SlideShare ist ein Scribd-Unternehmen logo
1 von 43
Downloaden Sie, um offline zu lesen
Lecture 2
Bond Valuation &
Equity Valuation
Financial Management(N12403)
Lecturer:
Farzad Javidanrad (Autumn 2014-2015)
Some Basics in Algebra
• Geometric sequence (progression): is a sequence of numbers where each term
(apart from the first term) can be obtained by multiplying the previous term by a
fixed non-zero number, called the common ratio.
𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3, … , 𝑎𝑟 𝑛−1, …
• Where 𝒕 𝟏 = 𝒕 𝟏
𝒕 𝟐 = 𝒕 𝟏 × 𝒓
𝒕 𝟑 = 𝒕 𝟐 × 𝒓 = 𝒕 𝟏 × 𝒓 𝟐
𝒕 𝟒 = 𝒕 𝟑 × 𝒓 = 𝒕 𝟏 × 𝒓 𝟑
⋮
𝒕 𝒏 = 𝒕 𝒏−𝟏 × 𝒓 = 𝒕 𝟏 × 𝒓 𝒏−𝟏
𝑡1
=the first term
𝑡 𝑛
=the n-th term
𝑡2 𝑡3
We also know that the common
ratio 𝒓 can be obtained by
dividing each term by its
previous term; that is:
𝒕 𝟐
𝒕 𝟏
=
𝒕 𝟑
𝒕 𝟐
= ⋯ =
𝒕 𝒏
𝒕 𝒏−𝟏
= 𝒓
Some Basics in Algebra
• Sum of the terms (entirely or partially) of a geometric sequence is called
geometric series. The series for 𝑛 term can be shown as 𝑆 𝑛:
𝑆 𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ + 𝑎𝑟 𝑛−1 =
𝑖=0
𝑛−1
𝑎𝑟 𝑖 (1)
• Multiplying 𝑆 𝑛 by the common ratio 𝑟, we have:
𝑆 𝑛 × 𝑟 = 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + 𝑎𝑟4 + ⋯ + 𝑎𝑟 𝑛 (2)
• Subtracting (2) from (1), we have:
𝑆 𝑛 − 𝑆 𝑛 × 𝑟 = 𝑎 − 𝑎𝑟 𝑛
Or
𝑆 𝑛 1 − 𝑟 = 𝑎 1 − 𝑟 𝑛
𝑟≠1
𝑆 𝑛 =
𝑎(1 − 𝑟 𝑛)
1 − 𝑟
Some Basics in Algebra
• Note: if 𝑟 < 1 (−1 < 𝑟 < 1) and the number of terms in the series is increasing
𝑛 → +∞ then: 𝑟 𝑛 → 0.
• Under such circumstances the series is said to be convergent (means, not
increasing infinitely) to a value, which is:
𝑆 𝑛
𝒏→+∞ 𝑎
1 − 𝑟
Or
lim
𝑛→∞
𝑆 𝑛 =
𝑎
1 − 𝑟
Perpetuity and its PV
• Perpetuities are assets with a constant stream of cash flow each year with no end.
British government has sold this type of securities during the war with France
and call them Consols (Consol bonds)but still paying a fixed interest on them.
• The PV of a perpetuity is:
𝑃𝑉 =
𝐶
(1 + 𝑟)
+
𝐶
(1 + 𝑟)2
+
𝐶
1 + 𝑟 3
+ ⋯ =
𝑖=1
∞
𝐶
1 + 𝑟 𝑖
From basic algebra we know that:
𝑖=1
∞ 𝐶
1+𝑟 𝑖 =
𝐶
𝑟
(𝐡𝐢𝐧𝐭: 𝐮𝐬𝐞 𝐭𝐡𝐞 𝐠𝐞𝐨𝐦𝐞𝐭𝐫𝐢𝐜 𝐬𝐞𝐫𝐢𝐞𝐬 𝐟𝐨𝐫𝐦𝐮𝐥𝐚 𝐰𝐢𝐭𝐡
𝟏
𝟏+𝒓
𝐚𝐬 𝐭𝐡𝐞 𝐜𝐨𝐦𝐦𝐨𝐧 𝐫𝐚𝐭𝐢𝐨)
So, 𝑃𝑉 =
𝐶
𝑟
and the rate of return for a perpetuity can be obtained as: 𝑟 =
𝐶
𝑃𝑉
Delayed Perpetuity and its PV
• If a perpetuity starts after 𝑚 years (not from the beginning) its PV from year
𝑚 onward is:
𝑃𝑉𝑦 𝑚
=
𝐶
𝑟
• but it should be revalued (adjusted) by the discount factor
1
1+𝑟 𝑚 in order to
calculate its PV at current time (year zero); that is:
𝑃𝑉𝑦0
=
𝐶
𝑟
×
1
1+𝑟 𝑚
• State pension is an example of this type of perpetuity. In the UK it starts at age 65.
Annuity and its PV
• Annuity is an financial asset that pays a constant amount of money every year for
a specific period of time. A credit card order is an example of annuity. The PV of
an annuity for 𝑚 years can be calculated through the standard PV formula and
using basic algebra:
𝑃𝑉 =
𝐶
(1 + 𝑟)
+
𝐶
(1 + 𝑟)2
+ ⋯ +
𝐶
1 + 𝑟 𝑚
=
𝑖=1
𝑚
𝐶
1 + 𝑟 𝑖
=
𝐶
𝑟
1 −
1
1 + 𝑟 𝑚
= 𝐶
1
𝑟
−
1
𝑟 1 + 𝑟 𝑚
= 𝐶 × 𝐴 𝑟
𝑚
Annuity Factor
Growing Perpetuity at a Constant Rate
• Let’s consider the situation that stream of a cash flow growing at a constant rate
𝑔, so, the PV for a growing perpetuity can be written as follows:
𝑃𝑉 =
𝐶1
(1 + 𝑟)
+
𝐶2
(1 + 𝑟)2
+
𝐶3
1 + 𝑟 3
+ ⋯
=
𝐶1
(1 + 𝑟)
+
𝐶1(1 + 𝑔)
(1 + 𝑟)2
+
𝐶1(1 + 𝑔)2
(1 + 𝑟)3
+ ⋯
=
𝑖=1
∞
𝐶1 1 + 𝑔 𝑖−1
1 + 𝑟 𝑖
=
𝐶1
𝑟 − 𝑔
Growing Annuity at a Constant Rate
• Imagine a student has the option to pay specific lump sum of money in advance
for a 4 years study at university or paying yearly with a fixed rate increase each
year. Which method is better?
• To answer this we need to find the PV for the stream of cash flow;
𝑃𝑉 =
𝐶1
(1 + 𝑟)
+
𝐶1(1 + 𝑔)
(1 + 𝑟)2
+ ⋯ +
𝐶1(1 + 𝑔) 𝑚−1
(1 + 𝑟) 𝑚
=
𝑖=1
𝑚
𝐶1 1 + 𝑔 𝑖−1
1 + 𝑟 𝑖
=
𝐶1
𝑟 − 𝑔
1 −
1 + 𝑔 𝑚
1 + 𝑟 𝑚
• If this value is bigger than the lump sum it will be better to go with the first
option.
Perpetuity & Annuity (Review)
Years 1 2 … m-1 m m+1 … Present Value
Perpetuity
(model 1)
𝑪 𝑪 … 𝑪 𝑪 𝑪 … 𝑪
𝒓
Perpetuity
(model 2)
_ _ _ _ 𝑪 𝑪 … 𝑪
𝒓 𝟏 + 𝒓 𝒎
Annuity
(for m yrs.)
𝑪 𝑪 … 𝑪 𝑪 _ _ 𝑪
𝒓
𝟏 −
𝟏
𝟏 + 𝒓 𝒎
Perpetuity
(Growing)
𝑪 𝑪(𝟏 + 𝒈) … 𝑪 𝟏 + 𝒈 𝒎−𝟐
𝑪 𝟏 + 𝒈 𝒎−𝟏 𝑪 𝟏 + 𝒈 𝒎
… 𝑪
𝒓 − 𝒈
Annuity
(Growing)
𝑪 𝑪(𝟏 + 𝒈) … 𝑪 𝟏 + 𝒈 𝒎−𝟐
𝑪 𝟏 + 𝒈 𝒎−𝟏
_ _ 𝑪
𝒓 − 𝒈
𝟏 −
𝟏 + 𝒈 𝒎
𝟏 + 𝒓 𝒎
• To see the difference between perpetuities (starting from year 1 or later) and
annuity the following table would be informative:
Future Value of an Annuity
• Imagine that you save a specific amount of money, 𝐶, every year (e.g. for your
child) for 𝑚 years and suppose that the rate of interest remains 𝑟 during all these
years. What is the future value of this annuity? Or what the value of your money
will be at the end of 𝑚 years?
• In order to find the future value of an annuity, first, we should find the PV of the
annuity using annuity factor:
𝑃𝑉 = 𝐶
1
𝑟
−
1
𝑟 1 + 𝑟 𝑚
= 𝐶 × 𝐴 𝑟
𝑚
So, the Future Value (FV) of this annuity at a compound rate would be:
𝐹𝑉 = 𝑃𝑉 × 1 + 𝑟 𝑚 =
𝐶
𝑟
1 + 𝑟 𝑚 − 1
Annuity for 𝑚 yeras
Some Specific Examples
o A Delayed Annuity:(Example 4.18, Hiillier et al 2013, p.111):
Roberto Balotelli will receive a four-year annuity of €500 per year, beginning at date
6. If the interest rate is 10 percent, what is the present value of his annuity? How do
you do it?
1. Discount annuity back to year 5
2. Discount year 5 value of annuity back to year 0
Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
Some Specific Examples
Step 1: Discount annuity to year 5
€500
1 −
1
1.10 4
0.10
= 500 × 𝐴0.10
4
= 500 × 3.1699
= €1584.95
Step 2: Discount year 5 value back to year 0
5
€1,584.95
€984.13
(1.10)

Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
Some Specific Examples
o Annuity Due: (Example 4.19, Hiillier et al 2013, p.112)
Mark Lancaster receives £50,000 a year for 20 years from a competition. Assume
that the first payment occurs immediately and that the discount rate is 8 percent.
What is the value of the prize?
£50,000 + £50,000 × 𝐴0.08
19
= 50,000 + 50,000 × 9.6036 = £530,180
o Infrequent Annuities: (Example 4.20, Hiillier et al 2013, p.112)
Ann Chen receives an annuity of £450, payable once every two years. The annuity
stretches out over 20 years. The first payment occurs at date 2— that is, two years
from today. The annual interest rate is 6 percent. What is the value of this annuity?
19 years Annuity
Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
Some Specific Examples
• Determine the interest rate over a two-year period.
(1.06 x 1.06) – 1 = 12.36%
• Now calculate the present value of a £450 annuity over 10 periods, with an interest rate of
12.36 percent per period:
o William and Kate Windsor are saving for the university education of their new born
daughter, Susan. The Windsors estimate that university expenses will be €30,000 per
year when their daughter reaches university in 18 years. The annual interest rate over the
next few decades will be 14 percent. How much money must they deposit in the bank each
year so that their daughter will be completely supported through four years of university?
10
10
.1236
1
1
(1 .1236)
£450 £450 £2,505.57
.1236
A
 
 
    
 
  
Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
Some Specific Examples
Three Steps:
1. Calculate the Year 17 Value of the University payments
2. Calculate the Year 0 value of the university payments
3. Calculate the cash flow that equates the year 1 – 17 payments to the year 0 value
of the university payments
Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
Some Specific Examples
1.
2.
3.
4
4
.14
1
1
(1.14)
€30,000 €30.000
.14
€30,000 2,9137 €87,411
A
 
 
   
 
  
  
17
€87,411
€9,422.91
(1.14)

17
.14 €9,422.91C A 
€9,422.91
€1,478.59
6.3729
C  
Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
Quoted VS Effective Annual Interest Rate
• When talking about compound interest we need to be aware of:
1% 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ ≠ 12% 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟
Why?
• The Effective Annual Interest Rate is not the summation of the interest rates paid
daily, monthly, quarterly or semi-annually. In fact, 1% interest rate per month is
equivalent with 12.68% interest rate (and not 12%) per year, which is called
effective annual interest rate.
• If there was no compound interest, the frequency of payments had no impact on
the yearly paid interest and Effective Annual Interest rate would be equal to
Annual Percentage Rate (APR).
Quoted VS Effective Annual Interest Rate
• The relation between what is called nominal (or quoted) annual interest rate (𝑖)
and the effective annual interest (𝑟) can be specified as following:
𝑟 = 1 +
𝑖
𝑛
𝑛
− 1
Where 𝑟 is the effective annual interest rate and 𝑖 is the nominal (or quoted)
annual interest rate (or APR) and 𝑛 represents the frequency of payments.
• If APR on your credit card is 24%, this means that you need to pay 2% interest
per month when you get your statement but what you really pay annually is:
1 +
0.24
12
12
− 1 = 1.02 12 − 1 ≅ 0.2682 = 26.8%
A
Effective Annual Interest Rate=Annual Percentage Yield (APE)
Continuous Compounding
• If there is no limit for the frequency of payments (𝑛 )we can talk about continuous
compounding. Mathematically, when 𝑛 → +∞, the expression 1 +
1
𝑛
𝑛
converge to
its limit (𝑒 = 2.718), i.e.:
lim
𝑛→∞
1 +
1
𝑛
𝑛
= 𝑒
• With a simple substitution, we can show that:
lim
𝑛→∞
1 +
𝑖
𝑛
𝑛
= 𝑒 𝑖
Replacing this into , the effective annual interest rate will be:
𝑟 = 𝑒 𝑖 − 1
• If 𝑖 = 0.12, the effective annual rate continuously compounded is about 0.127 or
12.7%.
A
Nominal
Rate
Semi-Annual Quarterly Monthly Daily Continuous
1% 1.003% 1.004% 1.005% 1.005% 1.005%
5% 5.063% 5.095% 5.116% 5.127% 5.127%
10% 10.250% 10.381% 10.471% 10.516% 10.517%
15% 15.563% 15.865% 16.075% 16.180% 16.183%
20% 21.000% 21.551% 21.939% 22.134% 22.140%
30% 32.250% 33.547% 34.489% 34.969% 34.986%
40% 44.000% 46.410% 48.213% 49.150% 49.182%
50% 56.250% 60.181% 63.209% 64.816% 64.872%
Effective Annual Rate Based on Frequency of Compounding
Adopted from http://en.wikipedia.org/wiki/Effective_interest_rate
Quoted VS Effective Annual Interest Rate
• The following table shows the difference between nominal and effective annual
interest rates based on the frequency of compounding:
Difference Between Annual, Semi-Annual & Continuous Compounding
Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
PV of Bonds
• Stocks & Shares: They are both certificates of ownership. Stocks refer to the ownership of
any company but shares refer to the ownership of a specific company.
• Bonds:
 Financial instruments (or debt securities or long-term loans) showing the indebtedness of
the bond issuer (borrower) to the bond holder (lender or creditor).
 For usual bonds the issuer is obliged to pay interests (coupons) before reaching to its
maturity date (redemption date), which is the final date of payment of the original debt
(principal) and possibly the remaining interests.
• Shareholders are investors in a company with an equity of ownership but bondholders
are just lenders (or creditors) of a company with no ownership right but in case of
bankruptcy of the company they have priority to shareholders in terms of repayments.
Shares can be kept infinitely but bonds should be redeemed at their maturity dates.
Consols are the only exceptions.
PV of Bonds
Adopted from
http://images.dailytech.com/nimage/21262_large_Treasury_Bonds.jpg
•Large corporations, credit institutions,
governments and international institutions can
issue bonds when they need to borrow money
for long-term.
•Among all, government bonds are the safest
securities in the world. UK government bonds
are called Gilts as it was a certificate trimmed
by gold.
• Bonds maturities can be categorised as short-
terms, medium-terms and long-terms. In the
UK, the maturities defined by Debt
Management Office (DMO) as short (0-7 years),
medium ( 7-15 years) and long (15+ years),
respectively.
•Every bond has a face value (par value) and
bond’s coupons are calculated as a percentage
of its face value.
Adopted from http://www.dailyfinance.com/2013/02/06/bond-
market-crash-fears-interest-rates/
Adopted from http://www.the-diy-income-
investor.com/2012_01_01_archive.html
PV of Bonds
• There are three types of bonds in general:
I. The Pure Discount Bond: Simplest bond which promises a single payment in its
maturity date. It could be 1-year discount or 2-years discount or n-years discount bond.
Holders of these bonds receive no payment until the maturity date and for that reason
they are called zero coupon bonds.
• The PV of these bonds is the discounted amount of the face value in its maturity date, i.e.:
𝑃𝑉 =
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟 𝑡
Where 𝑟 might be (but not necessarily) the market interest rate and 𝑡 is the maturity date of
the bond.
o The PV of a pure 6-years discount bond with a face value
of £1000 at the interest rate of 10% is:
𝑃𝑉 =
£1000
1.16 = £564.47
This means the bond keeps
56.4% of its face value after 6
years. So, if it is offered for a
price more than £564.47 it is
over-valued but less than that is
profitable for the buyer.
PV of Bonds
II. The Level Coupon Bond: Usual bonds which offers a regular cash payment or coupons
(usually yearly or 6-monthly) up to and including its maturity date.
• The value of this type of bond is again the PV of the bond, which is calculated through the
following formula: (see an example in the next slide)
𝑃𝑉 =
𝐶
(1 + 𝑟)
+
𝐶
(1 + 𝑟)2
+ ⋯ +
𝐶
1 + 𝑟 𝑡
+
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟 𝑡
=
𝑖=1
𝑡
𝐶
1 + 𝑟 𝑖
+
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟 𝑡
=
𝐶
𝑟
1 −
1
1 + 𝑟 𝑡
+
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟 𝑡
III. Consol: Special bond which offers a regular coupons forever with no finite maturity date.
The PV of these type of bonds can be calculated as:
𝑃𝑉 =
𝐶
(1 + 𝑟)
+
𝐶
(1 + 𝑟)2
+ ⋯ =
𝑖=1
∞
𝐶
1 + 𝑟 𝑖
=
𝐶
𝑟
Years 1 2 ….. t t+1 ….
Pure Discount Bonds
--- --- --- F
Coupon Bonds C C …. C+F
Consols C C …. C C C
PV of Bonds
o Example for the coupon bonds: If you buy a 4% treasury bond in 2014 with a face
value of £100 maturing in 2018, it means you are entitled to get 0.04 × 100 = £4
interest (coupon) each year until 2018, which you receive the final coupon and the
face value (nominal value) of your bond, i.e.:
£4
2015
, £4
2016
, £4
2017
, £104
2018
• Obviously, this is an annuity for 4 years plus a final payment. So, the PV of this
bond can be calculated as:
£4
𝑟
1 −
1
1 + 𝑟 4
+
£100
1 + 𝑟 4
But this PV depends on the opportunity cost of capital which in this case must be the
rate of return offered by other similar short-term treasury bonds (similar here refers
to the same level of risk and credit quality; same asset class).
PV of Bonds
• Imagine other short-term treasury bonds have 2.8% return, the PV of our example would
be:
• Now let’s look at the question from different angle. What return do investors receive when
they buy a bond and hold it to its maturity if the asked price of the bond is given?
• Based on our example, we need to find 𝑟 in this equation:
104.40 =
4
1 + 𝑟
+
4
1 + 𝑟 2
+
4
1 + 𝑟 3
+
104
1 + 𝑟 4
This rate of return 𝑟 is called yield to maturity and based on the previous information, we
know that 𝑟 = 2.8% but if we did not have this information, solving this equation would
require the trial and error technique or a computer software.
Note: the price of a bond has an inverse relation with the rate of interest (or yield to
maturity rate). Why? Can you explain this through the opportunity cost of having bonds?
4
0.028
1 −
1
1 + 0.028 4
+
100
1 + 0.028 4
≅ 104.40
The Term Structure of Interest Rates (Yield Curve)
• To calculate the PV of a cash flow we use a single discount rate 𝑟 with the assumption that
𝑟 does not change or the change is ignorable. For bonds, we also use a fixed rate (as yield
to maturity rate) for the whole period. But, in long-term, the assumption of fixed 𝑟 cannot
be supported.
• In reality, yields or interest rates vary with the length of the term (length of maturity). In
general, yields increase along with the term (maturity), because lenders demand higher
yields for longer-term loans as a compensation for the greater risk associated with the
longer loan contracts, in comparison to the short-term loan contracts.
• The relationship between different yields (or interest rates) and different maturities
(terms) for a specific bond (government or corporate bond) is called the term structure of
interest rates, which can be plotted as a curve, known as yield curve. In other words, the
term structure of interest rates show the relationship between short-term and long-tem
interest rates.
The Term Structure of Interest Rates (Yield Curve)
• So, the yield curve plots different yields of a specific bond (or similar bonds,
in terms of their quality) against their maturities.
• The term structure or its graphical representation of it (yield curve) play an
important role in financial economics. It shows the expectations of market
participants about the level of risk in the economy.
• The shape of the yield curve indicates the priorities of lenders relative to
that of borrowers. It explains how lenders (or investors) see the state of
economy and the level of risk in lending/investing. Is it more risky to lend
(invest) long-term or short-term? How much are they confident about the
state of economy.
Yield Curve & Its Meaning
• If short-term yields are lower than long-term yields, the economy is in normal
situation and long-term investments are not considered as high-risk activities, so
the slope of the yield curve is positive and the curve is called normal yield curve.
When the yield curve has a
positive slope lenders are
happy to provide long-term
loan to borrowers, as they are
confident (in general) about
the state of economy and
future returns from
barrowers.
http://www.investinganswers.com/financial-dictionary/bonds/term-structure-interest-rates-2936
Yield Curve & Its Meaning
• If short-term yields are higher than long-term yields, the economy is in
risky situation and long-term investments are considered as high-risk
activities, so the slope of the yield curve is negative and the curve is called
inverted yield curve.
The British pound yield
curve on February 9,
2005. This curve is
unusual (inverted) in
that long-term rates are
lower than short-term
ones.
Both adopted from http://en.wikipedia.org/wiki/Yield_curve
Yield Curve & Its Meaning
• Finally, if there is a little or no variation between short-term and long-term yields
rates the yield curve will be flat. This means that lenders/investors are not sure
about future and the risk of lending/investing is the same either in short or long-
term.
• The flat yield curve can be usually seen during transitory periods when the
economy does not show any sign of expansion (normal curve) or contraction
(inverted curve).
When short- and long-term bonds are
offering equivalent yields, there is
usually little benefit in holding the
longer-term instruments - that is, the
investor does not gain any excess
compensation for the risks associated
with holding longer-term securities.
Both adopted from http://www.investopedia.com/terms/f/flatyieldcurve.asp
PV & Different Interest Rates (Spot Rates)
• How to calculate the PV of a bond when there are different rates of interest each year (spot rates)?
• In this case, we need to find the PV of each year separately, using the associated discount factor:
𝑃𝑉1 =
𝐶
1 + 𝑟1
𝑃𝑉2 =
𝐶
1 + 𝑟2
2
⋮
𝑃𝑉𝑡 =
𝐶 + 𝐹𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒
1 + 𝑟𝑡
𝑡
• and then add all the PVs in order to reach to a total PV:
𝑃𝑉∗
=
𝑖=1
𝑡
𝑃𝑉𝑖
• and then use the total value (𝑃𝑉∗) to find a unique yield to maturity rate:
𝑃𝑉∗
=
𝐶
1+𝑦
+
𝐶
1+𝑦 2 + ⋯ +
𝐶+𝑓𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒
1+𝑦 𝑡 → 𝑦∗
1st Year
2nd Year
t-th Year
 Remember that 𝒓 𝟏, 𝒓 𝟐, … , 𝒓 𝒕
are the spot rates for each
represented year. Using these
spot rates we can calculate
the total PV (total value) of
the bond and then the yield
to maturity rate. we cannot
find the yield to maturity rate
until we know the price
(value) of the bond.
 Spot rates comes first and
then yield to maturity rate
can be calculated
 Spot rate (or sometimes spot price) is the quoted
rate for a currency, commodity or a security
which is valid for a specific period of time (daily,
weekly, monthly or yearly).
 This rate is determined based on the interaction
between demand and supply for currencies or
commodities but for a bond it is determined
based on the price of a zero coupon bond.
PV of Bonds & Frequency of Payments
• In the previous formula used to calculate the PV (value) of a bond we assumed that the coupons
are paid yearly, but if the frequency of payments change the power of the denominators will
change: (here we consider a 5 years maturity)
𝑃𝑉 =
𝐶
2
(1 + 𝑟
2)1
+
𝐶
2
(1 + 𝑟
2)2
+
𝐶
2
(1 + 𝑟
2)3
+
𝐶
2
(1 + 𝑟
2)4
+ ⋯ +
𝐶
2
1 + 𝑟
2
10 +
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟
2
10
𝑃𝑉 =
𝐶
3
(1 + 𝑟
3
)1
+
𝐶
3
(1 + 𝑟
3
)2
+
𝐶
3
(1 + 𝑟
3
)3
+
𝐶
3
(1 + 𝑟
3
)4
+ ⋯ +
𝐶
3
1 + 𝑟
3
15 +
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟
3
15
𝑃𝑉 =
𝐶
4
(1 + 𝑟
4)1
+
𝐶
4
(1 + 𝑟
4)2
+
𝐶
4
(1 + 𝑟
4)3
+
𝐶
4
(1 + 𝑟
4)4
+ ⋯ +
𝐶
4
1 + 𝑟
4
20 +
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟
4
20
Where 𝑟 represents the rate of return for a year. It is not necessarily the market interest rate. We
may use yield to maturity rate of similar bonds (same category in terms of turn and risk). Which one
is bigger?
Arrows
show one
full year
Every 6
months
Every 4
months
Every 3
months
• In general if 𝐶 is the face value of the bond and 𝑟 represents yearly rate of return and 𝑡 number of
years and 𝑓, the frequency of payments in a year (𝑓 ≤ 365), then the PV of the bond can be
calculated as:
𝑃𝑉 =
𝐶
𝑓
1 + 𝑟
𝑓
1 +
𝐶
𝑓
1 + 𝑟
𝑓
2 +
𝐶
𝑓
1 + 𝑟
𝑓
3 + ⋯ +
𝐶
𝑓
1 + 𝑟
𝑓
𝑓×𝑡
+
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟
𝑓
𝑓×𝑡
𝑃𝑉 =
𝐶
𝑟
1 −
1
1 + 𝑟
𝑓
𝑓×𝑡
+
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟
𝑓
𝑓×𝑡
• And, for a zero-coupon bond:
𝑃𝑉 =
𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
1 + 𝑟
𝑓
𝑓×𝑡
o Find a formula for a Consol.
PV of Bonds & Frequency of Payments
Bond’s Return And Inflation
• Bond’s coupons are fixed nominal return each year but the real return
depends on the level of inflation. When inflation is high and it seems to
remain high, borrowers must offer a better deal to convince the
lenders/investors to buy and keep long-term bonds.
• The term nominal refer to what we observe in the market such as nominal
interest rate, nominal wages, nominal GDP, but when the variable is
adjusted for inflation (removing or eliminating the impact of inflation on
the variable) the real element appears, such as real interest rate, real wages,
real GDP.
• It is important for financial managers to base their calculation on real and
not nominal interest rates.
Bond’s Return And Inflation
• The economist Irving Fisher, believed that investors and in general, all
people, to some extent have money illusion; meaning the nominal (face)
value of money is mistaken for its purchasing power and in the presence of
money illusion, price fluctuations (in the form of inflation or deflation) do
many harms.
• His theory suggests that the change in nominal interest rate is
proportionate with a change in expected inflation rate. Mathematically, the
relation between real interest rate 𝑟 and nominal interest rate 𝑖 and
expected inflation rate 𝜋 𝑒 can be expressed as:
𝑟 =
1 + 𝑖
1 + 𝜋 𝑒
− 1
Valuation of Common Stocks
• When a corporation enters into the stock market, shareholders become its new owners
and the ownership of each shareholder is defined as the percentage of the total shares
he/she retains.
• Issuing new shares is an alternative way of borrowing. New shares go to the primary
market (where they are created) but the existing shares are being traded in the secondary
market executed by brokers (individuals or firms) after getting a market order from seller
and satisfying the limit order (price limit) of the buyer. (See pages 11-12 corporate finance, David
Hillier or this link http://www.investopedia.com/articles/02/101102.asp)
• This transactions might bring capital gain or capital loss for the seller.
AdoptedfromGooglepictures
Valuation of Common Stocks
• There are two sources of payoff for the share owners (if they stay with their shares
for a year): a) cash dividends and b) capital gain or loss.
• If 𝑃0, 𝑃1 are current price and the expected price (after a year) of a share,
respectively and 𝐷𝑖𝑣1is the expected dividend at the end of a year; the expected
rate of return 𝑟 at the end of the year is:
𝑟 =
𝐷𝑖𝑣1 + 𝑃1 − 𝑃0
𝑃0
So, the current price of share can be calculated as:
𝑃0 =
𝐷𝑖𝑣1 + 𝑃1
(1 + 𝑟)
PV of the share price &
its dividend
Valuation of Common Stocks
• If 𝑃2 is the price of the share at the end of year 2, we can determine the value of
𝑃1based on 𝐷𝑖𝑣2 and 𝑃2:
𝑃1 =
𝐷𝑖𝑣2 + 𝑃2
(1 + 𝑟)
So, the current price of a share can be calculated as:
𝑃0 =
𝐷𝑖𝑣1 + 𝑃1
(1 + 𝑟)
=
𝐷𝑖𝑣1 +
𝐷𝑖𝑣2 + 𝑃2
(1 + 𝑟)
(1 + 𝑟)
=
𝐷𝑖𝑣1
(1 + 𝑟)
+
𝐷𝑖𝑣2 + 𝑃2
(1 + 𝑟)2
If the share holder keeps the share for 𝑛 years, we have:
𝑃0 =
𝐷𝑖𝑣1
(1 + 𝑟)
+
𝐷𝑖𝑣2
(1 + 𝑟)2
+ ⋯ +
𝐷𝑖𝑣 𝑛 + 𝑃𝑛
1 + 𝑟 𝑛
=
𝑖=1
𝑛
𝐷𝑖𝑣𝑖
1 + 𝑟 𝑖
+
𝑃𝑛
1 + 𝑟 𝑛
If the above share is held infinitely, then:
𝑃0 = 𝑖=1
∞ 𝐷𝑖𝑣 𝑖
1+𝑟 𝑖
Valuation of Common Stocks
This formula is called dividend discount model of stock price or simply DCF.
• This formula says that the current price of stock can be obtained by discounting
(finding the PV) of the cash flow of dividend at the rate that can be obtained in
the capital market on other securities with a similar level of risk.
• If dividends grow at a constant rate 𝑔 each year (like growing perpetuity), the
current share price can be calculated by:
𝑃0 =
𝐷𝑖𝑣1
𝑟 − 𝑔
(𝑖𝑓 𝑟 > 𝑔)
• We can re-write the formula to show 𝑟 (expected return) as the subject. In this
case;
𝑟 =
𝐷𝑖𝑣1
𝑃0
+ 𝑔
Where
𝐷𝑖𝑣1
𝑃0
is called dividend yield.
Valuation of Common Stocks
Three Scenarios
Zero
Growth
Constant
Growth
Differential
Growth
Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
The same dividend each year
infinitely
(Hint: using perpetuity formula)

Weitere ähnliche Inhalte

Was ist angesagt?

Math financier Chapitre 2
Math financier Chapitre 2Math financier Chapitre 2
Math financier Chapitre 2Cours Fsjest
 
Net Present Value and Other Investment Rules
Net Present Value and Other Investment RulesNet Present Value and Other Investment Rules
Net Present Value and Other Investment RulesKartika Dwi Rachmawati
 
Financial Management Slides Ch 13
Financial Management Slides Ch 13Financial Management Slides Ch 13
Financial Management Slides Ch 13Sayyed Naveed Ali
 
Fundamental of Corporate Finance, chapter 1
Fundamental of Corporate Finance, chapter 1Fundamental of Corporate Finance, chapter 1
Fundamental of Corporate Finance, chapter 1Yin Sokheng
 
Chapter 05 Time Value Of Money
Chapter 05 Time Value Of MoneyChapter 05 Time Value Of Money
Chapter 05 Time Value Of MoneyAlamgir Alwani
 
Exercices d analyse financière s4
Exercices d analyse financière s4 Exercices d analyse financière s4
Exercices d analyse financière s4 Jamal Yasser
 
Capital budgeting (1)- Management accounting
Capital budgeting (1)- Management accountingCapital budgeting (1)- Management accounting
Capital budgeting (1)- Management accountingJithin Zcs
 
Exercices de Gestion Financière
Exercices de Gestion Financière Exercices de Gestion Financière
Exercices de Gestion Financière Lotfi TALEB, ESSECT
 
Balance Sheet Analysis
Balance Sheet AnalysisBalance Sheet Analysis
Balance Sheet AnalysisRavi Sekhar
 
Important Formulas of BEP, Ratio Analysis, Capital Budgeting
Important Formulas of BEP, Ratio Analysis, Capital BudgetingImportant Formulas of BEP, Ratio Analysis, Capital Budgeting
Important Formulas of BEP, Ratio Analysis, Capital BudgetingRaja Adapa
 

Was ist angesagt? (20)

IAS 17 Leases
IAS 17 LeasesIAS 17 Leases
IAS 17 Leases
 
Math financier Chapitre 2
Math financier Chapitre 2Math financier Chapitre 2
Math financier Chapitre 2
 
Net Present Value and Other Investment Rules
Net Present Value and Other Investment RulesNet Present Value and Other Investment Rules
Net Present Value and Other Investment Rules
 
CAPITAL BUDGETING TECHNIQUES
CAPITAL BUDGETING TECHNIQUESCAPITAL BUDGETING TECHNIQUES
CAPITAL BUDGETING TECHNIQUES
 
IAS 40 Investment Property
IAS 40 Investment PropertyIAS 40 Investment Property
IAS 40 Investment Property
 
14 Statement Of Cash Flows
14   Statement Of Cash Flows14   Statement Of Cash Flows
14 Statement Of Cash Flows
 
Partnership accounting
Partnership accountingPartnership accounting
Partnership accounting
 
Financial Management Slides Ch 13
Financial Management Slides Ch 13Financial Management Slides Ch 13
Financial Management Slides Ch 13
 
Fundamental of Corporate Finance, chapter 1
Fundamental of Corporate Finance, chapter 1Fundamental of Corporate Finance, chapter 1
Fundamental of Corporate Finance, chapter 1
 
Time Value of Money
Time Value of MoneyTime Value of Money
Time Value of Money
 
Chapter 05 Time Value Of Money
Chapter 05 Time Value Of MoneyChapter 05 Time Value Of Money
Chapter 05 Time Value Of Money
 
Exercices d analyse financière s4
Exercices d analyse financière s4 Exercices d analyse financière s4
Exercices d analyse financière s4
 
Capital budgeting (1)- Management accounting
Capital budgeting (1)- Management accountingCapital budgeting (1)- Management accounting
Capital budgeting (1)- Management accounting
 
Exercices de Gestion Financière
Exercices de Gestion Financière Exercices de Gestion Financière
Exercices de Gestion Financière
 
Balance Sheet Analysis
Balance Sheet AnalysisBalance Sheet Analysis
Balance Sheet Analysis
 
1. introduction to finance
1. introduction to finance1. introduction to finance
1. introduction to finance
 
Important Formulas of BEP, Ratio Analysis, Capital Budgeting
Important Formulas of BEP, Ratio Analysis, Capital BudgetingImportant Formulas of BEP, Ratio Analysis, Capital Budgeting
Important Formulas of BEP, Ratio Analysis, Capital Budgeting
 
Td3 pg2-corrige
Td3 pg2-corrigeTd3 pg2-corrige
Td3 pg2-corrige
 
Roadmap to ifrs
Roadmap to ifrsRoadmap to ifrs
Roadmap to ifrs
 
Chapitre 6: calculs financiers
Chapitre 6: calculs financiers Chapitre 6: calculs financiers
Chapitre 6: calculs financiers
 

Ähnlich wie Lecture 2

CFA LEVEL 1- Time Value of Money_compressed (1).pdf
CFA LEVEL 1- Time Value of Money_compressed (1).pdfCFA LEVEL 1- Time Value of Money_compressed (1).pdf
CFA LEVEL 1- Time Value of Money_compressed (1).pdfAlison Tutors
 
4th Lecture- discounted cash flows (1).pptx
4th Lecture- discounted cash flows (1).pptx4th Lecture- discounted cash flows (1).pptx
4th Lecture- discounted cash flows (1).pptxabdelhameedibrahim4
 
Chapter7 thetimevalueofmoney
Chapter7 thetimevalueofmoneyChapter7 thetimevalueofmoney
Chapter7 thetimevalueofmoneyAKSHAYA0000
 
Simple & compound interest
Simple & compound interestSimple & compound interest
Simple & compound interestvidyabhoge1
 
Chapter 6: The Time Value of Money
Chapter 6: The Time Value of MoneyChapter 6: The Time Value of Money
Chapter 6: The Time Value of MoneyNada G.Youssef
 
time value of money
 time value of money time value of money
time value of moneyRiya Arora
 
Cash-Flow-and-Compound-Interest.pptx-ppt
Cash-Flow-and-Compound-Interest.pptx-pptCash-Flow-and-Compound-Interest.pptx-ppt
Cash-Flow-and-Compound-Interest.pptx-pptRonjieOmpad
 
5 150316005456-conversion-gate01
5 150316005456-conversion-gate015 150316005456-conversion-gate01
5 150316005456-conversion-gate01abidiqbal55
 
5. more interest formula (part ii)
5. more interest formula (part ii)5. more interest formula (part ii)
5. more interest formula (part ii)Mohsin Siddique
 
Iii A Time Value Of Money
Iii  A Time Value Of MoneyIii  A Time Value Of Money
Iii A Time Value Of Moneyrajeevgupta
 
10_General_Annuity.pptx General Mathematics 11
10_General_Annuity.pptx General Mathematics 1110_General_Annuity.pptx General Mathematics 11
10_General_Annuity.pptx General Mathematics 11jaysongulla1
 
Mathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMoumonDas2
 
L3 - With Answers.pdf
L3 - With Answers.pdfL3 - With Answers.pdf
L3 - With Answers.pdfnewton47
 

Ähnlich wie Lecture 2 (20)

Lecture 06
Lecture 06Lecture 06
Lecture 06
 
CFA LEVEL 1- Time Value of Money_compressed (1).pdf
CFA LEVEL 1- Time Value of Money_compressed (1).pdfCFA LEVEL 1- Time Value of Money_compressed (1).pdf
CFA LEVEL 1- Time Value of Money_compressed (1).pdf
 
4th Lecture- discounted cash flows (1).pptx
4th Lecture- discounted cash flows (1).pptx4th Lecture- discounted cash flows (1).pptx
4th Lecture- discounted cash flows (1).pptx
 
unit three.pdf
unit three.pdfunit three.pdf
unit three.pdf
 
Chapter7 thetimevalueofmoney
Chapter7 thetimevalueofmoneyChapter7 thetimevalueofmoney
Chapter7 thetimevalueofmoney
 
Simple & compound interest
Simple & compound interestSimple & compound interest
Simple & compound interest
 
FM_Chapter6.pdf
FM_Chapter6.pdfFM_Chapter6.pdf
FM_Chapter6.pdf
 
Chapter 6: The Time Value of Money
Chapter 6: The Time Value of MoneyChapter 6: The Time Value of Money
Chapter 6: The Time Value of Money
 
time value of money
 time value of money time value of money
time value of money
 
Cash-Flow-and-Compound-Interest.pptx-ppt
Cash-Flow-and-Compound-Interest.pptx-pptCash-Flow-and-Compound-Interest.pptx-ppt
Cash-Flow-and-Compound-Interest.pptx-ppt
 
5 150316005456-conversion-gate01
5 150316005456-conversion-gate015 150316005456-conversion-gate01
5 150316005456-conversion-gate01
 
5. more interest formula (part ii)
5. more interest formula (part ii)5. more interest formula (part ii)
5. more interest formula (part ii)
 
Ross7e ch04
Ross7e ch04Ross7e ch04
Ross7e ch04
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Time volue of money
Time volue of moneyTime volue of money
Time volue of money
 
Time value Ch6.pdf
Time value Ch6.pdfTime value Ch6.pdf
Time value Ch6.pdf
 
Iii A Time Value Of Money
Iii  A Time Value Of MoneyIii  A Time Value Of Money
Iii A Time Value Of Money
 
10_General_Annuity.pptx General Mathematics 11
10_General_Annuity.pptx General Mathematics 1110_General_Annuity.pptx General Mathematics 11
10_General_Annuity.pptx General Mathematics 11
 
Mathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptx
 
L3 - With Answers.pdf
L3 - With Answers.pdfL3 - With Answers.pdf
L3 - With Answers.pdf
 

Mehr von Farzad Javidanrad

Mehr von Farzad Javidanrad (13)

Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Lecture 4
Lecture 4Lecture 4
Lecture 4
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Specific topics in optimisation
Specific topics in optimisationSpecific topics in optimisation
Specific topics in optimisation
 
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
 
Introduction to correlation and regression analysis
Introduction to correlation and regression analysisIntroduction to correlation and regression analysis
Introduction to correlation and regression analysis
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Statistics (recap)
Statistics (recap)Statistics (recap)
Statistics (recap)
 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
 
The Dynamic of Business Cycle in Kalecki’s Theory: Duality in the Nature of I...
The Dynamic of Business Cycle in Kalecki’s Theory: Duality in the Nature of I...The Dynamic of Business Cycle in Kalecki’s Theory: Duality in the Nature of I...
The Dynamic of Business Cycle in Kalecki’s Theory: Duality in the Nature of I...
 
Introductory Finance for Economics (Lecture 10)
Introductory Finance for Economics (Lecture 10)Introductory Finance for Economics (Lecture 10)
Introductory Finance for Economics (Lecture 10)
 

Kürzlich hochgeladen

The Economic History of the U.S. Lecture 26.pdf
The Economic History of the U.S. Lecture 26.pdfThe Economic History of the U.S. Lecture 26.pdf
The Economic History of the U.S. Lecture 26.pdfGale Pooley
 
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure serviceWhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure servicePooja Nehwal
 
03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptx03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptxFinTech Belgium
 
Top Rated Pune Call Girls Sinhagad Road ⟟ 6297143586 ⟟ Call Me For Genuine S...
Top Rated  Pune Call Girls Sinhagad Road ⟟ 6297143586 ⟟ Call Me For Genuine S...Top Rated  Pune Call Girls Sinhagad Road ⟟ 6297143586 ⟟ Call Me For Genuine S...
Top Rated Pune Call Girls Sinhagad Road ⟟ 6297143586 ⟟ Call Me For Genuine S...Call Girls in Nagpur High Profile
 
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...ssifa0344
 
The Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdfThe Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdfGale Pooley
 
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdf
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdfShrambal_Distributors_Newsletter_Apr-2024 (1).pdf
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdfvikashdidwania1
 
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdfFinTech Belgium
 
Indore Real Estate Market Trends Report.pdf
Indore Real Estate Market Trends Report.pdfIndore Real Estate Market Trends Report.pdf
Indore Real Estate Market Trends Report.pdfSaviRakhecha1
 
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptxFinTech Belgium
 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptxFinTech Belgium
 
( Jasmin ) Top VIP Escorts Service Dindigul 💧 7737669865 💧 by Dindigul Call G...
( Jasmin ) Top VIP Escorts Service Dindigul 💧 7737669865 💧 by Dindigul Call G...( Jasmin ) Top VIP Escorts Service Dindigul 💧 7737669865 💧 by Dindigul Call G...
( Jasmin ) Top VIP Escorts Service Dindigul 💧 7737669865 💧 by Dindigul Call G...dipikadinghjn ( Why You Choose Us? ) Escorts
 
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...priyasharma62062
 
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbaiVasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbaipriyasharma62062
 
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )Pooja Nehwal
 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptxFinTech Belgium
 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Booking open Available Pune Call Girls Talegaon Dabhade 6297143586 Call Hot ...
Booking open Available Pune Call Girls Talegaon Dabhade  6297143586 Call Hot ...Booking open Available Pune Call Girls Talegaon Dabhade  6297143586 Call Hot ...
Booking open Available Pune Call Girls Talegaon Dabhade 6297143586 Call Hot ...Call Girls in Nagpur High Profile
 
Call Girls in New Friends Colony Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escort...
Call Girls in New Friends Colony Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escort...Call Girls in New Friends Colony Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escort...
Call Girls in New Friends Colony Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escort...Delhi Call girls
 

Kürzlich hochgeladen (20)

The Economic History of the U.S. Lecture 26.pdf
The Economic History of the U.S. Lecture 26.pdfThe Economic History of the U.S. Lecture 26.pdf
The Economic History of the U.S. Lecture 26.pdf
 
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure serviceWhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure service
 
03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptx03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptx
 
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
(INDIRA) Call Girl Mumbai Call Now 8250077686 Mumbai Escorts 24x7
 
Top Rated Pune Call Girls Sinhagad Road ⟟ 6297143586 ⟟ Call Me For Genuine S...
Top Rated  Pune Call Girls Sinhagad Road ⟟ 6297143586 ⟟ Call Me For Genuine S...Top Rated  Pune Call Girls Sinhagad Road ⟟ 6297143586 ⟟ Call Me For Genuine S...
Top Rated Pune Call Girls Sinhagad Road ⟟ 6297143586 ⟟ Call Me For Genuine S...
 
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
 
The Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdfThe Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdf
 
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdf
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdfShrambal_Distributors_Newsletter_Apr-2024 (1).pdf
Shrambal_Distributors_Newsletter_Apr-2024 (1).pdf
 
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
 
Indore Real Estate Market Trends Report.pdf
Indore Real Estate Market Trends Report.pdfIndore Real Estate Market Trends Report.pdf
Indore Real Estate Market Trends Report.pdf
 
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
 
( Jasmin ) Top VIP Escorts Service Dindigul 💧 7737669865 💧 by Dindigul Call G...
( Jasmin ) Top VIP Escorts Service Dindigul 💧 7737669865 💧 by Dindigul Call G...( Jasmin ) Top VIP Escorts Service Dindigul 💧 7737669865 💧 by Dindigul Call G...
( Jasmin ) Top VIP Escorts Service Dindigul 💧 7737669865 💧 by Dindigul Call G...
 
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
Mira Road Awesome 100% Independent Call Girls NUmber-9833754194-Dahisar Inter...
 
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbaiVasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
Vasai-Virar Fantastic Call Girls-9833754194-Call Girls MUmbai
 
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
Vip Call US 📞 7738631006 ✅Call Girls In Sakinaka ( Mumbai )
 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx
 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
 
Booking open Available Pune Call Girls Talegaon Dabhade 6297143586 Call Hot ...
Booking open Available Pune Call Girls Talegaon Dabhade  6297143586 Call Hot ...Booking open Available Pune Call Girls Talegaon Dabhade  6297143586 Call Hot ...
Booking open Available Pune Call Girls Talegaon Dabhade 6297143586 Call Hot ...
 
Call Girls in New Friends Colony Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escort...
Call Girls in New Friends Colony Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escort...Call Girls in New Friends Colony Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escort...
Call Girls in New Friends Colony Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escort...
 

Lecture 2

  • 1. Lecture 2 Bond Valuation & Equity Valuation Financial Management(N12403) Lecturer: Farzad Javidanrad (Autumn 2014-2015)
  • 2. Some Basics in Algebra • Geometric sequence (progression): is a sequence of numbers where each term (apart from the first term) can be obtained by multiplying the previous term by a fixed non-zero number, called the common ratio. 𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3, … , 𝑎𝑟 𝑛−1, … • Where 𝒕 𝟏 = 𝒕 𝟏 𝒕 𝟐 = 𝒕 𝟏 × 𝒓 𝒕 𝟑 = 𝒕 𝟐 × 𝒓 = 𝒕 𝟏 × 𝒓 𝟐 𝒕 𝟒 = 𝒕 𝟑 × 𝒓 = 𝒕 𝟏 × 𝒓 𝟑 ⋮ 𝒕 𝒏 = 𝒕 𝒏−𝟏 × 𝒓 = 𝒕 𝟏 × 𝒓 𝒏−𝟏 𝑡1 =the first term 𝑡 𝑛 =the n-th term 𝑡2 𝑡3 We also know that the common ratio 𝒓 can be obtained by dividing each term by its previous term; that is: 𝒕 𝟐 𝒕 𝟏 = 𝒕 𝟑 𝒕 𝟐 = ⋯ = 𝒕 𝒏 𝒕 𝒏−𝟏 = 𝒓
  • 3. Some Basics in Algebra • Sum of the terms (entirely or partially) of a geometric sequence is called geometric series. The series for 𝑛 term can be shown as 𝑆 𝑛: 𝑆 𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ + 𝑎𝑟 𝑛−1 = 𝑖=0 𝑛−1 𝑎𝑟 𝑖 (1) • Multiplying 𝑆 𝑛 by the common ratio 𝑟, we have: 𝑆 𝑛 × 𝑟 = 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + 𝑎𝑟4 + ⋯ + 𝑎𝑟 𝑛 (2) • Subtracting (2) from (1), we have: 𝑆 𝑛 − 𝑆 𝑛 × 𝑟 = 𝑎 − 𝑎𝑟 𝑛 Or 𝑆 𝑛 1 − 𝑟 = 𝑎 1 − 𝑟 𝑛 𝑟≠1 𝑆 𝑛 = 𝑎(1 − 𝑟 𝑛) 1 − 𝑟
  • 4. Some Basics in Algebra • Note: if 𝑟 < 1 (−1 < 𝑟 < 1) and the number of terms in the series is increasing 𝑛 → +∞ then: 𝑟 𝑛 → 0. • Under such circumstances the series is said to be convergent (means, not increasing infinitely) to a value, which is: 𝑆 𝑛 𝒏→+∞ 𝑎 1 − 𝑟 Or lim 𝑛→∞ 𝑆 𝑛 = 𝑎 1 − 𝑟
  • 5. Perpetuity and its PV • Perpetuities are assets with a constant stream of cash flow each year with no end. British government has sold this type of securities during the war with France and call them Consols (Consol bonds)but still paying a fixed interest on them. • The PV of a perpetuity is: 𝑃𝑉 = 𝐶 (1 + 𝑟) + 𝐶 (1 + 𝑟)2 + 𝐶 1 + 𝑟 3 + ⋯ = 𝑖=1 ∞ 𝐶 1 + 𝑟 𝑖 From basic algebra we know that: 𝑖=1 ∞ 𝐶 1+𝑟 𝑖 = 𝐶 𝑟 (𝐡𝐢𝐧𝐭: 𝐮𝐬𝐞 𝐭𝐡𝐞 𝐠𝐞𝐨𝐦𝐞𝐭𝐫𝐢𝐜 𝐬𝐞𝐫𝐢𝐞𝐬 𝐟𝐨𝐫𝐦𝐮𝐥𝐚 𝐰𝐢𝐭𝐡 𝟏 𝟏+𝒓 𝐚𝐬 𝐭𝐡𝐞 𝐜𝐨𝐦𝐦𝐨𝐧 𝐫𝐚𝐭𝐢𝐨) So, 𝑃𝑉 = 𝐶 𝑟 and the rate of return for a perpetuity can be obtained as: 𝑟 = 𝐶 𝑃𝑉
  • 6. Delayed Perpetuity and its PV • If a perpetuity starts after 𝑚 years (not from the beginning) its PV from year 𝑚 onward is: 𝑃𝑉𝑦 𝑚 = 𝐶 𝑟 • but it should be revalued (adjusted) by the discount factor 1 1+𝑟 𝑚 in order to calculate its PV at current time (year zero); that is: 𝑃𝑉𝑦0 = 𝐶 𝑟 × 1 1+𝑟 𝑚 • State pension is an example of this type of perpetuity. In the UK it starts at age 65.
  • 7. Annuity and its PV • Annuity is an financial asset that pays a constant amount of money every year for a specific period of time. A credit card order is an example of annuity. The PV of an annuity for 𝑚 years can be calculated through the standard PV formula and using basic algebra: 𝑃𝑉 = 𝐶 (1 + 𝑟) + 𝐶 (1 + 𝑟)2 + ⋯ + 𝐶 1 + 𝑟 𝑚 = 𝑖=1 𝑚 𝐶 1 + 𝑟 𝑖 = 𝐶 𝑟 1 − 1 1 + 𝑟 𝑚 = 𝐶 1 𝑟 − 1 𝑟 1 + 𝑟 𝑚 = 𝐶 × 𝐴 𝑟 𝑚 Annuity Factor
  • 8. Growing Perpetuity at a Constant Rate • Let’s consider the situation that stream of a cash flow growing at a constant rate 𝑔, so, the PV for a growing perpetuity can be written as follows: 𝑃𝑉 = 𝐶1 (1 + 𝑟) + 𝐶2 (1 + 𝑟)2 + 𝐶3 1 + 𝑟 3 + ⋯ = 𝐶1 (1 + 𝑟) + 𝐶1(1 + 𝑔) (1 + 𝑟)2 + 𝐶1(1 + 𝑔)2 (1 + 𝑟)3 + ⋯ = 𝑖=1 ∞ 𝐶1 1 + 𝑔 𝑖−1 1 + 𝑟 𝑖 = 𝐶1 𝑟 − 𝑔
  • 9. Growing Annuity at a Constant Rate • Imagine a student has the option to pay specific lump sum of money in advance for a 4 years study at university or paying yearly with a fixed rate increase each year. Which method is better? • To answer this we need to find the PV for the stream of cash flow; 𝑃𝑉 = 𝐶1 (1 + 𝑟) + 𝐶1(1 + 𝑔) (1 + 𝑟)2 + ⋯ + 𝐶1(1 + 𝑔) 𝑚−1 (1 + 𝑟) 𝑚 = 𝑖=1 𝑚 𝐶1 1 + 𝑔 𝑖−1 1 + 𝑟 𝑖 = 𝐶1 𝑟 − 𝑔 1 − 1 + 𝑔 𝑚 1 + 𝑟 𝑚 • If this value is bigger than the lump sum it will be better to go with the first option.
  • 10. Perpetuity & Annuity (Review) Years 1 2 … m-1 m m+1 … Present Value Perpetuity (model 1) 𝑪 𝑪 … 𝑪 𝑪 𝑪 … 𝑪 𝒓 Perpetuity (model 2) _ _ _ _ 𝑪 𝑪 … 𝑪 𝒓 𝟏 + 𝒓 𝒎 Annuity (for m yrs.) 𝑪 𝑪 … 𝑪 𝑪 _ _ 𝑪 𝒓 𝟏 − 𝟏 𝟏 + 𝒓 𝒎 Perpetuity (Growing) 𝑪 𝑪(𝟏 + 𝒈) … 𝑪 𝟏 + 𝒈 𝒎−𝟐 𝑪 𝟏 + 𝒈 𝒎−𝟏 𝑪 𝟏 + 𝒈 𝒎 … 𝑪 𝒓 − 𝒈 Annuity (Growing) 𝑪 𝑪(𝟏 + 𝒈) … 𝑪 𝟏 + 𝒈 𝒎−𝟐 𝑪 𝟏 + 𝒈 𝒎−𝟏 _ _ 𝑪 𝒓 − 𝒈 𝟏 − 𝟏 + 𝒈 𝒎 𝟏 + 𝒓 𝒎 • To see the difference between perpetuities (starting from year 1 or later) and annuity the following table would be informative:
  • 11. Future Value of an Annuity • Imagine that you save a specific amount of money, 𝐶, every year (e.g. for your child) for 𝑚 years and suppose that the rate of interest remains 𝑟 during all these years. What is the future value of this annuity? Or what the value of your money will be at the end of 𝑚 years? • In order to find the future value of an annuity, first, we should find the PV of the annuity using annuity factor: 𝑃𝑉 = 𝐶 1 𝑟 − 1 𝑟 1 + 𝑟 𝑚 = 𝐶 × 𝐴 𝑟 𝑚 So, the Future Value (FV) of this annuity at a compound rate would be: 𝐹𝑉 = 𝑃𝑉 × 1 + 𝑟 𝑚 = 𝐶 𝑟 1 + 𝑟 𝑚 − 1 Annuity for 𝑚 yeras
  • 12. Some Specific Examples o A Delayed Annuity:(Example 4.18, Hiillier et al 2013, p.111): Roberto Balotelli will receive a four-year annuity of €500 per year, beginning at date 6. If the interest rate is 10 percent, what is the present value of his annuity? How do you do it? 1. Discount annuity back to year 5 2. Discount year 5 value of annuity back to year 0 Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
  • 13. Some Specific Examples Step 1: Discount annuity to year 5 €500 1 − 1 1.10 4 0.10 = 500 × 𝐴0.10 4 = 500 × 3.1699 = €1584.95 Step 2: Discount year 5 value back to year 0 5 €1,584.95 €984.13 (1.10)  Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
  • 14. Some Specific Examples o Annuity Due: (Example 4.19, Hiillier et al 2013, p.112) Mark Lancaster receives £50,000 a year for 20 years from a competition. Assume that the first payment occurs immediately and that the discount rate is 8 percent. What is the value of the prize? £50,000 + £50,000 × 𝐴0.08 19 = 50,000 + 50,000 × 9.6036 = £530,180 o Infrequent Annuities: (Example 4.20, Hiillier et al 2013, p.112) Ann Chen receives an annuity of £450, payable once every two years. The annuity stretches out over 20 years. The first payment occurs at date 2— that is, two years from today. The annual interest rate is 6 percent. What is the value of this annuity? 19 years Annuity Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
  • 15. Some Specific Examples • Determine the interest rate over a two-year period. (1.06 x 1.06) – 1 = 12.36% • Now calculate the present value of a £450 annuity over 10 periods, with an interest rate of 12.36 percent per period: o William and Kate Windsor are saving for the university education of their new born daughter, Susan. The Windsors estimate that university expenses will be €30,000 per year when their daughter reaches university in 18 years. The annual interest rate over the next few decades will be 14 percent. How much money must they deposit in the bank each year so that their daughter will be completely supported through four years of university? 10 10 .1236 1 1 (1 .1236) £450 £450 £2,505.57 .1236 A               Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
  • 16. Some Specific Examples Three Steps: 1. Calculate the Year 17 Value of the University payments 2. Calculate the Year 0 value of the university payments 3. Calculate the cash flow that equates the year 1 – 17 payments to the year 0 value of the university payments Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
  • 17. Some Specific Examples 1. 2. 3. 4 4 .14 1 1 (1.14) €30,000 €30.000 .14 €30,000 2,9137 €87,411 A                 17 €87,411 €9,422.91 (1.14)  17 .14 €9,422.91C A  €9,422.91 €1,478.59 6.3729 C   Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
  • 18. Quoted VS Effective Annual Interest Rate • When talking about compound interest we need to be aware of: 1% 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ ≠ 12% 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 Why? • The Effective Annual Interest Rate is not the summation of the interest rates paid daily, monthly, quarterly or semi-annually. In fact, 1% interest rate per month is equivalent with 12.68% interest rate (and not 12%) per year, which is called effective annual interest rate. • If there was no compound interest, the frequency of payments had no impact on the yearly paid interest and Effective Annual Interest rate would be equal to Annual Percentage Rate (APR).
  • 19. Quoted VS Effective Annual Interest Rate • The relation between what is called nominal (or quoted) annual interest rate (𝑖) and the effective annual interest (𝑟) can be specified as following: 𝑟 = 1 + 𝑖 𝑛 𝑛 − 1 Where 𝑟 is the effective annual interest rate and 𝑖 is the nominal (or quoted) annual interest rate (or APR) and 𝑛 represents the frequency of payments. • If APR on your credit card is 24%, this means that you need to pay 2% interest per month when you get your statement but what you really pay annually is: 1 + 0.24 12 12 − 1 = 1.02 12 − 1 ≅ 0.2682 = 26.8% A Effective Annual Interest Rate=Annual Percentage Yield (APE)
  • 20. Continuous Compounding • If there is no limit for the frequency of payments (𝑛 )we can talk about continuous compounding. Mathematically, when 𝑛 → +∞, the expression 1 + 1 𝑛 𝑛 converge to its limit (𝑒 = 2.718), i.e.: lim 𝑛→∞ 1 + 1 𝑛 𝑛 = 𝑒 • With a simple substitution, we can show that: lim 𝑛→∞ 1 + 𝑖 𝑛 𝑛 = 𝑒 𝑖 Replacing this into , the effective annual interest rate will be: 𝑟 = 𝑒 𝑖 − 1 • If 𝑖 = 0.12, the effective annual rate continuously compounded is about 0.127 or 12.7%. A
  • 21. Nominal Rate Semi-Annual Quarterly Monthly Daily Continuous 1% 1.003% 1.004% 1.005% 1.005% 1.005% 5% 5.063% 5.095% 5.116% 5.127% 5.127% 10% 10.250% 10.381% 10.471% 10.516% 10.517% 15% 15.563% 15.865% 16.075% 16.180% 16.183% 20% 21.000% 21.551% 21.939% 22.134% 22.140% 30% 32.250% 33.547% 34.489% 34.969% 34.986% 40% 44.000% 46.410% 48.213% 49.150% 49.182% 50% 56.250% 60.181% 63.209% 64.816% 64.872% Effective Annual Rate Based on Frequency of Compounding Adopted from http://en.wikipedia.org/wiki/Effective_interest_rate Quoted VS Effective Annual Interest Rate • The following table shows the difference between nominal and effective annual interest rates based on the frequency of compounding:
  • 22. Difference Between Annual, Semi-Annual & Continuous Compounding Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012
  • 23. PV of Bonds • Stocks & Shares: They are both certificates of ownership. Stocks refer to the ownership of any company but shares refer to the ownership of a specific company. • Bonds:  Financial instruments (or debt securities or long-term loans) showing the indebtedness of the bond issuer (borrower) to the bond holder (lender or creditor).  For usual bonds the issuer is obliged to pay interests (coupons) before reaching to its maturity date (redemption date), which is the final date of payment of the original debt (principal) and possibly the remaining interests. • Shareholders are investors in a company with an equity of ownership but bondholders are just lenders (or creditors) of a company with no ownership right but in case of bankruptcy of the company they have priority to shareholders in terms of repayments. Shares can be kept infinitely but bonds should be redeemed at their maturity dates. Consols are the only exceptions.
  • 24. PV of Bonds Adopted from http://images.dailytech.com/nimage/21262_large_Treasury_Bonds.jpg •Large corporations, credit institutions, governments and international institutions can issue bonds when they need to borrow money for long-term. •Among all, government bonds are the safest securities in the world. UK government bonds are called Gilts as it was a certificate trimmed by gold. • Bonds maturities can be categorised as short- terms, medium-terms and long-terms. In the UK, the maturities defined by Debt Management Office (DMO) as short (0-7 years), medium ( 7-15 years) and long (15+ years), respectively. •Every bond has a face value (par value) and bond’s coupons are calculated as a percentage of its face value. Adopted from http://www.dailyfinance.com/2013/02/06/bond- market-crash-fears-interest-rates/ Adopted from http://www.the-diy-income- investor.com/2012_01_01_archive.html
  • 25. PV of Bonds • There are three types of bonds in general: I. The Pure Discount Bond: Simplest bond which promises a single payment in its maturity date. It could be 1-year discount or 2-years discount or n-years discount bond. Holders of these bonds receive no payment until the maturity date and for that reason they are called zero coupon bonds. • The PV of these bonds is the discounted amount of the face value in its maturity date, i.e.: 𝑃𝑉 = 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 𝑡 Where 𝑟 might be (but not necessarily) the market interest rate and 𝑡 is the maturity date of the bond. o The PV of a pure 6-years discount bond with a face value of £1000 at the interest rate of 10% is: 𝑃𝑉 = £1000 1.16 = £564.47 This means the bond keeps 56.4% of its face value after 6 years. So, if it is offered for a price more than £564.47 it is over-valued but less than that is profitable for the buyer.
  • 26. PV of Bonds II. The Level Coupon Bond: Usual bonds which offers a regular cash payment or coupons (usually yearly or 6-monthly) up to and including its maturity date. • The value of this type of bond is again the PV of the bond, which is calculated through the following formula: (see an example in the next slide) 𝑃𝑉 = 𝐶 (1 + 𝑟) + 𝐶 (1 + 𝑟)2 + ⋯ + 𝐶 1 + 𝑟 𝑡 + 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 𝑡 = 𝑖=1 𝑡 𝐶 1 + 𝑟 𝑖 + 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 𝑡 = 𝐶 𝑟 1 − 1 1 + 𝑟 𝑡 + 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 𝑡 III. Consol: Special bond which offers a regular coupons forever with no finite maturity date. The PV of these type of bonds can be calculated as: 𝑃𝑉 = 𝐶 (1 + 𝑟) + 𝐶 (1 + 𝑟)2 + ⋯ = 𝑖=1 ∞ 𝐶 1 + 𝑟 𝑖 = 𝐶 𝑟 Years 1 2 ….. t t+1 …. Pure Discount Bonds --- --- --- F Coupon Bonds C C …. C+F Consols C C …. C C C
  • 27. PV of Bonds o Example for the coupon bonds: If you buy a 4% treasury bond in 2014 with a face value of £100 maturing in 2018, it means you are entitled to get 0.04 × 100 = £4 interest (coupon) each year until 2018, which you receive the final coupon and the face value (nominal value) of your bond, i.e.: £4 2015 , £4 2016 , £4 2017 , £104 2018 • Obviously, this is an annuity for 4 years plus a final payment. So, the PV of this bond can be calculated as: £4 𝑟 1 − 1 1 + 𝑟 4 + £100 1 + 𝑟 4 But this PV depends on the opportunity cost of capital which in this case must be the rate of return offered by other similar short-term treasury bonds (similar here refers to the same level of risk and credit quality; same asset class).
  • 28. PV of Bonds • Imagine other short-term treasury bonds have 2.8% return, the PV of our example would be: • Now let’s look at the question from different angle. What return do investors receive when they buy a bond and hold it to its maturity if the asked price of the bond is given? • Based on our example, we need to find 𝑟 in this equation: 104.40 = 4 1 + 𝑟 + 4 1 + 𝑟 2 + 4 1 + 𝑟 3 + 104 1 + 𝑟 4 This rate of return 𝑟 is called yield to maturity and based on the previous information, we know that 𝑟 = 2.8% but if we did not have this information, solving this equation would require the trial and error technique or a computer software. Note: the price of a bond has an inverse relation with the rate of interest (or yield to maturity rate). Why? Can you explain this through the opportunity cost of having bonds? 4 0.028 1 − 1 1 + 0.028 4 + 100 1 + 0.028 4 ≅ 104.40
  • 29. The Term Structure of Interest Rates (Yield Curve) • To calculate the PV of a cash flow we use a single discount rate 𝑟 with the assumption that 𝑟 does not change or the change is ignorable. For bonds, we also use a fixed rate (as yield to maturity rate) for the whole period. But, in long-term, the assumption of fixed 𝑟 cannot be supported. • In reality, yields or interest rates vary with the length of the term (length of maturity). In general, yields increase along with the term (maturity), because lenders demand higher yields for longer-term loans as a compensation for the greater risk associated with the longer loan contracts, in comparison to the short-term loan contracts. • The relationship between different yields (or interest rates) and different maturities (terms) for a specific bond (government or corporate bond) is called the term structure of interest rates, which can be plotted as a curve, known as yield curve. In other words, the term structure of interest rates show the relationship between short-term and long-tem interest rates.
  • 30. The Term Structure of Interest Rates (Yield Curve) • So, the yield curve plots different yields of a specific bond (or similar bonds, in terms of their quality) against their maturities. • The term structure or its graphical representation of it (yield curve) play an important role in financial economics. It shows the expectations of market participants about the level of risk in the economy. • The shape of the yield curve indicates the priorities of lenders relative to that of borrowers. It explains how lenders (or investors) see the state of economy and the level of risk in lending/investing. Is it more risky to lend (invest) long-term or short-term? How much are they confident about the state of economy.
  • 31. Yield Curve & Its Meaning • If short-term yields are lower than long-term yields, the economy is in normal situation and long-term investments are not considered as high-risk activities, so the slope of the yield curve is positive and the curve is called normal yield curve. When the yield curve has a positive slope lenders are happy to provide long-term loan to borrowers, as they are confident (in general) about the state of economy and future returns from barrowers. http://www.investinganswers.com/financial-dictionary/bonds/term-structure-interest-rates-2936
  • 32. Yield Curve & Its Meaning • If short-term yields are higher than long-term yields, the economy is in risky situation and long-term investments are considered as high-risk activities, so the slope of the yield curve is negative and the curve is called inverted yield curve. The British pound yield curve on February 9, 2005. This curve is unusual (inverted) in that long-term rates are lower than short-term ones. Both adopted from http://en.wikipedia.org/wiki/Yield_curve
  • 33. Yield Curve & Its Meaning • Finally, if there is a little or no variation between short-term and long-term yields rates the yield curve will be flat. This means that lenders/investors are not sure about future and the risk of lending/investing is the same either in short or long- term. • The flat yield curve can be usually seen during transitory periods when the economy does not show any sign of expansion (normal curve) or contraction (inverted curve). When short- and long-term bonds are offering equivalent yields, there is usually little benefit in holding the longer-term instruments - that is, the investor does not gain any excess compensation for the risks associated with holding longer-term securities. Both adopted from http://www.investopedia.com/terms/f/flatyieldcurve.asp
  • 34. PV & Different Interest Rates (Spot Rates) • How to calculate the PV of a bond when there are different rates of interest each year (spot rates)? • In this case, we need to find the PV of each year separately, using the associated discount factor: 𝑃𝑉1 = 𝐶 1 + 𝑟1 𝑃𝑉2 = 𝐶 1 + 𝑟2 2 ⋮ 𝑃𝑉𝑡 = 𝐶 + 𝐹𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 1 + 𝑟𝑡 𝑡 • and then add all the PVs in order to reach to a total PV: 𝑃𝑉∗ = 𝑖=1 𝑡 𝑃𝑉𝑖 • and then use the total value (𝑃𝑉∗) to find a unique yield to maturity rate: 𝑃𝑉∗ = 𝐶 1+𝑦 + 𝐶 1+𝑦 2 + ⋯ + 𝐶+𝑓𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 1+𝑦 𝑡 → 𝑦∗ 1st Year 2nd Year t-th Year  Remember that 𝒓 𝟏, 𝒓 𝟐, … , 𝒓 𝒕 are the spot rates for each represented year. Using these spot rates we can calculate the total PV (total value) of the bond and then the yield to maturity rate. we cannot find the yield to maturity rate until we know the price (value) of the bond.  Spot rates comes first and then yield to maturity rate can be calculated  Spot rate (or sometimes spot price) is the quoted rate for a currency, commodity or a security which is valid for a specific period of time (daily, weekly, monthly or yearly).  This rate is determined based on the interaction between demand and supply for currencies or commodities but for a bond it is determined based on the price of a zero coupon bond.
  • 35. PV of Bonds & Frequency of Payments • In the previous formula used to calculate the PV (value) of a bond we assumed that the coupons are paid yearly, but if the frequency of payments change the power of the denominators will change: (here we consider a 5 years maturity) 𝑃𝑉 = 𝐶 2 (1 + 𝑟 2)1 + 𝐶 2 (1 + 𝑟 2)2 + 𝐶 2 (1 + 𝑟 2)3 + 𝐶 2 (1 + 𝑟 2)4 + ⋯ + 𝐶 2 1 + 𝑟 2 10 + 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 2 10 𝑃𝑉 = 𝐶 3 (1 + 𝑟 3 )1 + 𝐶 3 (1 + 𝑟 3 )2 + 𝐶 3 (1 + 𝑟 3 )3 + 𝐶 3 (1 + 𝑟 3 )4 + ⋯ + 𝐶 3 1 + 𝑟 3 15 + 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 3 15 𝑃𝑉 = 𝐶 4 (1 + 𝑟 4)1 + 𝐶 4 (1 + 𝑟 4)2 + 𝐶 4 (1 + 𝑟 4)3 + 𝐶 4 (1 + 𝑟 4)4 + ⋯ + 𝐶 4 1 + 𝑟 4 20 + 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 4 20 Where 𝑟 represents the rate of return for a year. It is not necessarily the market interest rate. We may use yield to maturity rate of similar bonds (same category in terms of turn and risk). Which one is bigger? Arrows show one full year Every 6 months Every 4 months Every 3 months
  • 36. • In general if 𝐶 is the face value of the bond and 𝑟 represents yearly rate of return and 𝑡 number of years and 𝑓, the frequency of payments in a year (𝑓 ≤ 365), then the PV of the bond can be calculated as: 𝑃𝑉 = 𝐶 𝑓 1 + 𝑟 𝑓 1 + 𝐶 𝑓 1 + 𝑟 𝑓 2 + 𝐶 𝑓 1 + 𝑟 𝑓 3 + ⋯ + 𝐶 𝑓 1 + 𝑟 𝑓 𝑓×𝑡 + 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 𝑓 𝑓×𝑡 𝑃𝑉 = 𝐶 𝑟 1 − 1 1 + 𝑟 𝑓 𝑓×𝑡 + 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 𝑓 𝑓×𝑡 • And, for a zero-coupon bond: 𝑃𝑉 = 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 1 + 𝑟 𝑓 𝑓×𝑡 o Find a formula for a Consol. PV of Bonds & Frequency of Payments
  • 37. Bond’s Return And Inflation • Bond’s coupons are fixed nominal return each year but the real return depends on the level of inflation. When inflation is high and it seems to remain high, borrowers must offer a better deal to convince the lenders/investors to buy and keep long-term bonds. • The term nominal refer to what we observe in the market such as nominal interest rate, nominal wages, nominal GDP, but when the variable is adjusted for inflation (removing or eliminating the impact of inflation on the variable) the real element appears, such as real interest rate, real wages, real GDP. • It is important for financial managers to base their calculation on real and not nominal interest rates.
  • 38. Bond’s Return And Inflation • The economist Irving Fisher, believed that investors and in general, all people, to some extent have money illusion; meaning the nominal (face) value of money is mistaken for its purchasing power and in the presence of money illusion, price fluctuations (in the form of inflation or deflation) do many harms. • His theory suggests that the change in nominal interest rate is proportionate with a change in expected inflation rate. Mathematically, the relation between real interest rate 𝑟 and nominal interest rate 𝑖 and expected inflation rate 𝜋 𝑒 can be expressed as: 𝑟 = 1 + 𝑖 1 + 𝜋 𝑒 − 1
  • 39. Valuation of Common Stocks • When a corporation enters into the stock market, shareholders become its new owners and the ownership of each shareholder is defined as the percentage of the total shares he/she retains. • Issuing new shares is an alternative way of borrowing. New shares go to the primary market (where they are created) but the existing shares are being traded in the secondary market executed by brokers (individuals or firms) after getting a market order from seller and satisfying the limit order (price limit) of the buyer. (See pages 11-12 corporate finance, David Hillier or this link http://www.investopedia.com/articles/02/101102.asp) • This transactions might bring capital gain or capital loss for the seller. AdoptedfromGooglepictures
  • 40. Valuation of Common Stocks • There are two sources of payoff for the share owners (if they stay with their shares for a year): a) cash dividends and b) capital gain or loss. • If 𝑃0, 𝑃1 are current price and the expected price (after a year) of a share, respectively and 𝐷𝑖𝑣1is the expected dividend at the end of a year; the expected rate of return 𝑟 at the end of the year is: 𝑟 = 𝐷𝑖𝑣1 + 𝑃1 − 𝑃0 𝑃0 So, the current price of share can be calculated as: 𝑃0 = 𝐷𝑖𝑣1 + 𝑃1 (1 + 𝑟) PV of the share price & its dividend
  • 41. Valuation of Common Stocks • If 𝑃2 is the price of the share at the end of year 2, we can determine the value of 𝑃1based on 𝐷𝑖𝑣2 and 𝑃2: 𝑃1 = 𝐷𝑖𝑣2 + 𝑃2 (1 + 𝑟) So, the current price of a share can be calculated as: 𝑃0 = 𝐷𝑖𝑣1 + 𝑃1 (1 + 𝑟) = 𝐷𝑖𝑣1 + 𝐷𝑖𝑣2 + 𝑃2 (1 + 𝑟) (1 + 𝑟) = 𝐷𝑖𝑣1 (1 + 𝑟) + 𝐷𝑖𝑣2 + 𝑃2 (1 + 𝑟)2 If the share holder keeps the share for 𝑛 years, we have: 𝑃0 = 𝐷𝑖𝑣1 (1 + 𝑟) + 𝐷𝑖𝑣2 (1 + 𝑟)2 + ⋯ + 𝐷𝑖𝑣 𝑛 + 𝑃𝑛 1 + 𝑟 𝑛 = 𝑖=1 𝑛 𝐷𝑖𝑣𝑖 1 + 𝑟 𝑖 + 𝑃𝑛 1 + 𝑟 𝑛 If the above share is held infinitely, then: 𝑃0 = 𝑖=1 ∞ 𝐷𝑖𝑣 𝑖 1+𝑟 𝑖
  • 42. Valuation of Common Stocks This formula is called dividend discount model of stock price or simply DCF. • This formula says that the current price of stock can be obtained by discounting (finding the PV) of the cash flow of dividend at the rate that can be obtained in the capital market on other securities with a similar level of risk. • If dividends grow at a constant rate 𝑔 each year (like growing perpetuity), the current share price can be calculated by: 𝑃0 = 𝐷𝑖𝑣1 𝑟 − 𝑔 (𝑖𝑓 𝑟 > 𝑔) • We can re-write the formula to show 𝑟 (expected return) as the subject. In this case; 𝑟 = 𝐷𝑖𝑣1 𝑃0 + 𝑔 Where 𝐷𝑖𝑣1 𝑃0 is called dividend yield.
  • 43. Valuation of Common Stocks Three Scenarios Zero Growth Constant Growth Differential Growth Adopted from Hillier’s PPT , The McGraw-Hill Companies, 2012 The same dividend each year infinitely (Hint: using perpetuity formula)