SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
AULA 13
CALORIMETRIA
1- INTRODUÇÃO
Neste capítulo estudaremos o calor e suas aplicações. Veremos que o
calor pode simplesmente alterar a temperatura de um corpo, ou até
mesmo mudar o seu estado físico.
2- CALOR
O calor é definido como sendo energia térmica transitando de um
corpo de maior para um corpo de menor temperatura. Esta energia
térmica é proveniente da agitação das moléculas que constituem o
corpo.

3- EQUILÍBRIO TÉRMICO
Conforme o fluxo de energia térmica passa do corpo de maior para o
de menor temperatura, o corpo mais quente vai se esfriando, e o corpo
mais frio vai se aquecendo, até que suas temperaturas atinjam o
mesmo valor. Esta temperatura é denominada temperatura de
equilíbrio térmico.
4- CALOR SENSÍVEL E CALOR LATENTE
Quando uma substância ao receber ou ceder calor, sofre somente
uma variação em sua temperatura, dizemos que ela recebeu ou cedeu
calor sensível.
Portanto, se esta substância ao receber ou ceder calor, sofre uma
mudança de estado, dizemos que ela recebeu ou cedeu calor latente.
Na ilustração abaixo, temos a mesma fonte fornecendo calor a dois
corpos. Note que um dos corpos sofrerá apenas um aquecimento (calor
sensível), enquanto o outro corpo sofrerá uma mudança de estado
(calor latente).

5- CAPACIDADE TÉRMICA OU CAPACIDADE CALORÍFICA (C)
A capacidade térmica ou calorífica de um corpo mede o calor
necessário para variar de uma unidade a temperatura deste corpo.
Considere um corpo a uma temperatura q1 que ao receber uma certa
quantidade de calor Q, passa a ter uma temperatura q 2 . A capacidade
térmica deste corpo é dada pelo quociente entre o calor Q e a variação
de temperatura Dq , sofrida pelo corpo. A capacidade térmica também é
diretamente proporcional à massa e ao calor específico sensível da
substância que constitui o corpo.
6- QUANTIDADE DE CALOR SENSÍVEL (Q)
A quantidade de calor sensível é obtida da definição da capacidade
térmica. Multiplicando a equação da capacidade térmica membro a
membro pela variação de temperatura em seguida substituindo a
capacidade térmica pelo produto da massa pelo calor específico sensível,
temos determinada a equação fundamental da Calorimetria.
7- CALORIA
A caloria é definida como sendo a quantidade de calor necessária e
suficiente para elevar de 1°C a temperatura de 1g de água pura.

8- CALOR ESPECÍFICO DA ÁGUA
Com os dados acima e aplicando
Calorimetria, temos:

a equação fundamental da
9- BALANÇO ENERGÉTICO
Corpos em diferentes temperaturas colocados em contato térmico em
um sistema isolado vão trocar calor até que se atinja o equilíbrio
térmico. Como não haverá entrada nem saída de calor deste sistema,
podemos afirmar que todo calor cedido (pelos corpos de temperaturas
mais altas) dentro do sistema, será também recebido (pelos corpos de
temperaturas mais baixas) dentro do sistema. Quando um corpo recebe
calor, sua variação de temperatura é positiva, logo, o calor recebido é
positivo. Quando um corpo cede calor, sua variação de temperatura é
negativa, logo, o calor cedido é negativo. Se somarmos o calor total
cedido com o calor total recebido o resultado será nulo.

10- MUDANÇAS DE ESTADO OU FASE.
Na natureza as substâncias podem se apresentar nas fases sólida,
líquida e gasosa. A mudança da fase sólida para a fase líquida é a fusão
e da fase líquida para a fase sólida é a solidificação.
A mudança da fase líquida para a fase gasosa é a ebulição ou
vaporização e da fase gasosa para a fase líquida é a condensação ou
liquefação.
A mudança da fase sólida para a fase gasosa é a sublimação e da
fase gasosa para a fase sólida também é a sublimação.
11- LEIS DAS MUDANÇAS DE ESTADO OU FASE
1ª LEI – Durante uma mudança de fase, à pressão constante, a
temperatura também se mantém constante. Isto significa dizer que, por
exemplo, à pressão atmosférica normal, o gelo começa a se fundir a 0°C
e durante toda a fusão a temperatura se mantém a 0°C.
2ª LEI – Cada substância pura tem a sua temperatura própria de
mudança de fase. Isto significa dizer que, por exemplo, à pressão
atmosférica normal, a água entra em ebulição a 100°C enquanto que o
álcool entra em ebulição a 78°C.
3ª LEI – Se a pressão se altera as temperaturas de mudanças de fase
também se alteram. Por exemplo, numa panela de pressão a
temperatura de ebulição da água atinge valor maior que 100°C devido
ao aumento de pressão.
12- QUANTIDADE DE CALOR LATENTE (Q)
Experimentalmente verificou-se que a quantidade de calor necessária
para mudar a fase de uma substância era diretamente proporcional à
massa da substância. A constante de proporcionalidade foi chamada de
calor específico latente e daí surgiu a relação:
13- CURVAS DE AQUECIMENTO E RESFRIAMENTO
Considere um corpo de massa m inicialmente no estado sólido e a
uma temperatura inferior a sua temperatura de fusão. Fornecendo calor
a este corpo , ele irá atingir a temperatura q4 , passando de
liquido e de liquido para gasoso. Nesse processo
aquecimentos (calor sensível) e mudanças de estado (calor
gráfico abaixo mostra como varia a temperatura em
quantidade de calor.

sólido para
ocorreram
latente). O
função da
EXERCÍCIOS
1- (MACKENZIE) – um corpo de certo material, com 200g, ao
receber 1000cal aumenta sua temperatura de 10°C. Outro corpo
de 500g, constituído do mesmo material, terá capacidade térmica
de:
a) 50cal/°C
b) 100cal/°C
c) 150cal/°C
d) 250cal/°C
e) 300cal/°C
2- (UNISA) – O gráfico representa a temperatura de uma
amostra, de massa 100g, de uma substância, em função da
quantidade de calor por ela absorvida. O calor específico sensível
dessa substância, em cal/g°C, é:
a) 0,10
b) 0,20
c) 0,40
d) 0,60
e) 0,80

q(°C)
80

20
0

1200

Q(cal)

3- (UNISA-SP) – Tem-se 20g de gelo a -20°C. A quantidade de
calor que se deve fornecer ao gelo para que ele se transforme em
20g de água a 40°C é:
Dados:
Calor específico sensível do gelo = 0,50cal/g°C
Calor específico sensível da água = 1,0cal/g°C
Calor específico latente de fusão do gelo = 80cal/g
a) 1000cal
b) 1200cal
c) 2600cal
d) 3000cal
e) 4800cal
4- (FUVEST-FGV-SP) – Dispõe-se de água a 80°C e gelo a 0°C.
Deseja-se obter 100g de água a uma temperatura de 40°C (após
o equilíbrio), misturando água e gelo em um recipiente isolante e
com capacidade térmica desprezível. Sabe-se que o calor
específico latente de fusão do gelo é 80cal/g e o calor específico
sensível da água é 1,0cal/g°C. A massa de gelo a ser utilizada é
a) 5,0g
b) 12,5g
c) 25g
d) 33g
e) 50g
5- (UELON-PR) – Em um recipiente, de paredes adiabáticas e
capacidade térmica desprezível, introduzem-se 200g de água a
20°C e 80g de gelo a -20°C. Atingindo-se o equilíbrio térmico, a
temperatura do sistema será:
a) -11°C
b) 0°C, restando 40g de gelo.
b) 0°C, restando apenas água.
b) 0°C, restando apenas gelo.
a) 11°C
Dados:
Calor específico sensível do gelo = 0,50cal/g°C
Calor específico sensível da água = 1,0cal/g°C
Calor específico latente de fusão do gelo = 80cal/g

RESPOSTAS
1.
2.
3.
4.
5.

ALTERNATIVA
ALTERNATIVA
ALTERNATIVA
ALTERNATIVA
ALTERNATIVA

D
A
C
C
B

Weitere ähnliche Inhalte

Was ist angesagt?

Estudo dos gases slides
Estudo dos gases   slidesEstudo dos gases   slides
Estudo dos gases slides
Micaela Neiva
 
DilataçãO TéRmica
DilataçãO TéRmicaDilataçãO TéRmica
DilataçãO TéRmica
guest130aa0
 
Processos de transmissão de calor
Processos de transmissão de calorProcessos de transmissão de calor
Processos de transmissão de calor
O mundo da FÍSICA
 

Was ist angesagt? (20)

Transmissão de calor
Transmissão de calorTransmissão de calor
Transmissão de calor
 
Aula de calorimetria
Aula de calorimetriaAula de calorimetria
Aula de calorimetria
 
Aula termoquímica
Aula termoquímicaAula termoquímica
Aula termoquímica
 
Estudo dos gases slides
Estudo dos gases   slidesEstudo dos gases   slides
Estudo dos gases slides
 
9 ano mudanças de estado físico
9 ano mudanças de estado físico9 ano mudanças de estado físico
9 ano mudanças de estado físico
 
Física (calorimetria)
Física (calorimetria)Física (calorimetria)
Física (calorimetria)
 
Conversões de Unidades de medidas (Volume, Pressões, Massa e Temperatura )
Conversões de Unidades de medidas (Volume, Pressões, Massa e Temperatura )Conversões de Unidades de medidas (Volume, Pressões, Massa e Temperatura )
Conversões de Unidades de medidas (Volume, Pressões, Massa e Temperatura )
 
Termodinâmica resolvido
Termodinâmica resolvidoTermodinâmica resolvido
Termodinâmica resolvido
 
Termologia - I-Termometria
Termologia - I-TermometriaTermologia - I-Termometria
Termologia - I-Termometria
 
Termologia
TermologiaTermologia
Termologia
 
DILATAÇÃO TÉRMICA
DILATAÇÃO TÉRMICADILATAÇÃO TÉRMICA
DILATAÇÃO TÉRMICA
 
3 fisica
3 fisica3 fisica
3 fisica
 
Atividades sobre densidade
Atividades sobre densidadeAtividades sobre densidade
Atividades sobre densidade
 
DilataçãO TéRmica
DilataçãO TéRmicaDilataçãO TéRmica
DilataçãO TéRmica
 
Escalas termométricas
Escalas termométricasEscalas termométricas
Escalas termométricas
 
Primeira lei da termodinâmica
Primeira lei da termodinâmicaPrimeira lei da termodinâmica
Primeira lei da termodinâmica
 
Processos de transmissão de calor
Processos de transmissão de calorProcessos de transmissão de calor
Processos de transmissão de calor
 
CALORIMETRIA
CALORIMETRIACALORIMETRIA
CALORIMETRIA
 
Temperatura
TemperaturaTemperatura
Temperatura
 
Condução de calor
Condução de calorCondução de calor
Condução de calor
 

Ähnlich wie 13 Calorimetria

Ähnlich wie 13 Calorimetria (20)

Aula 13 calorimetria
Aula 13   calorimetriaAula 13   calorimetria
Aula 13 calorimetria
 
Termometria apostila
Termometria apostilaTermometria apostila
Termometria apostila
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Calorimetria.pptx
Calorimetria.pptxCalorimetria.pptx
Calorimetria.pptx
 
Calorimetria Trabalho
Calorimetria TrabalhoCalorimetria Trabalho
Calorimetria Trabalho
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Calorimetria aula 1
Calorimetria   aula 1Calorimetria   aula 1
Calorimetria aula 1
 
"Explorando a Termologia: Calor e Temperatura".pptx
"Explorando a Termologia: Calor e Temperatura".pptx"Explorando a Termologia: Calor e Temperatura".pptx
"Explorando a Termologia: Calor e Temperatura".pptx
 
Aula I - CALORIMETRIA máquinas térmicas.ppt
Aula I - CALORIMETRIA máquinas térmicas.pptAula I - CALORIMETRIA máquinas térmicas.ppt
Aula I - CALORIMETRIA máquinas térmicas.ppt
 
Fisica 1EM 2BIM
Fisica 1EM 2BIM Fisica 1EM 2BIM
Fisica 1EM 2BIM
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Calorimetria (2017)
Calorimetria (2017)Calorimetria (2017)
Calorimetria (2017)
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Atividade derecuperacao2ano2014
Atividade derecuperacao2ano2014Atividade derecuperacao2ano2014
Atividade derecuperacao2ano2014
 
Calorimetria I
Calorimetria ICalorimetria I
Calorimetria I
 
Exercícios de Termometria
Exercícios de TermometriaExercícios de Termometria
Exercícios de Termometria
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 

Mehr von Eletrons

21 Leis de OHM e resistores
21 Leis de OHM e resistores21 Leis de OHM e resistores
21 Leis de OHM e resistores
Eletrons
 
20 Carga elétrica e Corrente elétrica
20 Carga elétrica e Corrente elétrica20 Carga elétrica e Corrente elétrica
20 Carga elétrica e Corrente elétrica
Eletrons
 
19 Ondulatória
19 Ondulatória19 Ondulatória
19 Ondulatória
Eletrons
 
18 Refração da Luz
18 Refração da Luz18 Refração da Luz
18 Refração da Luz
Eletrons
 
17 Espelhos
17 Espelhos17 Espelhos
17 Espelhos
Eletrons
 
16 Termodinâmica
16 Termodinâmica16 Termodinâmica
16 Termodinâmica
Eletrons
 
15 Gases Perfeitos
15 Gases Perfeitos15 Gases Perfeitos
15 Gases Perfeitos
Eletrons
 
14 Transmissão de Calor
14 Transmissão de Calor14 Transmissão de Calor
14 Transmissão de Calor
Eletrons
 
12 Termometria
12 Termometria12 Termometria
12 Termometria
Eletrons
 
11 Hidrostática
11 Hidrostática11 Hidrostática
11 Hidrostática
Eletrons
 
10 Impulso e quantidade de movimento
10 Impulso e quantidade de movimento10 Impulso e quantidade de movimento
10 Impulso e quantidade de movimento
Eletrons
 
09 Mecânica Energia
09 Mecânica Energia09 Mecânica Energia
09 Mecânica Energia
Eletrons
 
08 Trabalho e Potência
08 Trabalho e Potência08 Trabalho e Potência
08 Trabalho e Potência
Eletrons
 
07 Dinâmica - Força Resultante
07 Dinâmica - Força Resultante07 Dinâmica - Força Resultante
07 Dinâmica - Força Resultante
Eletrons
 
06 Dinâmica - Atrito e plano inclinado
06 Dinâmica - Atrito e plano inclinado06 Dinâmica - Atrito e plano inclinado
06 Dinâmica - Atrito e plano inclinado
Eletrons
 
05 Dinâmica - Leis de Newton
05 Dinâmica - Leis de Newton05 Dinâmica - Leis de Newton
05 Dinâmica - Leis de Newton
Eletrons
 
04 Mecânica - Movimento Circular Uniforme
04 Mecânica - Movimento Circular Uniforme04 Mecânica - Movimento Circular Uniforme
04 Mecânica - Movimento Circular Uniforme
Eletrons
 
03 Mecânica - Vetores
03 Mecânica - Vetores03 Mecânica - Vetores
03 Mecânica - Vetores
Eletrons
 
02 Mecânica - Movimentos
02 Mecânica - Movimentos02 Mecânica - Movimentos
02 Mecânica - Movimentos
Eletrons
 
01 Mecânica Cinemática escalar
01 Mecânica Cinemática escalar01 Mecânica Cinemática escalar
01 Mecânica Cinemática escalar
Eletrons
 

Mehr von Eletrons (20)

21 Leis de OHM e resistores
21 Leis de OHM e resistores21 Leis de OHM e resistores
21 Leis de OHM e resistores
 
20 Carga elétrica e Corrente elétrica
20 Carga elétrica e Corrente elétrica20 Carga elétrica e Corrente elétrica
20 Carga elétrica e Corrente elétrica
 
19 Ondulatória
19 Ondulatória19 Ondulatória
19 Ondulatória
 
18 Refração da Luz
18 Refração da Luz18 Refração da Luz
18 Refração da Luz
 
17 Espelhos
17 Espelhos17 Espelhos
17 Espelhos
 
16 Termodinâmica
16 Termodinâmica16 Termodinâmica
16 Termodinâmica
 
15 Gases Perfeitos
15 Gases Perfeitos15 Gases Perfeitos
15 Gases Perfeitos
 
14 Transmissão de Calor
14 Transmissão de Calor14 Transmissão de Calor
14 Transmissão de Calor
 
12 Termometria
12 Termometria12 Termometria
12 Termometria
 
11 Hidrostática
11 Hidrostática11 Hidrostática
11 Hidrostática
 
10 Impulso e quantidade de movimento
10 Impulso e quantidade de movimento10 Impulso e quantidade de movimento
10 Impulso e quantidade de movimento
 
09 Mecânica Energia
09 Mecânica Energia09 Mecânica Energia
09 Mecânica Energia
 
08 Trabalho e Potência
08 Trabalho e Potência08 Trabalho e Potência
08 Trabalho e Potência
 
07 Dinâmica - Força Resultante
07 Dinâmica - Força Resultante07 Dinâmica - Força Resultante
07 Dinâmica - Força Resultante
 
06 Dinâmica - Atrito e plano inclinado
06 Dinâmica - Atrito e plano inclinado06 Dinâmica - Atrito e plano inclinado
06 Dinâmica - Atrito e plano inclinado
 
05 Dinâmica - Leis de Newton
05 Dinâmica - Leis de Newton05 Dinâmica - Leis de Newton
05 Dinâmica - Leis de Newton
 
04 Mecânica - Movimento Circular Uniforme
04 Mecânica - Movimento Circular Uniforme04 Mecânica - Movimento Circular Uniforme
04 Mecânica - Movimento Circular Uniforme
 
03 Mecânica - Vetores
03 Mecânica - Vetores03 Mecânica - Vetores
03 Mecânica - Vetores
 
02 Mecânica - Movimentos
02 Mecânica - Movimentos02 Mecânica - Movimentos
02 Mecânica - Movimentos
 
01 Mecânica Cinemática escalar
01 Mecânica Cinemática escalar01 Mecânica Cinemática escalar
01 Mecânica Cinemática escalar
 

Kürzlich hochgeladen

Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
azulassessoria9
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
azulassessoria9
 
Sistema articular aula 4 (1).pdf articulações e junturas
Sistema articular aula 4 (1).pdf articulações e junturasSistema articular aula 4 (1).pdf articulações e junturas
Sistema articular aula 4 (1).pdf articulações e junturas
rfmbrandao
 

Kürzlich hochgeladen (20)

tensoes-etnicas-na-europa-template-1.pptx
tensoes-etnicas-na-europa-template-1.pptxtensoes-etnicas-na-europa-template-1.pptx
tensoes-etnicas-na-europa-template-1.pptx
 
Quiz | Dia da Europa 2024 (comemoração)
Quiz | Dia da Europa 2024  (comemoração)Quiz | Dia da Europa 2024  (comemoração)
Quiz | Dia da Europa 2024 (comemoração)
 
Aula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .pptAula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .ppt
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
Acessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidadeAcessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidade
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
 
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
 
Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)
 
Sistema de Bibliotecas UCS - Cantos do fim do século
Sistema de Bibliotecas UCS  - Cantos do fim do séculoSistema de Bibliotecas UCS  - Cantos do fim do século
Sistema de Bibliotecas UCS - Cantos do fim do século
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 
Sistema articular aula 4 (1).pdf articulações e junturas
Sistema articular aula 4 (1).pdf articulações e junturasSistema articular aula 4 (1).pdf articulações e junturas
Sistema articular aula 4 (1).pdf articulações e junturas
 
Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)
 
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.docGUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
 
Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
 
aprendizagem significatica, teórico David Ausubel
aprendizagem significatica, teórico David Ausubelaprendizagem significatica, teórico David Ausubel
aprendizagem significatica, teórico David Ausubel
 
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptxSlides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
 

13 Calorimetria

  • 1. AULA 13 CALORIMETRIA 1- INTRODUÇÃO Neste capítulo estudaremos o calor e suas aplicações. Veremos que o calor pode simplesmente alterar a temperatura de um corpo, ou até mesmo mudar o seu estado físico. 2- CALOR O calor é definido como sendo energia térmica transitando de um corpo de maior para um corpo de menor temperatura. Esta energia térmica é proveniente da agitação das moléculas que constituem o corpo. 3- EQUILÍBRIO TÉRMICO Conforme o fluxo de energia térmica passa do corpo de maior para o de menor temperatura, o corpo mais quente vai se esfriando, e o corpo mais frio vai se aquecendo, até que suas temperaturas atinjam o mesmo valor. Esta temperatura é denominada temperatura de equilíbrio térmico.
  • 2. 4- CALOR SENSÍVEL E CALOR LATENTE Quando uma substância ao receber ou ceder calor, sofre somente uma variação em sua temperatura, dizemos que ela recebeu ou cedeu calor sensível. Portanto, se esta substância ao receber ou ceder calor, sofre uma mudança de estado, dizemos que ela recebeu ou cedeu calor latente. Na ilustração abaixo, temos a mesma fonte fornecendo calor a dois corpos. Note que um dos corpos sofrerá apenas um aquecimento (calor sensível), enquanto o outro corpo sofrerá uma mudança de estado (calor latente). 5- CAPACIDADE TÉRMICA OU CAPACIDADE CALORÍFICA (C)
  • 3. A capacidade térmica ou calorífica de um corpo mede o calor necessário para variar de uma unidade a temperatura deste corpo. Considere um corpo a uma temperatura q1 que ao receber uma certa quantidade de calor Q, passa a ter uma temperatura q 2 . A capacidade térmica deste corpo é dada pelo quociente entre o calor Q e a variação de temperatura Dq , sofrida pelo corpo. A capacidade térmica também é diretamente proporcional à massa e ao calor específico sensível da substância que constitui o corpo.
  • 4. 6- QUANTIDADE DE CALOR SENSÍVEL (Q) A quantidade de calor sensível é obtida da definição da capacidade térmica. Multiplicando a equação da capacidade térmica membro a membro pela variação de temperatura em seguida substituindo a capacidade térmica pelo produto da massa pelo calor específico sensível, temos determinada a equação fundamental da Calorimetria.
  • 5. 7- CALORIA A caloria é definida como sendo a quantidade de calor necessária e suficiente para elevar de 1°C a temperatura de 1g de água pura. 8- CALOR ESPECÍFICO DA ÁGUA Com os dados acima e aplicando Calorimetria, temos: a equação fundamental da
  • 6. 9- BALANÇO ENERGÉTICO Corpos em diferentes temperaturas colocados em contato térmico em um sistema isolado vão trocar calor até que se atinja o equilíbrio térmico. Como não haverá entrada nem saída de calor deste sistema, podemos afirmar que todo calor cedido (pelos corpos de temperaturas mais altas) dentro do sistema, será também recebido (pelos corpos de temperaturas mais baixas) dentro do sistema. Quando um corpo recebe calor, sua variação de temperatura é positiva, logo, o calor recebido é positivo. Quando um corpo cede calor, sua variação de temperatura é negativa, logo, o calor cedido é negativo. Se somarmos o calor total cedido com o calor total recebido o resultado será nulo. 10- MUDANÇAS DE ESTADO OU FASE. Na natureza as substâncias podem se apresentar nas fases sólida, líquida e gasosa. A mudança da fase sólida para a fase líquida é a fusão e da fase líquida para a fase sólida é a solidificação. A mudança da fase líquida para a fase gasosa é a ebulição ou vaporização e da fase gasosa para a fase líquida é a condensação ou liquefação. A mudança da fase sólida para a fase gasosa é a sublimação e da fase gasosa para a fase sólida também é a sublimação.
  • 7. 11- LEIS DAS MUDANÇAS DE ESTADO OU FASE 1ª LEI – Durante uma mudança de fase, à pressão constante, a temperatura também se mantém constante. Isto significa dizer que, por exemplo, à pressão atmosférica normal, o gelo começa a se fundir a 0°C e durante toda a fusão a temperatura se mantém a 0°C. 2ª LEI – Cada substância pura tem a sua temperatura própria de mudança de fase. Isto significa dizer que, por exemplo, à pressão atmosférica normal, a água entra em ebulição a 100°C enquanto que o álcool entra em ebulição a 78°C. 3ª LEI – Se a pressão se altera as temperaturas de mudanças de fase também se alteram. Por exemplo, numa panela de pressão a temperatura de ebulição da água atinge valor maior que 100°C devido ao aumento de pressão. 12- QUANTIDADE DE CALOR LATENTE (Q) Experimentalmente verificou-se que a quantidade de calor necessária para mudar a fase de uma substância era diretamente proporcional à massa da substância. A constante de proporcionalidade foi chamada de calor específico latente e daí surgiu a relação:
  • 8. 13- CURVAS DE AQUECIMENTO E RESFRIAMENTO Considere um corpo de massa m inicialmente no estado sólido e a uma temperatura inferior a sua temperatura de fusão. Fornecendo calor a este corpo , ele irá atingir a temperatura q4 , passando de liquido e de liquido para gasoso. Nesse processo aquecimentos (calor sensível) e mudanças de estado (calor gráfico abaixo mostra como varia a temperatura em quantidade de calor. sólido para ocorreram latente). O função da
  • 9. EXERCÍCIOS 1- (MACKENZIE) – um corpo de certo material, com 200g, ao receber 1000cal aumenta sua temperatura de 10°C. Outro corpo de 500g, constituído do mesmo material, terá capacidade térmica de: a) 50cal/°C b) 100cal/°C c) 150cal/°C d) 250cal/°C e) 300cal/°C
  • 10. 2- (UNISA) – O gráfico representa a temperatura de uma amostra, de massa 100g, de uma substância, em função da quantidade de calor por ela absorvida. O calor específico sensível dessa substância, em cal/g°C, é: a) 0,10 b) 0,20 c) 0,40 d) 0,60 e) 0,80 q(°C) 80 20 0 1200 Q(cal) 3- (UNISA-SP) – Tem-se 20g de gelo a -20°C. A quantidade de calor que se deve fornecer ao gelo para que ele se transforme em 20g de água a 40°C é: Dados: Calor específico sensível do gelo = 0,50cal/g°C Calor específico sensível da água = 1,0cal/g°C Calor específico latente de fusão do gelo = 80cal/g a) 1000cal b) 1200cal c) 2600cal d) 3000cal e) 4800cal 4- (FUVEST-FGV-SP) – Dispõe-se de água a 80°C e gelo a 0°C. Deseja-se obter 100g de água a uma temperatura de 40°C (após o equilíbrio), misturando água e gelo em um recipiente isolante e com capacidade térmica desprezível. Sabe-se que o calor específico latente de fusão do gelo é 80cal/g e o calor específico sensível da água é 1,0cal/g°C. A massa de gelo a ser utilizada é a) 5,0g b) 12,5g c) 25g d) 33g e) 50g 5- (UELON-PR) – Em um recipiente, de paredes adiabáticas e capacidade térmica desprezível, introduzem-se 200g de água a 20°C e 80g de gelo a -20°C. Atingindo-se o equilíbrio térmico, a temperatura do sistema será:
  • 11. a) -11°C b) 0°C, restando 40g de gelo. b) 0°C, restando apenas água. b) 0°C, restando apenas gelo. a) 11°C Dados: Calor específico sensível do gelo = 0,50cal/g°C Calor específico sensível da água = 1,0cal/g°C Calor específico latente de fusão do gelo = 80cal/g RESPOSTAS 1. 2. 3. 4. 5. ALTERNATIVA ALTERNATIVA ALTERNATIVA ALTERNATIVA ALTERNATIVA D A C C B