SlideShare a Scribd company logo
1 of 16
HYDRAULIC BINDING BETWEEN STRUCTURAL ELEMENTS AND
GROUNDWATER CIRCULATION IN A VOLCANIC AQUIFER:
INSIGHTS FROM RIANO QUARRIES DISTRICT (Rome Italy)
David Rossi
Elisabetta Preziosi, Stefano Ghergo, Daniele Parrone,
Stefano Amalfitano, Anna Bruna Petrangeli & Annamaria Zoppini
INTRODUCTION
As long been recognized, geological heterogeneity represents a
fundamental aspect for water circulation. In particular, meso-scale
brittle deformation elements influence the potential gradient of
water circulation and geochemical patterns related to the strain
processes.
The analysis of geological heterogeneity related to brittle
deformations is crucial to modelling surface and groundwater
dynamics. In areas characterized by intense extractive activities,
brittle deformation effects become more evident because of the
intrinsic groundwater vulnerability.
RATIONALE
PROBLEM: In Riano quarry District fractures show alteration bands
• Is this related to precipitation water interaction
(solution/precipitation) with fractured rocks?
OR
• Is this the result of deep thermal water upwelling?
In this case, which is the role of fracture network in the
interaction between shallow and deep aquifer circulation?
STUDY SITE
RIANO QUARRIES DISTRICT
• Due to the intense extractive activities the Riano quarries District
(120km2) is characterized by numerous artificial surfaces perfectly
smoothed in both horizontal and vertical orientation.
• 26 of the 32 quarries identified were selected due to their
accessibility, the presence of smooth horizontal and vertical
surfaces and the amount of logs and wells available. Fracture
distribution, orientation and length data in three dimensions
were collected. A total of 12570 fractures were measured.
• Most of the fractures shows a pervasive alteration band with
different colors and thickness around the whole fracture shape.
SOME EXAMPLES
Quarry A Quarry C Quarry F
Quarry D Quarry I - J
Quarry O Quarry B Quarry Q
Quarry G
THE FRACTURES and the alteration bands
DEFINITION OF FRACTURE TYPE, DISTRIBUTION AND GEOMETRY
75m
LINE DRAWING OF THE FRACTURE SYSTEMS
3D Model of Quarry A
LABORATORY ANALYSIS
ON ROCKS SAMPLES: (On 15 samples altered bands and 15 unaltered rocks)
- XRF(SiO2 – CaO – Na2O – Fe2O3 – TiO2 – Al2O3 – MnO – MgO – K2O – P2O5)
- diffractometers (Minerals paragenesys)
- microwave acid digestion + ICP-MS (chemical composition)
ON GROUNDWATER SAMPLES: (80 samples)
- ICP-OES (major cations)
- ICP-MS (trace elements)
- IC (major anions)
- Titration (bicarbonates)
RESULTS
0
50
10 30 50 70 90 >100
Percentage%
Fracture Lenght (m)
Quarry E
0
50
10
20
30
40
50
60
70
80
90
100
>100
Percentage%
Fracture Lenght (m)
Quarry D
0
50
10 30 50 70 90 >100
Percentage%
Fracture Lenght (m)
Quarry A
0
50
10
20
30
40
50
60
70
80
90
100
>100
Percentage%
Fracture Lenght (m)
Quarry B
0
50
10 30 50 70 90 >100
Percentage%
Fracture Lenght (m)
Quarry C
-10
10
30
50
10 30 50 70 90 >100
Percentage%
Fracture Lenght (m)
Quarry G
-10
10
30
50
10
20
30
40
50
60
70
80
90
100
>100
Percentage%
Fracture Lenght (m)
Quarry I
0
50
10 30 50 70 90 >100
Percentage%
Fracture Lenght (m)
Quarry J
0 100
FRACTURE STRIKE
Quarry D
0 50 100 150
FRACTURE STRIKE
Quarry E
0
20
40
60
80
0 50 100 150
DIP
FRACTURE STRIKE
Quarry A
0
20
40
60
80
0 50 100 150
DIP
FRACTURE STRIKE
Quarry F
-10
90
0 50 100 150
FRACTURE STRIKE
Quarry Z
0 50 100 150
FRACTURE STRIKE
Quarry H
0 100
FRACTURE STRIKE
Quarry B
0 50 100 150
FRACTURE STRIKE
Quarry C
0 100
FRACTURE STRIKE
Quarry G
0 100
FRACTURE STRIKE
Quarry I
0 50 100 150
FRACTURE STRIKE
Quarry J
0 100
FRACTURE STRIKE
Quarry L
0 50 100 150
FRACTURE STRIKE
Quarry M
0 100
FRACTURE STRIKE
Quarry N
0 50 100 150
FRACTURE STRIKE
Quarry O
0
20
40
60
80
0 50 100 150
DIP
FRACTURE STRIKE
Quarry K
0
20
40
10
20
30
40
50
60
70
80
90
100
>100
Percentage%
Fracture lenght (m)
Quarry Z
N27°
N27°
N27° N27° N27°
N27° N27° N27° N27°
N27° N27° N27°
N170°
N170°
N170° N170° N170°
N170° N150°
N50°
N50° N170°
N50° N60° N70°N70°
GROUNDWATER
Earth-alkaline/alcaline
bicarbonate waters
Mean (mg/kg) ST DEV
Li 55,18 5,32
Be 12,44 0,56
Na 1317,56 282,31
Mg 671,00 663,62
Al 45851,26 4444,35
K 45632,62 6266,30
Ca 64068,29 8253,63
V 62,44 8,47
Cr 40,35 25,85
Fe 19600,12 889,82
Mn 741,79 70,72
Co 3,76 0,20
Ni 23,55 12,05
Cu 8,25 0,66
Zn 66,81 3,79
Ga 100,73 11,06
As 23,05 2,84
Se 2,34 0,93
Rb 168,41 46,83
Sr 1294,44 161,76
Mo 0,32 0,20
Ag 2,44 0,30
Cd 2,68 0,23
Sb 1,27 0,10
Cs 22,18 3,23
Ba 591,95 121,40
Tl 2,01 0,13
Pb 117,81 8,62
U 16,54 3,11
Microwave acid digestion + ICP-MS
UNALTEREDROCKS
ALTERATIONBAND
Mean mg/kg ST DEV
Li 34,59 10,77
Be 16,78 5,32
Na 733,47 1049,62
Mg 94,92 22,63
Al 36737,35 9057,75
K 42152,11 4827,28
Ca 48366,18 13357,99
V 71,96 9,45
Cr 44,59 21,63
Fe 29687,34 5247,26
Mn 1942,41 1434,14
Co 3,42 1,38
Ni 23,72 11,80
Cu 8,58 3,77
Zn 84,59 13,37
Ga 118,21 39,11
As 36,75 14,71
Se 0,47 0,37
Rb 106,48 25,46
Sr 1311,72 194,57
Mo 0,21 0,13
Ag 2,43 0,24
Cd 3,06 0,54
Sb 1,09 0,24
Cs 22,38 4,00
Ba 795,22 305,03
Tl 3,38 5,08
Pb 136,45 22,09
U 9,98 2,64
XRF %
SiO2 45,88
CaO 11,24
Na2O 0,77
Fe2O3 45,86
TiO2 0,44
Al2O3 14,97
MnO 0,11
MgO 1,51
K2O 5,84
2O5 0,15
XRF %
SiO2 48,95
CaO 8,31
Na2O 0,70
Fe2O3 48,25
TiO2 0,44
Al2O3 15,05
MnO 0,11
MgO 1,47
K2O 5,915
P2O5 0,145
I would like to thank Aida Conte for XRF analysis
and Stefano Stellino for diffractometers analysis
NO SIGNIFICATIVE DIFFERENCES WERE FOUND
CONCLUSIONS
• Fracture sets formed sequentially in Tuffs, with same mechanical
properties, were characterized by two main generation of
extensional fractures linked to buried extensional faults:
S1 oriented N170° and S2 oriented N27°.
• A depletion of Ca, Na, Mg, Al, U and CaO in the tuff alteration
bands could be related to the solution processes of meteoric
water circulation within fractures as also suggested by
groundwater classification
• The observed enrichment in Mn-Fe-Zn and As could be a
consequence of the earth-alcaline elements depletion
• Data do not show any evidence of deep water upwelling
processes.
ROSSI-EGU2016-modificato-finale-ultimo-definitivo

More Related Content

Similar to ROSSI-EGU2016-modificato-finale-ultimo-definitivo

ROLE OF LAKE SEDIMENTS IN GROUND WATER QUALITY (18.06.2013) (Final)
ROLE OF LAKE SEDIMENTS IN GROUND WATER QUALITY (18.06.2013) (Final)ROLE OF LAKE SEDIMENTS IN GROUND WATER QUALITY (18.06.2013) (Final)
ROLE OF LAKE SEDIMENTS IN GROUND WATER QUALITY (18.06.2013) (Final)Dr. U M Reddy Singareddy
 
CCFS seminar 2013
CCFS seminar 2013CCFS seminar 2013
CCFS seminar 2013lienesp
 
Poster (v8) - Mark De Guzman-shg (1)
Poster (v8) - Mark De Guzman-shg (1)Poster (v8) - Mark De Guzman-shg (1)
Poster (v8) - Mark De Guzman-shg (1)Mark De Guzman
 
Development of Impurities Removal Process for Low-Grade Iron ores using Miner...
Development of Impurities Removal Process for Low-Grade Iron ores using Miner...Development of Impurities Removal Process for Low-Grade Iron ores using Miner...
Development of Impurities Removal Process for Low-Grade Iron ores using Miner...MOSES CHARLES SIAME
 
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...Amro Elfeki
 
Reference values for potentially harmful elements in soils from Atlantic Rain...
Reference values for potentially harmful elements in soils from Atlantic Rain...Reference values for potentially harmful elements in soils from Atlantic Rain...
Reference values for potentially harmful elements in soils from Atlantic Rain...ExternalEvents
 
D2 (B5) Ingemar Löfgren - A simple screening test of alternative pozzolanic m...
D2 (B5) Ingemar Löfgren - A simple screening test of alternative pozzolanic m...D2 (B5) Ingemar Löfgren - A simple screening test of alternative pozzolanic m...
D2 (B5) Ingemar Löfgren - A simple screening test of alternative pozzolanic m...Svenska Betongföreningen
 
Quality_and_pollution_of_surface_and_gro
Quality_and_pollution_of_surface_and_groQuality_and_pollution_of_surface_and_gro
Quality_and_pollution_of_surface_and_groMiltiadis Nimfopoulos
 
Tyler Johnston Thesis Defence
Tyler Johnston Thesis DefenceTyler Johnston Thesis Defence
Tyler Johnston Thesis DefenceTyler Johnston
 

Similar to ROSSI-EGU2016-modificato-finale-ultimo-definitivo (20)

Lake restoration
Lake restorationLake restoration
Lake restoration
 
ROLE OF LAKE SEDIMENTS IN GROUND WATER QUALITY (18.06.2013) (Final)
ROLE OF LAKE SEDIMENTS IN GROUND WATER QUALITY (18.06.2013) (Final)ROLE OF LAKE SEDIMENTS IN GROUND WATER QUALITY (18.06.2013) (Final)
ROLE OF LAKE SEDIMENTS IN GROUND WATER QUALITY (18.06.2013) (Final)
 
Caetité
CaetitéCaetité
Caetité
 
CCFS seminar 2013
CCFS seminar 2013CCFS seminar 2013
CCFS seminar 2013
 
Poster
PosterPoster
Poster
 
Poster (v8) - Mark De Guzman-shg (1)
Poster (v8) - Mark De Guzman-shg (1)Poster (v8) - Mark De Guzman-shg (1)
Poster (v8) - Mark De Guzman-shg (1)
 
Deng - Permeability characterization and alteration due to reactive transport
Deng - Permeability characterization and  alteration due to reactive transportDeng - Permeability characterization and  alteration due to reactive transport
Deng - Permeability characterization and alteration due to reactive transport
 
Development of Impurities Removal Process for Low-Grade Iron ores using Miner...
Development of Impurities Removal Process for Low-Grade Iron ores using Miner...Development of Impurities Removal Process for Low-Grade Iron ores using Miner...
Development of Impurities Removal Process for Low-Grade Iron ores using Miner...
 
Jim Galford
Jim GalfordJim Galford
Jim Galford
 
Mattias von Brömsse - Targetting safe aquifers
Mattias von Brömsse - Targetting safe aquifersMattias von Brömsse - Targetting safe aquifers
Mattias von Brömsse - Targetting safe aquifers
 
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
 
Reference values for potentially harmful elements in soils from Atlantic Rain...
Reference values for potentially harmful elements in soils from Atlantic Rain...Reference values for potentially harmful elements in soils from Atlantic Rain...
Reference values for potentially harmful elements in soils from Atlantic Rain...
 
Cyanobacteria ppt
Cyanobacteria pptCyanobacteria ppt
Cyanobacteria ppt
 
D2 (B5) Ingemar Löfgren - A simple screening test of alternative pozzolanic m...
D2 (B5) Ingemar Löfgren - A simple screening test of alternative pozzolanic m...D2 (B5) Ingemar Löfgren - A simple screening test of alternative pozzolanic m...
D2 (B5) Ingemar Löfgren - A simple screening test of alternative pozzolanic m...
 
Smectites
SmectitesSmectites
Smectites
 
Lecture water 2016
Lecture water 2016Lecture water 2016
Lecture water 2016
 
Quality_and_pollution_of_surface_and_gro
Quality_and_pollution_of_surface_and_groQuality_and_pollution_of_surface_and_gro
Quality_and_pollution_of_surface_and_gro
 
Sewer sediment halcrow apr08
Sewer sediment halcrow apr08Sewer sediment halcrow apr08
Sewer sediment halcrow apr08
 
Chemistry
ChemistryChemistry
Chemistry
 
Tyler Johnston Thesis Defence
Tyler Johnston Thesis DefenceTyler Johnston Thesis Defence
Tyler Johnston Thesis Defence
 

ROSSI-EGU2016-modificato-finale-ultimo-definitivo

  • 1. HYDRAULIC BINDING BETWEEN STRUCTURAL ELEMENTS AND GROUNDWATER CIRCULATION IN A VOLCANIC AQUIFER: INSIGHTS FROM RIANO QUARRIES DISTRICT (Rome Italy) David Rossi Elisabetta Preziosi, Stefano Ghergo, Daniele Parrone, Stefano Amalfitano, Anna Bruna Petrangeli & Annamaria Zoppini
  • 2. INTRODUCTION As long been recognized, geological heterogeneity represents a fundamental aspect for water circulation. In particular, meso-scale brittle deformation elements influence the potential gradient of water circulation and geochemical patterns related to the strain processes. The analysis of geological heterogeneity related to brittle deformations is crucial to modelling surface and groundwater dynamics. In areas characterized by intense extractive activities, brittle deformation effects become more evident because of the intrinsic groundwater vulnerability.
  • 3. RATIONALE PROBLEM: In Riano quarry District fractures show alteration bands • Is this related to precipitation water interaction (solution/precipitation) with fractured rocks? OR • Is this the result of deep thermal water upwelling? In this case, which is the role of fracture network in the interaction between shallow and deep aquifer circulation?
  • 5. RIANO QUARRIES DISTRICT • Due to the intense extractive activities the Riano quarries District (120km2) is characterized by numerous artificial surfaces perfectly smoothed in both horizontal and vertical orientation. • 26 of the 32 quarries identified were selected due to their accessibility, the presence of smooth horizontal and vertical surfaces and the amount of logs and wells available. Fracture distribution, orientation and length data in three dimensions were collected. A total of 12570 fractures were measured. • Most of the fractures shows a pervasive alteration band with different colors and thickness around the whole fracture shape.
  • 6. SOME EXAMPLES Quarry A Quarry C Quarry F Quarry D Quarry I - J Quarry O Quarry B Quarry Q Quarry G
  • 7. THE FRACTURES and the alteration bands
  • 8. DEFINITION OF FRACTURE TYPE, DISTRIBUTION AND GEOMETRY 75m
  • 9. LINE DRAWING OF THE FRACTURE SYSTEMS
  • 10. 3D Model of Quarry A
  • 11. LABORATORY ANALYSIS ON ROCKS SAMPLES: (On 15 samples altered bands and 15 unaltered rocks) - XRF(SiO2 – CaO – Na2O – Fe2O3 – TiO2 – Al2O3 – MnO – MgO – K2O – P2O5) - diffractometers (Minerals paragenesys) - microwave acid digestion + ICP-MS (chemical composition) ON GROUNDWATER SAMPLES: (80 samples) - ICP-OES (major cations) - ICP-MS (trace elements) - IC (major anions) - Titration (bicarbonates)
  • 13. 0 50 10 30 50 70 90 >100 Percentage% Fracture Lenght (m) Quarry E 0 50 10 20 30 40 50 60 70 80 90 100 >100 Percentage% Fracture Lenght (m) Quarry D 0 50 10 30 50 70 90 >100 Percentage% Fracture Lenght (m) Quarry A 0 50 10 20 30 40 50 60 70 80 90 100 >100 Percentage% Fracture Lenght (m) Quarry B 0 50 10 30 50 70 90 >100 Percentage% Fracture Lenght (m) Quarry C -10 10 30 50 10 30 50 70 90 >100 Percentage% Fracture Lenght (m) Quarry G -10 10 30 50 10 20 30 40 50 60 70 80 90 100 >100 Percentage% Fracture Lenght (m) Quarry I 0 50 10 30 50 70 90 >100 Percentage% Fracture Lenght (m) Quarry J 0 100 FRACTURE STRIKE Quarry D 0 50 100 150 FRACTURE STRIKE Quarry E 0 20 40 60 80 0 50 100 150 DIP FRACTURE STRIKE Quarry A 0 20 40 60 80 0 50 100 150 DIP FRACTURE STRIKE Quarry F -10 90 0 50 100 150 FRACTURE STRIKE Quarry Z 0 50 100 150 FRACTURE STRIKE Quarry H 0 100 FRACTURE STRIKE Quarry B 0 50 100 150 FRACTURE STRIKE Quarry C 0 100 FRACTURE STRIKE Quarry G 0 100 FRACTURE STRIKE Quarry I 0 50 100 150 FRACTURE STRIKE Quarry J 0 100 FRACTURE STRIKE Quarry L 0 50 100 150 FRACTURE STRIKE Quarry M 0 100 FRACTURE STRIKE Quarry N 0 50 100 150 FRACTURE STRIKE Quarry O 0 20 40 60 80 0 50 100 150 DIP FRACTURE STRIKE Quarry K 0 20 40 10 20 30 40 50 60 70 80 90 100 >100 Percentage% Fracture lenght (m) Quarry Z N27° N27° N27° N27° N27° N27° N27° N27° N27° N27° N27° N27° N170° N170° N170° N170° N170° N170° N150° N50° N50° N170° N50° N60° N70°N70°
  • 14. GROUNDWATER Earth-alkaline/alcaline bicarbonate waters Mean (mg/kg) ST DEV Li 55,18 5,32 Be 12,44 0,56 Na 1317,56 282,31 Mg 671,00 663,62 Al 45851,26 4444,35 K 45632,62 6266,30 Ca 64068,29 8253,63 V 62,44 8,47 Cr 40,35 25,85 Fe 19600,12 889,82 Mn 741,79 70,72 Co 3,76 0,20 Ni 23,55 12,05 Cu 8,25 0,66 Zn 66,81 3,79 Ga 100,73 11,06 As 23,05 2,84 Se 2,34 0,93 Rb 168,41 46,83 Sr 1294,44 161,76 Mo 0,32 0,20 Ag 2,44 0,30 Cd 2,68 0,23 Sb 1,27 0,10 Cs 22,18 3,23 Ba 591,95 121,40 Tl 2,01 0,13 Pb 117,81 8,62 U 16,54 3,11 Microwave acid digestion + ICP-MS UNALTEREDROCKS ALTERATIONBAND Mean mg/kg ST DEV Li 34,59 10,77 Be 16,78 5,32 Na 733,47 1049,62 Mg 94,92 22,63 Al 36737,35 9057,75 K 42152,11 4827,28 Ca 48366,18 13357,99 V 71,96 9,45 Cr 44,59 21,63 Fe 29687,34 5247,26 Mn 1942,41 1434,14 Co 3,42 1,38 Ni 23,72 11,80 Cu 8,58 3,77 Zn 84,59 13,37 Ga 118,21 39,11 As 36,75 14,71 Se 0,47 0,37 Rb 106,48 25,46 Sr 1311,72 194,57 Mo 0,21 0,13 Ag 2,43 0,24 Cd 3,06 0,54 Sb 1,09 0,24 Cs 22,38 4,00 Ba 795,22 305,03 Tl 3,38 5,08 Pb 136,45 22,09 U 9,98 2,64 XRF % SiO2 45,88 CaO 11,24 Na2O 0,77 Fe2O3 45,86 TiO2 0,44 Al2O3 14,97 MnO 0,11 MgO 1,51 K2O 5,84 2O5 0,15 XRF % SiO2 48,95 CaO 8,31 Na2O 0,70 Fe2O3 48,25 TiO2 0,44 Al2O3 15,05 MnO 0,11 MgO 1,47 K2O 5,915 P2O5 0,145 I would like to thank Aida Conte for XRF analysis and Stefano Stellino for diffractometers analysis NO SIGNIFICATIVE DIFFERENCES WERE FOUND
  • 15. CONCLUSIONS • Fracture sets formed sequentially in Tuffs, with same mechanical properties, were characterized by two main generation of extensional fractures linked to buried extensional faults: S1 oriented N170° and S2 oriented N27°. • A depletion of Ca, Na, Mg, Al, U and CaO in the tuff alteration bands could be related to the solution processes of meteoric water circulation within fractures as also suggested by groundwater classification • The observed enrichment in Mn-Fe-Zn and As could be a consequence of the earth-alcaline elements depletion • Data do not show any evidence of deep water upwelling processes.