SlideShare una empresa de Scribd logo
1 de 6
1
UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA QUIMICA
PRACTICA EXPERIMENTAL CAIDA LIBRE
Moisés Altamar1, Lorayne Pedroza1, Laura Rivera1.
Universidad de Cartagena, Facultad de Ingeniería
1 Programa De Ingeniería Química II Semestre
Cartagena, Bolívar, Colombia
Mayo 2015
RESUMEN:
En la experimentación del laboratorio de física numero 7, se trabajó en un sistema de caída libre
vertical, en la cual se dejó caer un balín desde ciertas alturas hasta un punto definido para medir los
tiempos de caída, de estos datos obtenidos se procede a establecer la aceleración, tal que A=2D/T2,
a partir de ahí podemos hallar gravedad.
PALABRAS CLAVES: Caída libre, Gravedad.
2
UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA QUIMICA
ABSTRACT:
In the experimentation of the laboratory of physics number 7, one was employed at a system of
vertical free fall, in which a pellet was dropped from certain heights up to a point defined to
measure the times of fall, of this obtained information one comes to establish the acceleration, such
that A=2D/T2, from there we can find gravity.
KEYWORDS: Free fall, Gravity.
1. INTRODUCCION
Considerando la importancia que tiene la física
para explicar fenómenos y analizar el
comportamiento de la naturaleza, se trabajó en
la práctica #7 la caída libre de los cuerpos, de
tal manera que se obtuvieran datos clave a
través de la experimentación para obtener de
manera empírica la aceleración de la gravedad
en el laboratorio.
2. OBJETIVO GENERAL
 Comprobar la ley de caída libre de los
objetos.
 Objetivos Específicos.
 Obtener la grafica Y(t) del movimiento
de caída libre.
 Calcular la aceleración de la gravedad
en el laboratorio.
 Demostrar que la aceleración de la
gravedad no depende de la masa del
cuerpo si no del tiempo de caída,
tratándose de un sistema sin fricción.
3. MARCO CONCEPTUAL
Para el correcto afianzamiento y
asimilación de la temática de la práctica se
propone ahondar y explicar los siguientes
temas relacionados a las partículas en
equilibrio:
Estática de sistemas en equilibrio, Segunda
ley de Newton, Tensión, Newton.
Estática de sistemas en equilibrio: Una
de las ramas fundamentales de la mecánica
es la estática, que estudia el
comportamiento de los cuerpos y los
sistemas en equilibrio. La estática
proporciona, mediante el empleo de
la mecánica del sólido rígido, solución a
los problemas denominados isostáticos. En
estos problemas, es suficiente plantear las
condiciones básicas de equilibrio, que son:
1. El resultado de la suma de fuerzas es
nulo.
3
UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA
2. El resultado de la suma
de momentos respecto a un punto es
nulo.
Estas dos condiciones, mediante el álgebra
vectorial, se convierten en un sistema de
ecuaciones; la resolución de este sistema
de ecuaciones es la solución de la
condición de equilibrio.
Segunda ley de newton: La segunda ley
de newton en términos generales dice que
“cuando se aplica una fuerza a un cuerpo,
la aceleración que este recibe es
directamente proporcional a la intensidad
de la fuerza e inversamente proporcional a
su masa”.
Tensión: En física e ingeniería, se
denomina tensión a la magnitud física que
representa la fuerza por unidad de área en
el entorno de un punto material sobre una
superficie real o imaginaria de un medio
continuo. Es decir posee unidades físicas
de presión. La definición anterior se aplica
tanto a fuerzas localizadas como fuerzas
distribuidas, uniformemente o no, que
actúan sobre una superficie.
Newton: Es la unidad de fuerza en el SI
(sistema internacional de unidades),
nombrada así en reconocimiento a Isaac
Newton por su aporte a la física,
especialmente a la mecánica clásica. En
teoría una fuerza de 1 N es la fuerza que,
cuando actúa sobre un objeto de 1 kg de
masa, produce una aceleración de 1 m/s2.
Inercia: Propiedad que tienen los cuerpos
de permanecer en su estado de reposo o
movimiento, mientras la fuerza sea igual a
cero, o la resistencia que opone la materia a
modificar su estado de reposo o
movimiento. Como consecuencia, un
cuerpo conserva su estado de reposo o
movimiento rectilíneo uniforme si no hay
una fuerza actuando sobre él.
Podríamos decir que es la resistencia que
opone un sistema de partículas a modificar
su estado dinámico.
Torque: Es una magnitud vectorial,
obtenida como producto vectorial del
vector de posición del punto de aplicación
de la fuerza (con respecto al punto al cual
se toma el momento) por el vector fuerza,
en ese orden. También se denomina
momento dinámico o sencillamente
momento.
Brazo: Es la distancia que separa un
determinado eje y el punto donde se está
ejerciendo una fuerza
4. MATERIALES:
 Balín
 Soporte metálico
 Receptor (de la esfera)
 Disparador
 Contador digital de tiempo
5. METODOLOGIA
En la práctica realizada, se tenía como
objetivo comprobar de manera empírica,
como en la caída libre, la aceleración
siempre a ser +, - o igual a la gravedad.
En la práctica realizada, se tomo una esfera
o balín, sujeta a una altura variable, y
liberada, respetando las normas de la caída
libre, tal como Vi=0.
4
UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA
Así mismo, se repitió el experimento con 7
alturas diferentes, midiendo siempre el (t)
en que tarda dicha esfera desde el punto
inicial hasta el punto final.
Los datos obtenidos son organizados en
una tabla, para su estudio, y utilizando las
formulas de Caída Libre (a=2h.t²), se
comprueba la relación entre la Aceleración
y la Gravedad.
A continuación (véase Figura 1) Se
muestra como debe lucir el montaje
experimental.
6. DATOS EXPERIMENTALES
Al realizar la práctica se tomaron en cuenta
la distancia, y el tiempo en caer,
obteniendo los siguientes datos (véase
Tabla 1)
La columna numero 3 de la Tabla 1.1
corresponde a la gravedad, en caso de la
caída libre esta equivale a la aceleración
del cuerpo en caída.
Utilizando la formula:
𝑮 = 𝟐𝒉/𝒕²
7. DISCUSIÓN DE RESULTADOS
En el laboratorio realizado, se puso en
práctica los conceptos de caída libre,
buscando comprobar que la aceleración de
cuerpo que cae con velocidad inicial 0
𝑉𝑖 = 0, es igual a la gravedad.
En la tabla se observa la primera Columna
(H) la cual representa las diferentes alturas
utilizadas; la siguiente columna T, está
dada en (ms) y corresponde al tiempo que
demora la esfera en caer hasta la base; la
tercera columna, corresponde al proceso
matemático y aplicación de las formulas de
5
UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA
0
20
40
60
80
100
120
140
160
0 50000 100000 150000
Aceleración
caída libre, aplicando así, los
conocimientos obtenidos en Física Teoría.
En este caso se aplico la formula h= a.t²/2,
donde al despejar la formula en función de
la aceleración obtenemos que a=2h/t².
Para poder apreciar de mejor manera la
relación entre aceleración vs gravedad
realizamos la siguiente grafica (véase
Grafica 1).
Grafica 1 Aceleración Cuerpo Libre
En la grafica logra entonces observarse la
recta que se forma luego de aplicarse
mínimos cuadrados. A partir de esto se
calcula la pendiente m tal que=
𝑚 =
70 − 10
1.42𝑥105 − 2.02𝑥104
= 4.9𝑥10−4
8. CONCLUSION
Se pudo verificar que un cuerpo describe
un movimiento de caída libre en tanto que
la distancia que este recorre sea
directamente proporcional al cuadrado de
los tiempos de caída.
Todo objeto que se encuentra a una altura
determinada, y se deja caer desde la
misma, sufre un cambio en su movimiento
producido por la gravedad de la tierra. Este
cambio de movimiento está regido por las
ecuaciones matemáticas de movimiento
rectilíneo acelerado, ya que se encuentra
sometido a una aceleración constante de
9,81 m/s2, y viaja en línea recta.
El cuerpo sufre un cambio en su
movimiento, el cual inicia con una
velocidad 0 m/s y alcanza una distancia
final dada por la ecuación df= (g.t*t) / 2
df= distancia final
t= tiempo que dura en el aire.
9. BIBLIOGRAFIA
 Anónimo, (2015).Gravedad , [En línea]
Disponible:
http://definicion.de/gravedad/ (12 de
mayo 2015)
6
UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA
 Anónimo, (2011). Sistemas de caída
libre, [En línea]
Disponible:http://html.rincondelvago.c
om/caida-libre-de-cuerpos.html (12de
mayo 2015)

Más contenido relacionado

La actualidad más candente

Laboratorio5 dinamica rotacional
Laboratorio5 dinamica rotacionalLaboratorio5 dinamica rotacional
Laboratorio5 dinamica rotacionalBoris Seminario
 
Pract 8 2da ley newton
Pract 8 2da ley newtonPract 8 2da ley newton
Pract 8 2da ley newtonlaury kiryu
 
Aplicación de la teoría de errores de mediciones directas e indirectas
Aplicación de la teoría de errores de mediciones directas e indirectasAplicación de la teoría de errores de mediciones directas e indirectas
Aplicación de la teoría de errores de mediciones directas e indirectassergio ballestas padilla
 
Informe de laboratorio Física, segunda ley de Newton.
Informe de laboratorio Física, segunda ley de Newton.Informe de laboratorio Física, segunda ley de Newton.
Informe de laboratorio Física, segunda ley de Newton.Alejandro Flores
 
Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02ayoyototal123
 
Estatica problemas resueltos 151118
Estatica problemas resueltos 151118Estatica problemas resueltos 151118
Estatica problemas resueltos 151118royshel vidal zavala
 
TRABAJO Y POTENCIA - EJERCICIOS
TRABAJO Y POTENCIA - EJERCICIOSTRABAJO Y POTENCIA - EJERCICIOS
TRABAJO Y POTENCIA - EJERCICIOSIrlanda Gt
 
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIOINFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIOAny Valencia Quispe
 
Practica 2 "Caida Libre" Laboratorio de Cinematica y Dinamica
Practica 2 "Caida Libre" Laboratorio de Cinematica y DinamicaPractica 2 "Caida Libre" Laboratorio de Cinematica y Dinamica
Practica 2 "Caida Libre" Laboratorio de Cinematica y DinamicaFernando Reyes
 
Informe de mcu
Informe de mcuInforme de mcu
Informe de mcuVaguper
 
Plan de clase nº 25
Plan de clase nº 25Plan de clase nº 25
Plan de clase nº 25patoclin
 
1a ley de newton problemas propuestos
1a  ley de newton  problemas propuestos1a  ley de newton  problemas propuestos
1a ley de newton problemas propuestosBernardo Jaén
 
Tema 8 Movimiento parabòlico de caída libre tercero 2016
Tema  8 Movimiento parabòlico de caída libre tercero 2016 Tema  8 Movimiento parabòlico de caída libre tercero 2016
Tema 8 Movimiento parabòlico de caída libre tercero 2016 Manuel Manay
 

La actualidad más candente (20)

Laboratorio5 dinamica rotacional
Laboratorio5 dinamica rotacionalLaboratorio5 dinamica rotacional
Laboratorio5 dinamica rotacional
 
Pract 8 2da ley newton
Pract 8 2da ley newtonPract 8 2da ley newton
Pract 8 2da ley newton
 
Aplicación de la teoría de errores de mediciones directas e indirectas
Aplicación de la teoría de errores de mediciones directas e indirectasAplicación de la teoría de errores de mediciones directas e indirectas
Aplicación de la teoría de errores de mediciones directas e indirectas
 
Informe de laboratorio Física, segunda ley de Newton.
Informe de laboratorio Física, segunda ley de Newton.Informe de laboratorio Física, segunda ley de Newton.
Informe de laboratorio Física, segunda ley de Newton.
 
Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02
 
Estatica problemas resueltos 151118
Estatica problemas resueltos 151118Estatica problemas resueltos 151118
Estatica problemas resueltos 151118
 
TRABAJO Y POTENCIA - EJERCICIOS
TRABAJO Y POTENCIA - EJERCICIOSTRABAJO Y POTENCIA - EJERCICIOS
TRABAJO Y POTENCIA - EJERCICIOS
 
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIOINFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
 
Practica 2 "Caida Libre" Laboratorio de Cinematica y Dinamica
Practica 2 "Caida Libre" Laboratorio de Cinematica y DinamicaPractica 2 "Caida Libre" Laboratorio de Cinematica y Dinamica
Practica 2 "Caida Libre" Laboratorio de Cinematica y Dinamica
 
Segunda ley de newton
Segunda  ley  de newtonSegunda  ley  de newton
Segunda ley de newton
 
MRUV
MRUVMRUV
MRUV
 
Laboratorio rozamiento
Laboratorio rozamientoLaboratorio rozamiento
Laboratorio rozamiento
 
Informe de mcu
Informe de mcuInforme de mcu
Informe de mcu
 
Clases5y7agosto fis3
Clases5y7agosto fis3Clases5y7agosto fis3
Clases5y7agosto fis3
 
Plan de clase nº 25
Plan de clase nº 25Plan de clase nº 25
Plan de clase nº 25
 
Tabla de derivadas e integrales
Tabla de derivadas e integralesTabla de derivadas e integrales
Tabla de derivadas e integrales
 
Laboratorio de caida libre
Laboratorio de caida libreLaboratorio de caida libre
Laboratorio de caida libre
 
1a ley de newton problemas propuestos
1a  ley de newton  problemas propuestos1a  ley de newton  problemas propuestos
1a ley de newton problemas propuestos
 
MRU
MRUMRU
MRU
 
Tema 8 Movimiento parabòlico de caída libre tercero 2016
Tema  8 Movimiento parabòlico de caída libre tercero 2016 Tema  8 Movimiento parabòlico de caída libre tercero 2016
Tema 8 Movimiento parabòlico de caída libre tercero 2016
 

Similar a Pract 7 caida libre

Fisica pract 3 lab
Fisica pract 3 labFisica pract 3 lab
Fisica pract 3 lablaury kiryu
 
Semana09dinmicafisicaiunac2009b 121223232604-phpapp01
Semana09dinmicafisicaiunac2009b 121223232604-phpapp01Semana09dinmicafisicaiunac2009b 121223232604-phpapp01
Semana09dinmicafisicaiunac2009b 121223232604-phpapp01Oscar Luna
 
Pract 9 cons energia
Pract 9 cons energiaPract 9 cons energia
Pract 9 cons energialaury kiryu
 
Joel condori yujra paralelo 5 segunda ley de newton
Joel condori yujra paralelo 5 segunda ley de newton Joel condori yujra paralelo 5 segunda ley de newton
Joel condori yujra paralelo 5 segunda ley de newton Joel CY
 
EL PRINCIPIO DE TRABAJO Y ENERGÍA
EL PRINCIPIO DE TRABAJO Y ENERGÍA EL PRINCIPIO DE TRABAJO Y ENERGÍA
EL PRINCIPIO DE TRABAJO Y ENERGÍA DalilaPazmio
 
3er informe de laboratorio hhh
3er informe de laboratorio hhh3er informe de laboratorio hhh
3er informe de laboratorio hhhjuan navarro
 
Movimiento armónico simple final
Movimiento armónico simple finalMovimiento armónico simple final
Movimiento armónico simple finalJulian Carvajal
 
Laboratorio2 segunda ley de newton.pdf
Laboratorio2 segunda ley de newton.pdfLaboratorio2 segunda ley de newton.pdf
Laboratorio2 segunda ley de newton.pdfMAICOLJULIANPERAFANP
 
Leyes de newton.docx acrividad 2(brayan briceño)
Leyes de newton.docx acrividad 2(brayan briceño)Leyes de newton.docx acrividad 2(brayan briceño)
Leyes de newton.docx acrividad 2(brayan briceño)brayan_jose
 
Ejemplos equilibrio
Ejemplos equilibrioEjemplos equilibrio
Ejemplos equilibrioecruzo
 
Unidad 4: trabajo, energía y potencia
Unidad 4: trabajo, energía y potenciaUnidad 4: trabajo, energía y potencia
Unidad 4: trabajo, energía y potenciaJavier García Molleja
 
Diapositiva de fisica
Diapositiva de fisicaDiapositiva de fisica
Diapositiva de fisicaSofos PAK
 

Similar a Pract 7 caida libre (20)

Fisica pract 3 lab
Fisica pract 3 labFisica pract 3 lab
Fisica pract 3 lab
 
Semana09dinmicafisicaiunac2009b 121223232604-phpapp01
Semana09dinmicafisicaiunac2009b 121223232604-phpapp01Semana09dinmicafisicaiunac2009b 121223232604-phpapp01
Semana09dinmicafisicaiunac2009b 121223232604-phpapp01
 
Pract 9 cons energia
Pract 9 cons energiaPract 9 cons energia
Pract 9 cons energia
 
Joel condori yujra paralelo 5 segunda ley de newton
Joel condori yujra paralelo 5 segunda ley de newton Joel condori yujra paralelo 5 segunda ley de newton
Joel condori yujra paralelo 5 segunda ley de newton
 
Dinamica 2020
Dinamica 2020Dinamica 2020
Dinamica 2020
 
Fisica. 2ª ley de newton
Fisica. 2ª ley de newtonFisica. 2ª ley de newton
Fisica. 2ª ley de newton
 
EL PRINCIPIO DE TRABAJO Y ENERGÍA
EL PRINCIPIO DE TRABAJO Y ENERGÍA EL PRINCIPIO DE TRABAJO Y ENERGÍA
EL PRINCIPIO DE TRABAJO Y ENERGÍA
 
Fisica Para La Vida 01.pptx
Fisica Para La Vida 01.pptxFisica Para La Vida 01.pptx
Fisica Para La Vida 01.pptx
 
3er informe de laboratorio hhh
3er informe de laboratorio hhh3er informe de laboratorio hhh
3er informe de laboratorio hhh
 
Movimiento armónico simple final
Movimiento armónico simple finalMovimiento armónico simple final
Movimiento armónico simple final
 
SEMANA 3 - Clase 1.pptx
SEMANA 3 - Clase 1.pptxSEMANA 3 - Clase 1.pptx
SEMANA 3 - Clase 1.pptx
 
Laboratorio2 segunda ley de newton.pdf
Laboratorio2 segunda ley de newton.pdfLaboratorio2 segunda ley de newton.pdf
Laboratorio2 segunda ley de newton.pdf
 
Leyes de newton.docx acrividad 2(brayan briceño)
Leyes de newton.docx acrividad 2(brayan briceño)Leyes de newton.docx acrividad 2(brayan briceño)
Leyes de newton.docx acrividad 2(brayan briceño)
 
Mecanica y Seginda Ley de Newton
Mecanica y Seginda Ley de NewtonMecanica y Seginda Ley de Newton
Mecanica y Seginda Ley de Newton
 
Leyes de Newton
Leyes de NewtonLeyes de Newton
Leyes de Newton
 
Ejemplos equilibrio
Ejemplos equilibrioEjemplos equilibrio
Ejemplos equilibrio
 
Unidad 4: trabajo, energía y potencia
Unidad 4: trabajo, energía y potenciaUnidad 4: trabajo, energía y potencia
Unidad 4: trabajo, energía y potencia
 
Diapositiva de fisica
Diapositiva de fisicaDiapositiva de fisica
Diapositiva de fisica
 
Fisica pract 2
Fisica pract 2Fisica pract 2
Fisica pract 2
 
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLEMOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE
 

Más de laury kiryu

Interferencia y difracción de onda mecanica
Interferencia y difracción de onda mecanicaInterferencia y difracción de onda mecanica
Interferencia y difracción de onda mecanicalaury kiryu
 
Experimento de melde (2)
Experimento de melde (2)Experimento de melde (2)
Experimento de melde (2)laury kiryu
 
Diagrama de flujo 9
Diagrama de flujo 9Diagrama de flujo 9
Diagrama de flujo 9laury kiryu
 
Diagrama de flujo pract 3 hidrolisis
Diagrama de flujo pract 3 hidrolisisDiagrama de flujo pract 3 hidrolisis
Diagrama de flujo pract 3 hidrolisislaury kiryu
 
Pract 6 mu & mua
Pract 6 mu & muaPract 6 mu & mua
Pract 6 mu & mualaury kiryu
 
Fisica pract 1 lab
Fisica pract 1 labFisica pract 1 lab
Fisica pract 1 lablaury kiryu
 
Inf 8 obtencion biocombustibles (2)
Inf 8 obtencion biocombustibles (2)Inf 8 obtencion biocombustibles (2)
Inf 8 obtencion biocombustibles (2)laury kiryu
 
Inf 7 reacciones de oxidacion
Inf 7 reacciones de oxidacionInf 7 reacciones de oxidacion
Inf 7 reacciones de oxidacionlaury kiryu
 
Inf 6 reacciones ácidos carboxílicos
Inf 6 reacciones ácidos carboxílicosInf 6 reacciones ácidos carboxílicos
Inf 6 reacciones ácidos carboxílicoslaury kiryu
 
Inf 5 destilacion al vapor
Inf 5 destilacion al vaporInf 5 destilacion al vapor
Inf 5 destilacion al vaporlaury kiryu
 
Inf 4 cristalizacion
Inf 4 cristalizacionInf 4 cristalizacion
Inf 4 cristalizacionlaury kiryu
 
Inf 3 destilacion sencilla y fraccionada
Inf 3 destilacion sencilla y fraccionadaInf 3 destilacion sencilla y fraccionada
Inf 3 destilacion sencilla y fraccionadalaury kiryu
 
Inf 2 punto de ebullicion de compuestos puros org
Inf 2 punto de ebullicion de compuestos puros orgInf 2 punto de ebullicion de compuestos puros org
Inf 2 punto de ebullicion de compuestos puros orglaury kiryu
 
Inf 1 punto de fuision de compuestos puros org
Inf 1 punto de fuision de compuestos puros orgInf 1 punto de fuision de compuestos puros org
Inf 1 punto de fuision de compuestos puros orglaury kiryu
 
Grupo 13 Tabla Periodica
Grupo 13 Tabla PeriodicaGrupo 13 Tabla Periodica
Grupo 13 Tabla Periodicalaury kiryu
 
Amidas y esteres
Amidas y esteresAmidas y esteres
Amidas y estereslaury kiryu
 
Alcanos Presentación
Alcanos Presentación Alcanos Presentación
Alcanos Presentación laury kiryu
 

Más de laury kiryu (17)

Interferencia y difracción de onda mecanica
Interferencia y difracción de onda mecanicaInterferencia y difracción de onda mecanica
Interferencia y difracción de onda mecanica
 
Experimento de melde (2)
Experimento de melde (2)Experimento de melde (2)
Experimento de melde (2)
 
Diagrama de flujo 9
Diagrama de flujo 9Diagrama de flujo 9
Diagrama de flujo 9
 
Diagrama de flujo pract 3 hidrolisis
Diagrama de flujo pract 3 hidrolisisDiagrama de flujo pract 3 hidrolisis
Diagrama de flujo pract 3 hidrolisis
 
Pract 6 mu & mua
Pract 6 mu & muaPract 6 mu & mua
Pract 6 mu & mua
 
Fisica pract 1 lab
Fisica pract 1 labFisica pract 1 lab
Fisica pract 1 lab
 
Inf 8 obtencion biocombustibles (2)
Inf 8 obtencion biocombustibles (2)Inf 8 obtencion biocombustibles (2)
Inf 8 obtencion biocombustibles (2)
 
Inf 7 reacciones de oxidacion
Inf 7 reacciones de oxidacionInf 7 reacciones de oxidacion
Inf 7 reacciones de oxidacion
 
Inf 6 reacciones ácidos carboxílicos
Inf 6 reacciones ácidos carboxílicosInf 6 reacciones ácidos carboxílicos
Inf 6 reacciones ácidos carboxílicos
 
Inf 5 destilacion al vapor
Inf 5 destilacion al vaporInf 5 destilacion al vapor
Inf 5 destilacion al vapor
 
Inf 4 cristalizacion
Inf 4 cristalizacionInf 4 cristalizacion
Inf 4 cristalizacion
 
Inf 3 destilacion sencilla y fraccionada
Inf 3 destilacion sencilla y fraccionadaInf 3 destilacion sencilla y fraccionada
Inf 3 destilacion sencilla y fraccionada
 
Inf 2 punto de ebullicion de compuestos puros org
Inf 2 punto de ebullicion de compuestos puros orgInf 2 punto de ebullicion de compuestos puros org
Inf 2 punto de ebullicion de compuestos puros org
 
Inf 1 punto de fuision de compuestos puros org
Inf 1 punto de fuision de compuestos puros orgInf 1 punto de fuision de compuestos puros org
Inf 1 punto de fuision de compuestos puros org
 
Grupo 13 Tabla Periodica
Grupo 13 Tabla PeriodicaGrupo 13 Tabla Periodica
Grupo 13 Tabla Periodica
 
Amidas y esteres
Amidas y esteresAmidas y esteres
Amidas y esteres
 
Alcanos Presentación
Alcanos Presentación Alcanos Presentación
Alcanos Presentación
 

Último

LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesYanirisBarcelDelaHoz
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Alejandrino Halire Ccahuana
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoJosDanielEstradaHern
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularMooPandrea
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVGiustinoAdesso1
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxnandoapperscabanilla
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 

Último (20)

LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° grado
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circular
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 

Pract 7 caida libre

  • 1. 1 UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA QUIMICA PRACTICA EXPERIMENTAL CAIDA LIBRE Moisés Altamar1, Lorayne Pedroza1, Laura Rivera1. Universidad de Cartagena, Facultad de Ingeniería 1 Programa De Ingeniería Química II Semestre Cartagena, Bolívar, Colombia Mayo 2015 RESUMEN: En la experimentación del laboratorio de física numero 7, se trabajó en un sistema de caída libre vertical, en la cual se dejó caer un balín desde ciertas alturas hasta un punto definido para medir los tiempos de caída, de estos datos obtenidos se procede a establecer la aceleración, tal que A=2D/T2, a partir de ahí podemos hallar gravedad. PALABRAS CLAVES: Caída libre, Gravedad.
  • 2. 2 UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA QUIMICA ABSTRACT: In the experimentation of the laboratory of physics number 7, one was employed at a system of vertical free fall, in which a pellet was dropped from certain heights up to a point defined to measure the times of fall, of this obtained information one comes to establish the acceleration, such that A=2D/T2, from there we can find gravity. KEYWORDS: Free fall, Gravity. 1. INTRODUCCION Considerando la importancia que tiene la física para explicar fenómenos y analizar el comportamiento de la naturaleza, se trabajó en la práctica #7 la caída libre de los cuerpos, de tal manera que se obtuvieran datos clave a través de la experimentación para obtener de manera empírica la aceleración de la gravedad en el laboratorio. 2. OBJETIVO GENERAL  Comprobar la ley de caída libre de los objetos.  Objetivos Específicos.  Obtener la grafica Y(t) del movimiento de caída libre.  Calcular la aceleración de la gravedad en el laboratorio.  Demostrar que la aceleración de la gravedad no depende de la masa del cuerpo si no del tiempo de caída, tratándose de un sistema sin fricción. 3. MARCO CONCEPTUAL Para el correcto afianzamiento y asimilación de la temática de la práctica se propone ahondar y explicar los siguientes temas relacionados a las partículas en equilibrio: Estática de sistemas en equilibrio, Segunda ley de Newton, Tensión, Newton. Estática de sistemas en equilibrio: Una de las ramas fundamentales de la mecánica es la estática, que estudia el comportamiento de los cuerpos y los sistemas en equilibrio. La estática proporciona, mediante el empleo de la mecánica del sólido rígido, solución a los problemas denominados isostáticos. En estos problemas, es suficiente plantear las condiciones básicas de equilibrio, que son: 1. El resultado de la suma de fuerzas es nulo.
  • 3. 3 UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA 2. El resultado de la suma de momentos respecto a un punto es nulo. Estas dos condiciones, mediante el álgebra vectorial, se convierten en un sistema de ecuaciones; la resolución de este sistema de ecuaciones es la solución de la condición de equilibrio. Segunda ley de newton: La segunda ley de newton en términos generales dice que “cuando se aplica una fuerza a un cuerpo, la aceleración que este recibe es directamente proporcional a la intensidad de la fuerza e inversamente proporcional a su masa”. Tensión: En física e ingeniería, se denomina tensión a la magnitud física que representa la fuerza por unidad de área en el entorno de un punto material sobre una superficie real o imaginaria de un medio continuo. Es decir posee unidades físicas de presión. La definición anterior se aplica tanto a fuerzas localizadas como fuerzas distribuidas, uniformemente o no, que actúan sobre una superficie. Newton: Es la unidad de fuerza en el SI (sistema internacional de unidades), nombrada así en reconocimiento a Isaac Newton por su aporte a la física, especialmente a la mecánica clásica. En teoría una fuerza de 1 N es la fuerza que, cuando actúa sobre un objeto de 1 kg de masa, produce una aceleración de 1 m/s2. Inercia: Propiedad que tienen los cuerpos de permanecer en su estado de reposo o movimiento, mientras la fuerza sea igual a cero, o la resistencia que opone la materia a modificar su estado de reposo o movimiento. Como consecuencia, un cuerpo conserva su estado de reposo o movimiento rectilíneo uniforme si no hay una fuerza actuando sobre él. Podríamos decir que es la resistencia que opone un sistema de partículas a modificar su estado dinámico. Torque: Es una magnitud vectorial, obtenida como producto vectorial del vector de posición del punto de aplicación de la fuerza (con respecto al punto al cual se toma el momento) por el vector fuerza, en ese orden. También se denomina momento dinámico o sencillamente momento. Brazo: Es la distancia que separa un determinado eje y el punto donde se está ejerciendo una fuerza 4. MATERIALES:  Balín  Soporte metálico  Receptor (de la esfera)  Disparador  Contador digital de tiempo 5. METODOLOGIA En la práctica realizada, se tenía como objetivo comprobar de manera empírica, como en la caída libre, la aceleración siempre a ser +, - o igual a la gravedad. En la práctica realizada, se tomo una esfera o balín, sujeta a una altura variable, y liberada, respetando las normas de la caída libre, tal como Vi=0.
  • 4. 4 UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA Así mismo, se repitió el experimento con 7 alturas diferentes, midiendo siempre el (t) en que tarda dicha esfera desde el punto inicial hasta el punto final. Los datos obtenidos son organizados en una tabla, para su estudio, y utilizando las formulas de Caída Libre (a=2h.t²), se comprueba la relación entre la Aceleración y la Gravedad. A continuación (véase Figura 1) Se muestra como debe lucir el montaje experimental. 6. DATOS EXPERIMENTALES Al realizar la práctica se tomaron en cuenta la distancia, y el tiempo en caer, obteniendo los siguientes datos (véase Tabla 1) La columna numero 3 de la Tabla 1.1 corresponde a la gravedad, en caso de la caída libre esta equivale a la aceleración del cuerpo en caída. Utilizando la formula: 𝑮 = 𝟐𝒉/𝒕² 7. DISCUSIÓN DE RESULTADOS En el laboratorio realizado, se puso en práctica los conceptos de caída libre, buscando comprobar que la aceleración de cuerpo que cae con velocidad inicial 0 𝑉𝑖 = 0, es igual a la gravedad. En la tabla se observa la primera Columna (H) la cual representa las diferentes alturas utilizadas; la siguiente columna T, está dada en (ms) y corresponde al tiempo que demora la esfera en caer hasta la base; la tercera columna, corresponde al proceso matemático y aplicación de las formulas de
  • 5. 5 UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA 0 20 40 60 80 100 120 140 160 0 50000 100000 150000 Aceleración caída libre, aplicando así, los conocimientos obtenidos en Física Teoría. En este caso se aplico la formula h= a.t²/2, donde al despejar la formula en función de la aceleración obtenemos que a=2h/t². Para poder apreciar de mejor manera la relación entre aceleración vs gravedad realizamos la siguiente grafica (véase Grafica 1). Grafica 1 Aceleración Cuerpo Libre En la grafica logra entonces observarse la recta que se forma luego de aplicarse mínimos cuadrados. A partir de esto se calcula la pendiente m tal que= 𝑚 = 70 − 10 1.42𝑥105 − 2.02𝑥104 = 4.9𝑥10−4 8. CONCLUSION Se pudo verificar que un cuerpo describe un movimiento de caída libre en tanto que la distancia que este recorre sea directamente proporcional al cuadrado de los tiempos de caída. Todo objeto que se encuentra a una altura determinada, y se deja caer desde la misma, sufre un cambio en su movimiento producido por la gravedad de la tierra. Este cambio de movimiento está regido por las ecuaciones matemáticas de movimiento rectilíneo acelerado, ya que se encuentra sometido a una aceleración constante de 9,81 m/s2, y viaja en línea recta. El cuerpo sufre un cambio en su movimiento, el cual inicia con una velocidad 0 m/s y alcanza una distancia final dada por la ecuación df= (g.t*t) / 2 df= distancia final t= tiempo que dura en el aire. 9. BIBLIOGRAFIA  Anónimo, (2015).Gravedad , [En línea] Disponible: http://definicion.de/gravedad/ (12 de mayo 2015)
  • 6. 6 UNIVERSIDAD DECARTAGENA FACULTAD DEINGENIERIA  Anónimo, (2011). Sistemas de caída libre, [En línea] Disponible:http://html.rincondelvago.c om/caida-libre-de-cuerpos.html (12de mayo 2015)