SlideShare ist ein Scribd-Unternehmen logo
1 von 35
Downloaden Sie, um offline zu lesen
Possibilidade de obtenção de
 propriedades mecânicas a partir
dos dados de descarregamento em
      ensaios de indentação
          Instrumentada



 Bolsa de mobilidade Internacional de Pós-
Graduandos Programa SANTANDER BANESPA

         Sara Aida Rodríguez Pulecio
              sara.pulecio@poli.usp.br
Bolsa de mobilidade Internacional de Pós-
  Graduandos Programa SANTANDER
  BANESPA




Universidad Politecnica de Catalunya
GRICCA (Grupo Interdepartamental pela Colaboração
Científica Aplicada)
Prof. Dr. Jorge Alcalá

                                                    2/34
Ensaio de Indentação
Instrumentada




                       3/34
Ensaio de Indentação
Instrumentada




                       A=f(h)




                                4/34
Determinação de propriedades
         mecânicas- Algoritmo

        Oliver WC, Pharr GM. J Mater Res 1992; 7:1564
        Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Acta Mater 2001;
        49:3899

        Bucaille JL, Stauss S, Felder E, Michler J. Acta Mater 2003; 51:1663
        Casals O, Alcalá J. Acta Mater 2005; 53:3545

                                                                Propriedades
Curvas carga                     Algoritmo direto
                                                                mecânicas
deslocamento (P-h)               Algoritmo inverso
                                                                (E, Y, n, H)
                                                                                5/34
Curvas carga                                               Algoritmo direto     Propriedades
       deslocamento                                               Algoritmo inverso    mecânicas


         Carregamento               Descarregamento                          S/Ehmax
         P=Kh 2                     P=B(h – hr)m
  P                                                                          K/E
Pmax                                                S
                                                                             hr/hmax
                                                                             Wp/WT
                                                                             We/WT
                                                                             he/hmax
                              hr he          hmax            h
       Rodríguez SA, Farias MCM, Souza RM.
       Rodrí                                 J. Mater. Res   2009; 24:1222
                                                                                              6/34
Analise dimensional

        hr       Y 
            = Π1  , n 
                 E    
       hmax       r 

       K      Y 
          = Π2 , n
              E   
       Er      r 

        he      Y 
            = Π3 , n 
                E    
       hmax      r 

                           7/34
Analise dimensional

                 Y        hr   
                    = Ξ1 
                          h , n
                                
                 Er       max 

 he        Y             hr                   hr    
     = Π 3  , n  = Π 3  Ξ1 
                                     
                                           
                               h , n , n  = Ξ 3  h , n 
                                                          
hmax        E            max                  max 


  K        Y             hr                hr    
     = Π 2  , n  = Π 2  Ξ1                       
                           h , n , n  = Ξ 2  h , n 
  Er       E             max               max 

                                                               8/34
A função Π8
                           Casals O, Alcalá J. Acta Mater 2005; 53:3545

                              Pmax
         π ⋅S          π             hmax             Pmax
Er = β          =β                               H=
         2 Ac        2 Ac 1 − he                     Ac
                                 hmax 
                                      
                                 2
    A c = α A s = α fh

          2                                 2
  H          4               he                 hr   
  
  E     α=
                          1 −
                            h               = Π8 
                                                   h , n
                                                          
   r       πfβ 2             max                max 
                                                                   9/34
Formação de borda (pile-up) e
          retração (sink-in ) α



pile-up                               sink-in
                       Ac
                          =α
                       As




            Área nominal de contato             10/34
Formação de borda (pile-up) e
retração (sink-in )




                                11/34
Formação de borda (pile-up) e
retração (sink-in )




                                12/34
A função Π8
               2
  4      he        hr    Casals O, Alcalá J. Acta Mater 2005; 53:3545
     1 −
   2 
              = Π8 
                    h , n
                           
πfβ  h max         max 




                                                                    13/34
Unicidade (The indistinguishable
          mystical materials)



E, Y, n



E, Y, n
                                        +ε
E, Y, n


E, Y, n
                                             14/34
Unicidade

Cheng YT, Cheng CM. J Mater Res 1999; 14:3493
Alkorta J, Martínez-Esnaola JM, Gil Sevillano J. J Mater Res 2005;
20:432

Tho KK, Swaddiwudhipong S, Liu ZS, Zeng K. Materials Science and
Engineering A   2005; 390:202

Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Acta Mater
2001; 49:3899

Casals O, Alcalá J. Acta Mater 2005; 53:3545
                                                                   15/34
Unicidade




            16/34
Exemplo de não Unicidade
               E (GPa)   Y (MPa)      n      hr/hmax   he/hmax   K (MPa)

               200.00    773.63       0      0.9484    0.9590    64634.47

               206.44    580.76      0.1     0.9481    0.9579    65496.21

               214.85    408.45      0.2     0.9483    0.9575    65416.39

               224.23    261.19      0.3     0.9484    0.9577    65222.32

               234.09    146.62      0.4     0.9477    0.9575    65789.48

               249.16     62.97      0.5     0.9475    0.9576    66336.01

Intervalo de
 confiança      14.60    216.13     0.15     0.0003    0.0005     454.63
   (95%)
 Variação      19.73%    91.86%    100.00%   0.09%     0.16%      2.57%

                                                                            17/34
O problema
              2
   4      he        hr   
      1 −
    2 
               = Π8 
                     h , n
                            
 πfβ  hmax          max 




                                P=B(h – hr)m




                                               18/34
O problema




Alcalá J, Esqué-de los Ojos D, Rodríguez SA. J. Mater. Res 2009; 24:1235
                                                                           19/34
O problema

          π ⋅S
 Er = β
          2 Ac

    2
                   ? 2
H     4      he        hr 
 α=
E        1 −
         2 
                    = Π8 
                          h , n
                                 
 r  πfβ  hmax          max 


                                     20/34
π ⋅S
                   O problema                                  Er = β
                                                                            2 Ac
 Geometria
Indentador




                        King RB. Int. J. Solids. Struct 1987   23:1657

                   ν    Hay C, Bolshakov A, Pharr GM. J Mater Res 1999; 14:2296

                        Troyon M, Lafaye S.      Philos. Mag.   2006; 86:5299.

                        Meza JM, Abbes F, Troyon M. J Mater Res 2008; 23:725

                        Bolshakov A, Pharr GM. J Mater Res 1998; 13:1049.
             Y n
                        Wang L, Rokhlin SI. Int. J. Solids. Struct 2005;      42:3807
 Indentador             Cao YP, Dao M, Lu J. J. Mater. Res 2007;         22:1255

        %               Rodríguez SA, Farias MCM, Souza RM. J Mater Res 2009;
                        24:1222
                                                                                        21/34
O problema


                   2
  4      he        hr   
     1 −
   2 
              = Π8 
                    h , n
                           
πfβ  h max          max 

                                1/ 2
 he         fβ2
                   hr    
      = 1−              
            4 Π8  h , n  
h max             max  

              β=0.9122

   Casals O, Alcalá J. J. Mater. Res. 2007   22:1138.
                                                        22/34
Simulação por elementos finitos
     Casals O, Alcalá J. Acta Mater 2005; 53:3545




                                                    23/34
Simulação por elementos finitos

          σ    for    σ ≤ Y
           E
      ε = 
          ( )( )
           Y σ
           E Y
                 1
                   n
                       for       σ > Y


           E           65 GPa - 400 GPa

170        Y           0 GPa - 4 GPa

           n           0 – 0.5
                                          24/34
O fator de correção β




β=0.9122   Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Acta Mater 2001; 49:3899

β=0.9669   King    RB. Int. J. Solids. Struct   1987;   23:1657
                                                                                         25/34
O fator de correção β

                                 Pmax
             π ⋅S          π            hmax
    Er = β          =β
             2 Ac        2 Ac 1 − he      
                                     hmax 
                                          
                     2              2 0
       1 (1− ν )             ( 1 − νi )
          =      +
       Er   E                   Ei



                                               26/34
O fator de correção β




                        27/34
he/hmax
           he        hr   
               = Ξ3 
                     h , n
                           
          hmax       max 




                               28/34
he/hmax
∆he/hmax




             ∆n
                     29/34
he/hmax




          30/34
O algoritmo inverso
P-h
Ajuste da curva de carregamento                     Pl = Kh λ

   λ≈2
                                              λ≠2
Ajuste da curva de descarregamento

                          Pu = B(h − hr ) m

                  0%            90%

                    he                hr
                   hmax              hmax
                                                                31/34
O algoritmo inverso
                                                    hr       Y 
K, he/hmax, hr/hmax                                     = Π1  , n 
                                                             E 
                                                   hmax       r 
                                            Y
                                                               E
  he        h     
      = Ξ3  r , n 
           h          n<0.6
 hmax       max                         1 ( 1 − ν 2 ) ( 1 − ν i2 )
                                             =         +
                              Pmax        Er     E          Ei
               n           H=
                               Ac
           hr                                    ν=0.3
          
   a = Ξ4      ,n
           hmax 
                                                                   Pmax
                       β = f1 (α )                         π              hmax
                                                Er = β
                       Ac = αAs = αfh 2                  2 Ac 1 − he      
                                                                     hmax 
                                                                     32/34
                                                                           
E (GPa)      ν      Y (MPa)      n         H (GPa)

            Al2098-T8                            68         0.3      450       0.09          1.3



 test    K (GPa)       hr/hm        he/hm       E (GPa)           Y (MPa)             n            H (GPa)
  1      45.5832      0.8747       0.8932       66.5307           427.9703          0.1727          1.8184
  2      44.7676      0.8789       0.9036       68.8887           597.0513          0.0260          1.5756
  3      45.5611      0.8758       0.9025       68.6986           549.8069          0.0000          1.5749

  4      47.8493      0.8725       0.8965       73.6820           483.8937          0.1715          1.9311

  5      45.0170      0.8820       0.9036       74.1297           427.9816          0.1780          1.7960
  6      45.9498      0.8776       0.8953       68.6609           423.2326          0.1750          1.8276
  7      47.4600      0.8769       0.8959       71.7646           444.9011          0.1747          1.8908
  8      44.8511      0.8750       0.8962       67.9237           434.5407          0.1730          1.7988

Media
         45.88±0.8   0.88±0.002   0.90±0.003   70.03±1.94       473.67±45.52    0.13±0.05          1.78±0.09
Erro %                                            2.9               5.0              32.8            26.8



                                                                                                      33/34
Conclusões

β = f1 (α )
Novo algoritmo direto


Novo algoritmo inverso

  Unicidade               hr/hmax     1   hr/hmax >0.9

  Variação experimental   n (0-0.1)
                                                  34/34
OBRIGADA



    Perguntas

Weitere ähnliche Inhalte

Mehr von Instituto Nacional de Engenharia de Superfícies

Mehr von Instituto Nacional de Engenharia de Superfícies (20)

Pesquisa, Desenvolvimento e Inovação em Diamante-CVD e Materiais Relacionados...
Pesquisa, Desenvolvimento e Inovação em Diamante-CVD e Materiais Relacionados...Pesquisa, Desenvolvimento e Inovação em Diamante-CVD e Materiais Relacionados...
Pesquisa, Desenvolvimento e Inovação em Diamante-CVD e Materiais Relacionados...
 
On the understanding of the SuperLubricity Phenomena in Ceramic contacts.
On the understanding of the SuperLubricity Phenomena in Ceramic contacts.On the understanding of the SuperLubricity Phenomena in Ceramic contacts.
On the understanding of the SuperLubricity Phenomena in Ceramic contacts.
 
HiPIMS: technology, physics and thin film applications.
HiPIMS: technology, physics and thin film applications.HiPIMS: technology, physics and thin film applications.
HiPIMS: technology, physics and thin film applications.
 
Tribological challenges in flex fuel engines.
Tribological challenges in flex fuel engines.Tribological challenges in flex fuel engines.
Tribological challenges in flex fuel engines.
 
Mechanical, thermal, and electronic properties of transition metal dichalcoge...
Mechanical, thermal, and electronic properties of transition metal dichalcoge...Mechanical, thermal, and electronic properties of transition metal dichalcoge...
Mechanical, thermal, and electronic properties of transition metal dichalcoge...
 
Thin films seen in the light of high energy synchrotron radiation: stress and...
Thin films seen in the light of high energy synchrotron radiation: stress and...Thin films seen in the light of high energy synchrotron radiation: stress and...
Thin films seen in the light of high energy synchrotron radiation: stress and...
 
Workshop: Documentação com fotografia 3D.
Workshop: Documentação com fotografia 3D.Workshop: Documentação com fotografia 3D.
Workshop: Documentação com fotografia 3D.
 
Leonardo da Vinci: artista, engenheiro ou cientista? Uma visão de Deniol Tanaka.
Leonardo da Vinci: artista, engenheiro ou cientista? Uma visão de Deniol Tanaka.Leonardo da Vinci: artista, engenheiro ou cientista? Uma visão de Deniol Tanaka.
Leonardo da Vinci: artista, engenheiro ou cientista? Uma visão de Deniol Tanaka.
 
Surface Enginnering on Medical Devices.
Surface Enginnering on Medical Devices. Surface Enginnering on Medical Devices.
Surface Enginnering on Medical Devices.
 
Mecânica computacional de esforços de contato.
Mecânica computacional de esforços de contato.Mecânica computacional de esforços de contato.
Mecânica computacional de esforços de contato.
 
Engenharia de nanoestruturas de superfície.
Engenharia de nanoestruturas de superfície.Engenharia de nanoestruturas de superfície.
Engenharia de nanoestruturas de superfície.
 
Instituto Senai de Inovação em Engenharia de Superfícies
Instituto Senai de Inovação em Engenharia de SuperfíciesInstituto Senai de Inovação em Engenharia de Superfícies
Instituto Senai de Inovação em Engenharia de Superfícies
 
Inovação tecnológica como foco do negócio
Inovação tecnológica como foco do negócioInovação tecnológica como foco do negócio
Inovação tecnológica como foco do negócio
 
Livro eletrônico "Engenharia de Superfícies"
Livro eletrônico "Engenharia de Superfícies"Livro eletrônico "Engenharia de Superfícies"
Livro eletrônico "Engenharia de Superfícies"
 
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OESAnalytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
 
Ano 3 da seção UCS do Instituto Nacional de Engenharia de Superfícies.
Ano 3 da seção UCS do Instituto Nacional de Engenharia de Superfícies.Ano 3 da seção UCS do Instituto Nacional de Engenharia de Superfícies.
Ano 3 da seção UCS do Instituto Nacional de Engenharia de Superfícies.
 
Plasma, electron and ion beams surface patterning of metals.
Plasma, electron and ion beams surface patterning of metals.Plasma, electron and ion beams surface patterning of metals.
Plasma, electron and ion beams surface patterning of metals.
 
INCT de Engenharia de Superfícies: divulgação, difusão e transferência de con...
INCT de Engenharia de Superfícies: divulgação, difusão e transferência de con...INCT de Engenharia de Superfícies: divulgação, difusão e transferência de con...
INCT de Engenharia de Superfícies: divulgação, difusão e transferência de con...
 
Revestimentos Protetores Obtidos a Plasma na Indústria Metal-Mecânica
Revestimentos Protetores Obtidos a Plasma na Indústria Metal-MecânicaRevestimentos Protetores Obtidos a Plasma na Indústria Metal-Mecânica
Revestimentos Protetores Obtidos a Plasma na Indústria Metal-Mecânica
 
Tratamentos de superficie com lasers
Tratamentos de superficie com lasersTratamentos de superficie com lasers
Tratamentos de superficie com lasers
 

Obtenção de propriedades mecânicas a partir de curvas de descarregamento em ensaios de indentação instrumentada

  • 1. Possibilidade de obtenção de propriedades mecânicas a partir dos dados de descarregamento em ensaios de indentação Instrumentada Bolsa de mobilidade Internacional de Pós- Graduandos Programa SANTANDER BANESPA Sara Aida Rodríguez Pulecio sara.pulecio@poli.usp.br
  • 2. Bolsa de mobilidade Internacional de Pós- Graduandos Programa SANTANDER BANESPA Universidad Politecnica de Catalunya GRICCA (Grupo Interdepartamental pela Colaboração Científica Aplicada) Prof. Dr. Jorge Alcalá 2/34
  • 5. Determinação de propriedades mecânicas- Algoritmo Oliver WC, Pharr GM. J Mater Res 1992; 7:1564 Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Acta Mater 2001; 49:3899 Bucaille JL, Stauss S, Felder E, Michler J. Acta Mater 2003; 51:1663 Casals O, Alcalá J. Acta Mater 2005; 53:3545 Propriedades Curvas carga Algoritmo direto mecânicas deslocamento (P-h) Algoritmo inverso (E, Y, n, H) 5/34
  • 6. Curvas carga Algoritmo direto Propriedades deslocamento Algoritmo inverso mecânicas Carregamento Descarregamento S/Ehmax P=Kh 2 P=B(h – hr)m P K/E Pmax S hr/hmax Wp/WT We/WT he/hmax hr he hmax h Rodríguez SA, Farias MCM, Souza RM. Rodrí J. Mater. Res 2009; 24:1222 6/34
  • 7. Analise dimensional hr Y  = Π1  , n  E  hmax  r  K Y  = Π2 , n E  Er  r  he Y  = Π3 , n  E  hmax  r  7/34
  • 8. Analise dimensional Y  hr  = Ξ1   h , n  Er  max  he Y    hr    hr  = Π 3  , n  = Π 3  Ξ1      h , n , n  = Ξ 3  h , n    hmax  E    max    max  K Y    hr    hr  = Π 2  , n  = Π 2  Ξ1        h , n , n  = Ξ 2  h , n  Er E    max    max  8/34
  • 9. A função Π8 Casals O, Alcalá J. Acta Mater 2005; 53:3545 Pmax π ⋅S π hmax Pmax Er = β =β H= 2 Ac 2 Ac 1 − he  Ac  hmax    2 A c = α A s = α fh 2 2 H  4  he   hr   E α=  1 −  h  = Π8    h , n   r  πfβ 2  max   max  9/34
  • 10. Formação de borda (pile-up) e retração (sink-in ) α pile-up sink-in Ac =α As Área nominal de contato 10/34
  • 11. Formação de borda (pile-up) e retração (sink-in ) 11/34
  • 12. Formação de borda (pile-up) e retração (sink-in ) 12/34
  • 13. A função Π8 2 4  he   hr  Casals O, Alcalá J. Acta Mater 2005; 53:3545 1 − 2   = Π8    h , n  πfβ  h max   max  13/34
  • 14. Unicidade (The indistinguishable mystical materials) E, Y, n E, Y, n +ε E, Y, n E, Y, n 14/34
  • 15. Unicidade Cheng YT, Cheng CM. J Mater Res 1999; 14:3493 Alkorta J, Martínez-Esnaola JM, Gil Sevillano J. J Mater Res 2005; 20:432 Tho KK, Swaddiwudhipong S, Liu ZS, Zeng K. Materials Science and Engineering A 2005; 390:202 Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Acta Mater 2001; 49:3899 Casals O, Alcalá J. Acta Mater 2005; 53:3545 15/34
  • 16. Unicidade 16/34
  • 17. Exemplo de não Unicidade E (GPa) Y (MPa) n hr/hmax he/hmax K (MPa) 200.00 773.63 0 0.9484 0.9590 64634.47 206.44 580.76 0.1 0.9481 0.9579 65496.21 214.85 408.45 0.2 0.9483 0.9575 65416.39 224.23 261.19 0.3 0.9484 0.9577 65222.32 234.09 146.62 0.4 0.9477 0.9575 65789.48 249.16 62.97 0.5 0.9475 0.9576 66336.01 Intervalo de confiança 14.60 216.13 0.15 0.0003 0.0005 454.63 (95%) Variação 19.73% 91.86% 100.00% 0.09% 0.16% 2.57% 17/34
  • 18. O problema 2 4  he   hr  1 − 2   = Π8    h , n  πfβ  hmax   max  P=B(h – hr)m 18/34
  • 19. O problema Alcalá J, Esqué-de los Ojos D, Rodríguez SA. J. Mater. Res 2009; 24:1235 19/34
  • 20. O problema π ⋅S Er = β 2 Ac 2 ? 2 H 4  he   hr   α= E  1 − 2   = Π8    h , n   r πfβ  hmax   max  20/34
  • 21. π ⋅S O problema Er = β 2 Ac Geometria Indentador King RB. Int. J. Solids. Struct 1987 23:1657 ν Hay C, Bolshakov A, Pharr GM. J Mater Res 1999; 14:2296 Troyon M, Lafaye S. Philos. Mag. 2006; 86:5299. Meza JM, Abbes F, Troyon M. J Mater Res 2008; 23:725 Bolshakov A, Pharr GM. J Mater Res 1998; 13:1049. Y n Wang L, Rokhlin SI. Int. J. Solids. Struct 2005; 42:3807 Indentador Cao YP, Dao M, Lu J. J. Mater. Res 2007; 22:1255 % Rodríguez SA, Farias MCM, Souza RM. J Mater Res 2009; 24:1222 21/34
  • 22. O problema 2 4  he   hr  1 − 2   = Π8    h , n  πfβ  h max   max  1/ 2 he  fβ2  hr  = 1−     4 Π8  h , n   h max   max   β=0.9122 Casals O, Alcalá J. J. Mater. Res. 2007 22:1138. 22/34
  • 23. Simulação por elementos finitos Casals O, Alcalá J. Acta Mater 2005; 53:3545 23/34
  • 24. Simulação por elementos finitos σ for σ ≤ Y  E ε =  ( )( )  Y σ  E Y 1 n for σ > Y E 65 GPa - 400 GPa 170 Y 0 GPa - 4 GPa n 0 – 0.5 24/34
  • 25. O fator de correção β β=0.9122 Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Acta Mater 2001; 49:3899 β=0.9669 King RB. Int. J. Solids. Struct 1987; 23:1657 25/34
  • 26. O fator de correção β Pmax π ⋅S π hmax Er = β =β 2 Ac 2 Ac 1 − he   hmax    2 2 0 1 (1− ν ) ( 1 − νi ) = + Er E Ei 26/34
  • 27. O fator de correção β 27/34
  • 28. he/hmax he  hr  = Ξ3   h , n  hmax  max  28/34
  • 29. he/hmax ∆he/hmax ∆n 29/34
  • 30. he/hmax 30/34
  • 31. O algoritmo inverso P-h Ajuste da curva de carregamento Pl = Kh λ λ≈2 λ≠2 Ajuste da curva de descarregamento Pu = B(h − hr ) m 0% 90% he hr hmax hmax 31/34
  • 32. O algoritmo inverso hr Y  K, he/hmax, hr/hmax = Π1  , n  E  hmax  r  Y E he  h  = Ξ3  r , n  h  n<0.6 hmax  max  1 ( 1 − ν 2 ) ( 1 − ν i2 ) = + Pmax Er E Ei n H= Ac  hr  ν=0.3  a = Ξ4  ,n  hmax  Pmax β = f1 (α ) π hmax Er = β Ac = αAs = αfh 2 2 Ac 1 − he   hmax   32/34 
  • 33. E (GPa) ν Y (MPa) n H (GPa) Al2098-T8 68 0.3 450 0.09 1.3 test K (GPa) hr/hm he/hm E (GPa) Y (MPa) n H (GPa) 1 45.5832 0.8747 0.8932 66.5307 427.9703 0.1727 1.8184 2 44.7676 0.8789 0.9036 68.8887 597.0513 0.0260 1.5756 3 45.5611 0.8758 0.9025 68.6986 549.8069 0.0000 1.5749 4 47.8493 0.8725 0.8965 73.6820 483.8937 0.1715 1.9311 5 45.0170 0.8820 0.9036 74.1297 427.9816 0.1780 1.7960 6 45.9498 0.8776 0.8953 68.6609 423.2326 0.1750 1.8276 7 47.4600 0.8769 0.8959 71.7646 444.9011 0.1747 1.8908 8 44.8511 0.8750 0.8962 67.9237 434.5407 0.1730 1.7988 Media 45.88±0.8 0.88±0.002 0.90±0.003 70.03±1.94 473.67±45.52 0.13±0.05 1.78±0.09 Erro % 2.9 5.0 32.8 26.8 33/34
  • 34. Conclusões β = f1 (α ) Novo algoritmo direto Novo algoritmo inverso Unicidade hr/hmax 1 hr/hmax >0.9 Variação experimental n (0-0.1) 34/34
  • 35. OBRIGADA Perguntas