associati con il danni iniziali Rind: associati con danni successivi EXBD: Exposure before damage D : Damage D : No Damage F : Probability of system failure Cdir : Direct consequences Cind: Indirect consequences Risk Based Structural Robustness assessment
  • 42. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. − ≥ 0 member-based design − ≥ 0limit state design Resistance (probabilistic) Solicitation (probabilistic) Resistance (design values) Solicitation (design values) (1 − ) − ≥ 0 Member consequence factor based design 0 ≤ ≤ 1 • Cf quantifies the influence that a loss of a structural element has on the load carrying capacity. • Cf provides to the single structural member an additional load carrying capacity, in function of the nominal design (not extreme) loads that can be used for contrasting unexpected and extreme loads. • Essentially, if Cf tends to 1, the member is more likely to be important to the structural system; instead if Cf tends to 0, the member is more likely to be unimportant to the structural system. Member consequence factor and robustness assessment 0EγγRγγ kEMEk 1 Rd 1 MR ≥− ∑−− 0E)R(*)C1( kEdMEk 1 Rd 1 MRf ≥γγ−γγ− ∑−−
  • 43. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. • The structure is subjected to a set of damage scenarios and the consequence of the damages is evaluated by the member consequence factor ( ) that for convenience can be easily expressed in percentage. • For damage scenario is intended the failure of one or more structural elements. • Robustness can be expressed as the complement to 100 of , intended as the effective coefficient that affects directly the resistance. • is evaluated by the maximum percentage difference of the structural stiffness matrix eigenvalues of the damaged and undamaged configurations of the structure. = − 100 !"# where, and are respectively the i-th eigenvalue of the structural stiffness matrix in the undamaged and damaged configuration, and N is the total number of the eigenvalues. Member consequence factor and robustness assessment
  • 44. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. • The corresponding robustness index ( ) is therefore defined as: =1 - • Values of Cf close to 100% mean that the failure of the structural member most likely causes a global structural collapse. • Low values of Cf do not necessarily mean that the structure survives after the failure of the structural member: this is something that must be established by additional analysis that considers the loss of the specific structural member. • A value of Cf close to 0% means that the structure has a good structural robustness. The proposed method for computing the consequence factors, for different reasons, should not be used for: 1. Structures that have high concentrated masses (especially non-structural masses) in a particular zone; and, 2. Structures that have cable structural system (e.g., tensile structures, suspension bridges). Member consequence factor and robustness assessment
  • 45. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 46. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Cost of robustness measures ≤ Reduction of failure consequences • The objective function for optimization may be very complex and depend on the type of the structural system, robustness measures, characteristics of failure consequences and probabilities of occurrence and intensities of various hazards. • If the total cost of robustness measures exceeds the reduction in failure consequences, then the system may be considered as robust but uneconomic. In such a situation, probabilistic methods of risk assessment may be effectively used Reference: COST Action TU0601 Robustness of Structures STRUCTURAL ROBUSTNESS DESIGN FOR PRACTISING ENGINEERS. EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY, Editor T. D. Gerard Canisius. Robustness in Optimization
  • 47. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Reference: Casciati, S. and Faravelli, L. (2008) Building a Robustness Index. Robustness of Structures COST Action TU0601, 1st Workshop, February 4-5, ETH Zurich, Switzerland. Robustness in Optimization Example: Hierarchy of the failure modes (“weak beam/strong column”) ...develop the less catastrophic failure modes first. ...ranking the failure modes in terms of a hierarchy in such a way that the less harmful ones are generated at lower loading levels Objective function: Robustness term: Pfi: probability of the i-th failure mode m: number of failure modes A robust structure requires the plastic moment of the column, MPc, being larger than the one of the beam, MPb; that is, Z = MPc– MPb≥ 0 µc, σc, µb, σb: means and the standard deviations of the plastic moments of the columns and of the beam, respectively. To ensure robustness, the index I needs to be kept positive. The objective is, therefore, to minimize FI=-I.
  • 48. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 49. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Stiffness matrix Kun λi un Eigenvalues Kdam λi dam Consequence factor Robustness indexRscenario= 100 - Cf scenario N1i un i dam i un iscenario f 100 )( maxC −=       λ λ−λ = Structural Robustness assessment - overview
  • 50. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. ka kb x y K%& = 10 0 0 10 C(! 1 = 0% C(* 1 = 30% R1 = 70% R1 = 100 − C( 1N: total eigenvalues number i: single eigenvalue number a and b: elements a b N1i un i dam i un iscenario f 100 )( maxC −=       λ λ−λ = K./0 = 10 0 0 7 Scenario 1 Single damage – analytic calculation
  • 51. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. • Single bay frame structure with a diagonal beam brace, composed in total of 5 members • IPE 300, S235 steel, one meter length, pinned boundary conditions. The evaluated scenarios consist in the removal of elements 1, 2 and 3 sequentially, so the damage is cumulative: this means that the each scenario includes the damage from the previous one. Cumulative damage – numerical assessment DSj = Σi=(1-j) di
  • 52. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Cumulative damage – numerical assessment • star-shaped structure – 8 members - pipe cross section - 20 centimeters outside diameter - 20 millimeters thickness - S235 steel. • members 1, 3, 5, and 7 are 0.5 meters long and members 2, 4, 6, and 8 are 0.7 meters long. All the members are connected to each other by a fixed type connection. Also the boundary conditions are of the fixed type and the structure is plane. DSj = Σi=(1-j) di
  • 53. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 54. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. • Built 1967 • 3 spans, 1067 feet long • 1977 – new wearing surface • 1998 – curbs and railings replaced I-35 West Bridge, Minneapolis, MN
  • 55. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. North Downtown I-35 West Bridge, Minneapolis, MNPhotofromaircraftflyingoverhead. • At 6:05 pm on August 1st 2007 Bridge Collapsed • 13 People killed & approximately 145 Injured
  • 56. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. I-35 W bridge I-35 West Bridge, Minneapolis, MN NTSB 2007
  • 57. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Undamaged Damaged scenario I-35 West Bridge, Minneapolis, MN – damage scenarios
  • 58. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. I-35 West Bridge, Minneapolis, MN – damage scenarios 3D 2D
  • 59. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. d1 d2d3 d4 d5 d7 d6 37 59 42 45 35 38 23 63 41 58 55 65 62 77 0 20 40 60 80 100 1 2 3 4 5 6 7 Robustness% Scenario Cf max Robustness 1 2 3 4 5 6 7 Scenario Cf max Robustness Damage scenario d1 d2 d3 d4 d5 d6 d7 DSj = di I-35 West Bridge, Minneapolis, MN – single damage
  • 60. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. d1 d2d3 d4 d5 d7 d6 83 87 88 53 60 86 64 17 13 12 47 40 14 36 0 20 40 60 80 100 1 2 3 4 5 6 7 Robustness% Scenario Cf max Robustness Damage scenario d1 d2 d3 d4 d5 d6 d7 I-35 West Bridge, Minneapolis, MN/ enhanced– single damage DSj = di
  • 61. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 62. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. References Alashker, Y., Li, H. and El-Tawil, S. (2011), “Approximations in Progressive Collapse Modeling”, J. Struct. Eng.- ASCE, 137(9), 914-924. Arup (2011), Review of international research on structural robustness and disproportionate collapse, London: Department for Communities and Local Government. ASCE 7-05 (2005), Minimum design loads for buildings and other structures, American Society of Civil Engineers (ASCE). Biondini, F. and Frangopol, D. (2009), “Lifetime reliability-based optimization of reinforced concrete cross-sections under corrosion”, Struct. Saf., 31(6), 483-489. Biondini, F., Frangopol, D.M. and Restelli, S. (2008), “On structural robustness, redundancy and static indeterminancy”, Proceedings of the 2008 Structures Congress, April 24-26, 2008, Vancouver, BC, Canada. Bontempi, F. and Giuliani, L. (2008), “Nonlinear dynamic analysis for the structural robustness assessment of a complex structural system”, Proceedings of the 2008 Structures Congress, April 24-26, 2008, Vancouver, BC, Canada. Bontempi, F., Giuliani, L. and Gkoumas, K. (2007), “Handling the exceptions: dependability of systems and structural robustness”, Invited Lecture, Proceedings of the 3rd International Conference on Structural Engineering, Mechanics and Computation (SEMC), Cape Town, South Africa, September 10-12. Brando, F., Testa, R.B. and Bontempi, F. (2010), “Multilevel structural analysis for robustness assessment of a steel truss bridge”, Bridge Maintenance, Safety, Management and Life-Cycle Optimization - Frangopol, Sause and Kusko (eds), Taylor & Francis Group, London, ISBN 978-0-415-87786-2. Canisius, T.D.G., Sorensen, J.D. and Baker, J.W. (2007), “Robustness of structural systems - A new focus for the Joint Committee on Structural Safety (JCSS)”, Proceedings of the 10th Int. Conf. on Applications of Statistics and Probability in Civil Engineering (ICASP10), Taylor and Francis, London. Casciati, S. and Faravelli, L. (2008) Building a Robustness Index. Robustness of Structures COST Action TU0601, 1st Workshop, February 4-5, 2008, ETH Zurich, Zurich, Switzerland. Cha, E. J. and Ellingwood, B. R. (2012), “Risk-averse decision-making for civil infrastructure exposed to low-probability, high- consequence events”, Reliab. Eng. Syst. Safe., 104(1), 27-35. Choi, J-h. and Chang, D-k. (2009), “Prevention of progressive collapse for building structures to member disappearance by accidental actions”, J. Loss Prevent. Proc., 22(6), 1016-1019. COST (2011), TU0601 - Structural Robustness Design for Practising Engineers, Canisius, T.D.G. (Editor). Crosti, C. and Duthinh, D. (2012), “Simplified gusset plate model for failure prediction of truss bridges”, Bridge Maintenance, Safety, Management, Resilience and Sustainability - Proceedings of the 6th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2012, Italy, Stresa, 8-12 July 2012. Crosti, C., Duthinh, D. and Simiu, E. (2011), “Risk consistency and synergy in multihazard design”, J. Struct. Eng.- ASCE, 137(8), 844- 849.
  • 63. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. References DoD - Department of Defense (2009), Unified Facilities Criteria (UFC). Report No. UFC 4-023-03: Design of buildings to resist progressive collapse. Washington DC: National Institute of Building Sciences. Ellingwood, B. (2002), “Load and resistance factor criteria for progressive collapse design”, Proceedings of Workshop on Prevention of Progressive Collapse, National Institute of Building Sciences, Washington, D.C Ellingwood, B.R. and Dusenberry, D.O. (2005), “Building design for abnormal loads and progressive collapse”, Comput-Aided Civ. Inf., 20(3), 194-205. Ellingwood, B.R., Smilowitz, R., Dusenberry, D.O., Duthinh, D. and Carino, N.J. (2007), Report No. NISTIR 7396: Best practices for reducing the potential for progressive collapse in buildings. Washington DC: National Institute of Standards and Technology (NIST) EN 1990 (2002), Eurocode - Basis of structural design. Faber, M.H. and Stewart, M.G. (2003), “Risk assessment for civil engineering facilities: critical overview and discussion”, Reliab. Eng. Syst. Safe., 80(2), 173-184. FHWA (2011), Framework for Improving Resilience of Bridge Design, Publication No IF-11-016. Galal, K. and El-Sawy, T. (2010), “Effect of retrofit strategies on mitigating progressive collapse of steel frame structures”, J. Constr. Steel Res., 66(4), 520-531. Ghosn, M. and Moses, F. (1998), NCHRP Report 406: Redundancy in Highway Bridge Superstructures, TRB, National Research Council, Washington, D.C. Giuliani, L. (2012), “Structural safety in case of extreme actions”, Special Issue on: “Performance and Robustness of Complex Structural Systems”, Int. J. of Lifecycle Performance Engineering (IJLCPE), 1(1), 22-40. GSA - General Service Administration (2003), Progressive collapse analysis and design guidelines for new federal office buildings and major modernization project, Washington DC: GSA. Hoffman, S. T. and Fahnestock, L. A. (2011), “Behavior of multi-story steel buildings under dynamic column loss scenarios”, Steel Compos. Struc., 11(2), 149-168. HSE - Health and Safety Executive (2001), Reducing risks, protecting people, HSE’s decision-making process, United King: Crown copyright. Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A. (2008a), “Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework”, Eng. Struct., 30(5), 1308-1318. Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A. (2008b), “Progressive collapse of multi-storey buildings due to sudden column loss - Part II: Application”, Eng. Struct., 30(5), 1424-1438. Kim, J. and Kim, T. (2009), “Assessment of progressive collapse-resisting capacity of steel moment frames”, J. Constr. Steel Res., 65(1), 169-179.
  • 64. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. References Kwasniewski, L. (2010), “Nonlinear dynamic simulations of progressive collapse for a multistory building”, Eng. Struct., 32(5), 1223- 1235. Malla, R.B., Agarwal, P. and Ahmad, R. (2011), “Dynamic analysis methodology for progressive failure of truss structures considering inelastic postbuckling cyclic member behavior”, Eng. Struct., 33(5), 1503-1513. Miyachi, K., Nakamura, S. and Manda, A. (2012), “Progressive collapse analysis of steel truss bridges and evaluation of ductility”, J. Constr. Steel Res., 78, 192-200. Nafday, A.M. (2008), “System Safety Performance Metrics for Skeletal Structures”, J. Struct. Eng.- ASCE, 134(3), 499-504. Nafday, A.M. (2011), “Consequence-based structural design approach for black swan events”, Struct. Saf., 33(1), 108-114. Olmati, P., Gkoumas, K., Brando, F., Cao, L. (2013) “Consequence-based robustness assessment of a steel truss bridge”, Steel and Composite Structures, An International Journal, 14(4), 379-395. Rezvani, F. H. and Asgarian, B. (2012), “Element loss analysis of concentrically braced frames considering structural performance criteria”, Steel Compos. Struc., 12(3), 231-248. Saydam, D. and Frangopol, D. M. (2011), “Time-dependent performance indicators of damaged bridge superstructures”, Eng. Struct., 33(9), 2458-2471. Starossek, U. (2009), Progressive collapse of structures, London: Thomas Telford Publishing. Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr. Fac. 24(6), 519-528. Starossek, U. and Haberland, M. (2012), “Robustness of structures”, Special Issue on: “Performance and Robustness of Complex Structural Systems”, Int. J. of Lifecycle Performance Engineering (IJLCPE), 1(1), 3-21. Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.). London: Penguin. p. 400. ISBN 1- 84614045-5. Yuan, W. and Tan, K. H. (2011), “Modeling of progressive collapse of a multi-storey structure using a spring-mass-damper system”, Struct. Eng. Mech., 37(1), 79-93.
  • 65. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. Acknowledgements - Luisa Giuliani, PhD. Associate Professor, DTU, Denmark. - Francesca Brando, PhD. Senior Engineer, Thornton Tomasetti, NY. - Pierluigi Olmati, PhD. Post-doc, Surrey University, UK.
  • 66. Corso di Dottorato: Introduzione all'o mizzazione strutturale Roma, 21 Giugno 2014 Prof.-Ing. Franco Bontempi, Ing. Konstantinos Gkoumas, Ph.D. “Structural robustness: definitions, examples and consequence based assessment of structures” Konstantinos Gkoumas, Ph.D., P.E. Corso di Dottorato: introduzione all'ottimizzazione strutturale Prof.-Ing. Franco Bontempi Dipartimento di Ingegneria Strutturale e Geotecnica Dottorato di Ricerca in Ingegneria delle Strutture Rome, June 21 2014