SlideShare ist ein Scribd-Unternehmen logo
1 von 20
From Ancient Greece to cell phones Mathematics Used Everyday in Modern Electronics by David and Justin Sorrells
Euclidean SpaceEuclid of Alexander, Greece, 300BCE Symbol En Every point in 3 dimensional Euclidean Space (E3)can be located or mapped to a unique x, y, and z coordinate value The x, y, and z axes in Euclidean space are Orthogonal (Perpendicular) Copyright David F and Justin W Sorrells, 2011
Cartesian CoordinatesRenè Descartes, France, 1600 CE 2 Dimensional Euclidean Space E2 AKA a Plane The Cartesian x and y axes are Orthogonal Every point in a 2 dimensional Cartesian Coordinate Plane can be mapped to a unique x and y coordinate value Y axis (1,3) 3 X axis 1 Copyright David F and Justin W Sorrells, 2011
The Unit Circle Gupta Period, India, 550 CEPythagoras, Greece, 490 CE Unit Circle     Radius = 1 Symbol S1 x2 + y2 = h2 = r2 = 1 Unique x and y coordinates can be expressed as Polar coordinates (r,θ) Y axis (0,1) r y (-1,0) θ X axis x (1,0) (-1,-1) Copyright David F and Justin W Sorrells, 2011
Cartesian/Polar Coordinates to Trigonometric  IdentitiesHipparchus, Greece, 2 CE Unit Circle     Radius = 1 sin(θ) Identities: x = r * cos(θ) y = r * sin(θ) Since x2 + y2 = r2 --and--   r = 1 --then–  sin2(θ)+cos2(θ) = 1 r y θ cos(θ) x Copyright David F and Justin W Sorrells, 2011
Complex PlaneHeron of Alexandria, Greece, 10-70 CERafael Bombelli, Italy, 1572 CE Cartesian Coordinates can be expressed as a real axis and an imaginary axis instead of x axis and y axis Named the Complex Plane because of the complex number (1+i3) notation. i = j =   -1   ; (1+i3) = (1+j3) In electronics, i is the variable for current so j was chosen to represent complex notation. Imaginary axis (1,i3) or 1+i3 i3 Real axis 1 Copyright David F and Justin W Sorrells, 2011
Complex Polar Plane with Unit CircleJean-Robert Argand, France, 1806 CE The notation cos(θ) + jsin(θ) defines the position of V which is known as a Vector Simply by knowing the angle θ on the complex plane, we can describe any Vector by calculating cos(θ) for the x-coordinate and jsin(θ) for the y-coordinate jsin(θ) Unit Circle     Radius = 1 V jsin(θ) θ cos(θ) cos(θ) Copyright David F and Justin W Sorrells, 2011
Euler Makes another LeapLeonhard Euler, Switzerland, 1783  ejθ = cos(θ) + jsin(θ) With Euler’s formula, we can express any Vector in the complex plane simply by writing ejθ. jsin(θ) Unit Circle     Radius = 1 V jsin(θ) θ cos(θ) cos(θ) Copyright David F and Justin W Sorrells, 2011
Laplace Ties it all TogetherPierre-Simon Laplace, France, 1800  Laplace Transform Laplace uses Euler’s ejθ relationship and extends it to e-st with s defined as j*2*π*f, which can be expanded to:  e-st = -(cos(2*π*f*t) + jsin(i*2*π*f*t)) Now we can define the response of f(t) in terms of frequency instead of θ (angle) Who uses this information? Copyright David F and Justin W Sorrells, 2011
Electrical Engineers Electrical Engineers use mathematics that date back 205 to 2300 years to mathematically describe all basic passive electronic components circuit responses using simple algebra in the frequency domain. Time domain Equations	Components        Laplace Transform Impedance Laplace, and all those before him makes it so that we don’t have to solve differential time domain equations to calculate how resistors, capacitors, and inductors behave at any given frequency. Copyright David F and Justin W Sorrells, 2011
Easy as Pi Imaginary Axis The inductive impedance is plotted on the +j or positive imaginary axis The capacitive impedance is plotted on the –j or negative imaginary axis The resistance is plotted on  	the real axis f = frequency L = inductance C = capacitance R = resistance j2πfL R Real Axis    -j 2πfC Copyright David F and Justin W Sorrells, 2011
Ohm’s Law (one more simple equation)Georg Ohm, Germany, 1827 CE ,[object Object]
Voltage = Current * Resistance
V = i * R
Ohm’s Law for Alternating Current (AC):
Voltage = Current * Impedance
V = i * Z
Impedance is a complex parameter defined as Re+jXCopyright David F and Justin W Sorrells, 2011
A Real (and Imaginary) Example ,[object Object],From Ohm’s law we know: VsinInput = i * Z VsinInput = R*i + jXl*i - jXc*i Z = R + jXl – jXc f = 1 Ghz (1*109) R = 50 ohms Xl = j2* π*f*10nH (10*10-9) = j62.83 ohms  Xc = -j2* π*f*1pF (1*10-12) = -j159.16 ohms Let’s calculate the voltage across the capacitor Copyright David F and Justin W Sorrells, 2011
Step 1:  Plot the Complex Impedance (Z) Z = 50 + j62.83 – j159.16 Z = 50 – j96.33 Zmag =   502 – j96.332   = 108.53 θ = -tan-1(96.33/50) = -62.57deg  Xl = j62.83  = R = 50  -62.57deg  Zmag=108.53  Xl = -j159.16  Copyright David F and Justin W Sorrells, 2011

Weitere ähnliche Inhalte

Was ist angesagt?

M1 unit vii-jntuworld
M1 unit vii-jntuworldM1 unit vii-jntuworld
M1 unit vii-jntuworld
mrecedu
 
The smith chart
The smith chartThe smith chart
The smith chart
Rahul Vyas
 
Vector calculus
Vector calculusVector calculus
Vector calculus
raghu ram
 
Vector differentiation, the ∇ operator,
Vector differentiation, the ∇ operator,Vector differentiation, the ∇ operator,
Vector differentiation, the ∇ operator,
Tarun Gehlot
 

Was ist angesagt? (20)

Thesis
ThesisThesis
Thesis
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma edición
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
 
M1 unit vii-jntuworld
M1 unit vii-jntuworldM1 unit vii-jntuworld
M1 unit vii-jntuworld
 
Capitulo 3, 7ma edición
Capitulo 3, 7ma ediciónCapitulo 3, 7ma edición
Capitulo 3, 7ma edición
 
Karpen generator
Karpen generatorKarpen generator
Karpen generator
 
Capitulo 12, 7ma edición
Capitulo 12, 7ma ediciónCapitulo 12, 7ma edición
Capitulo 12, 7ma edición
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
 
Capitulo 9, 7ma edición
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma edición
 
Ece5318 ch4
Ece5318 ch4Ece5318 ch4
Ece5318 ch4
 
Matrices i
Matrices iMatrices i
Matrices i
 
The smith chart
The smith chartThe smith chart
The smith chart
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
VECTOR FUNCTION
VECTOR FUNCTION VECTOR FUNCTION
VECTOR FUNCTION
 
Mit2 092 f09_lec04
Mit2 092 f09_lec04Mit2 092 f09_lec04
Mit2 092 f09_lec04
 
smith chart By Engr Mimkhan
smith chart By Engr Mimkhansmith chart By Engr Mimkhan
smith chart By Engr Mimkhan
 
Introduction to Calculus of Variations
Introduction to Calculus of VariationsIntroduction to Calculus of Variations
Introduction to Calculus of Variations
 
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions ManualEngineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
 
Vector differentiation, the ∇ operator,
Vector differentiation, the ∇ operator,Vector differentiation, the ∇ operator,
Vector differentiation, the ∇ operator,
 

Andere mochten auch (8)

Ibm+management
Ibm+managementIbm+management
Ibm+management
 
Pbe 3.0 final presentation 2011
Pbe 3.0 final presentation 2011Pbe 3.0 final presentation 2011
Pbe 3.0 final presentation 2011
 
情報デザインの多面性
情報デザインの多面性情報デザインの多面性
情報デザインの多面性
 
Sistema locomotor
Sistema locomotorSistema locomotor
Sistema locomotor
 
Sp design2013 v2
Sp design2013 v2Sp design2013 v2
Sp design2013 v2
 
Kaelo group credentials June 2011 final
Kaelo group credentials June 2011 finalKaelo group credentials June 2011 final
Kaelo group credentials June 2011 final
 
UX Design Lecture in TUAD 2014
UX Design Lecture in TUAD 2014UX Design Lecture in TUAD 2014
UX Design Lecture in TUAD 2014
 
Storytelling ux tokyo-en
Storytelling ux tokyo-enStorytelling ux tokyo-en
Storytelling ux tokyo-en
 

Ähnlich wie Justin Math Presentation Rev1.2

LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfLECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
anuj298979
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20
Bipin Kujur
 
Lect14 handout
Lect14 handoutLect14 handout
Lect14 handout
nomio0703
 
Understanding viscoelasticity
Understanding viscoelasticityUnderstanding viscoelasticity
Understanding viscoelasticity
Springer
 

Ähnlich wie Justin Math Presentation Rev1.2 (20)

Jackson 7 chap
Jackson 7 chapJackson 7 chap
Jackson 7 chap
 
μ-RANGE, λ-RANGE OF OPERATORS ON A HILBERT SPACE
μ-RANGE, λ-RANGE OF OPERATORS ON A HILBERT SPACEμ-RANGE, λ-RANGE OF OPERATORS ON A HILBERT SPACE
μ-RANGE, λ-RANGE OF OPERATORS ON A HILBERT SPACE
 
Fields Lec 5&6
Fields Lec 5&6Fields Lec 5&6
Fields Lec 5&6
 
EIS
EISEIS
EIS
 
EIS.ppt
EIS.pptEIS.ppt
EIS.ppt
 
ch02.pdf
ch02.pdfch02.pdf
ch02.pdf
 
Electricity for physic
Electricity for physic Electricity for physic
Electricity for physic
 
Electromagnetic fields
Electromagnetic fieldsElectromagnetic fields
Electromagnetic fields
 
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfLECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20
 
Electric field in material space 2nd 2
Electric field in material space 2nd 2Electric field in material space 2nd 2
Electric field in material space 2nd 2
 
Lect14 handout
Lect14 handoutLect14 handout
Lect14 handout
 
Contour
ContourContour
Contour
 
5 slides
5 slides5 slides
5 slides
 
EMF.1.13.ElectricField-P.pdf
EMF.1.13.ElectricField-P.pdfEMF.1.13.ElectricField-P.pdf
EMF.1.13.ElectricField-P.pdf
 
Cs jog
Cs jogCs jog
Cs jog
 
Understanding viscoelasticity
Understanding viscoelasticityUnderstanding viscoelasticity
Understanding viscoelasticity
 
Optical properties of semiconductors ppt
Optical properties of semiconductors pptOptical properties of semiconductors ppt
Optical properties of semiconductors ppt
 
E field energy
E field energyE field energy
E field energy
 
1.4 - Forces in Space.pptx
1.4 - Forces in Space.pptx1.4 - Forces in Space.pptx
1.4 - Forces in Space.pptx
 

Justin Math Presentation Rev1.2

  • 1. From Ancient Greece to cell phones Mathematics Used Everyday in Modern Electronics by David and Justin Sorrells
  • 2. Euclidean SpaceEuclid of Alexander, Greece, 300BCE Symbol En Every point in 3 dimensional Euclidean Space (E3)can be located or mapped to a unique x, y, and z coordinate value The x, y, and z axes in Euclidean space are Orthogonal (Perpendicular) Copyright David F and Justin W Sorrells, 2011
  • 3. Cartesian CoordinatesRenè Descartes, France, 1600 CE 2 Dimensional Euclidean Space E2 AKA a Plane The Cartesian x and y axes are Orthogonal Every point in a 2 dimensional Cartesian Coordinate Plane can be mapped to a unique x and y coordinate value Y axis (1,3) 3 X axis 1 Copyright David F and Justin W Sorrells, 2011
  • 4. The Unit Circle Gupta Period, India, 550 CEPythagoras, Greece, 490 CE Unit Circle Radius = 1 Symbol S1 x2 + y2 = h2 = r2 = 1 Unique x and y coordinates can be expressed as Polar coordinates (r,θ) Y axis (0,1) r y (-1,0) θ X axis x (1,0) (-1,-1) Copyright David F and Justin W Sorrells, 2011
  • 5. Cartesian/Polar Coordinates to Trigonometric IdentitiesHipparchus, Greece, 2 CE Unit Circle Radius = 1 sin(θ) Identities: x = r * cos(θ) y = r * sin(θ) Since x2 + y2 = r2 --and-- r = 1 --then– sin2(θ)+cos2(θ) = 1 r y θ cos(θ) x Copyright David F and Justin W Sorrells, 2011
  • 6. Complex PlaneHeron of Alexandria, Greece, 10-70 CERafael Bombelli, Italy, 1572 CE Cartesian Coordinates can be expressed as a real axis and an imaginary axis instead of x axis and y axis Named the Complex Plane because of the complex number (1+i3) notation. i = j = -1 ; (1+i3) = (1+j3) In electronics, i is the variable for current so j was chosen to represent complex notation. Imaginary axis (1,i3) or 1+i3 i3 Real axis 1 Copyright David F and Justin W Sorrells, 2011
  • 7. Complex Polar Plane with Unit CircleJean-Robert Argand, France, 1806 CE The notation cos(θ) + jsin(θ) defines the position of V which is known as a Vector Simply by knowing the angle θ on the complex plane, we can describe any Vector by calculating cos(θ) for the x-coordinate and jsin(θ) for the y-coordinate jsin(θ) Unit Circle Radius = 1 V jsin(θ) θ cos(θ) cos(θ) Copyright David F and Justin W Sorrells, 2011
  • 8. Euler Makes another LeapLeonhard Euler, Switzerland, 1783 ejθ = cos(θ) + jsin(θ) With Euler’s formula, we can express any Vector in the complex plane simply by writing ejθ. jsin(θ) Unit Circle Radius = 1 V jsin(θ) θ cos(θ) cos(θ) Copyright David F and Justin W Sorrells, 2011
  • 9. Laplace Ties it all TogetherPierre-Simon Laplace, France, 1800 Laplace Transform Laplace uses Euler’s ejθ relationship and extends it to e-st with s defined as j*2*π*f, which can be expanded to: e-st = -(cos(2*π*f*t) + jsin(i*2*π*f*t)) Now we can define the response of f(t) in terms of frequency instead of θ (angle) Who uses this information? Copyright David F and Justin W Sorrells, 2011
  • 10. Electrical Engineers Electrical Engineers use mathematics that date back 205 to 2300 years to mathematically describe all basic passive electronic components circuit responses using simple algebra in the frequency domain. Time domain Equations Components Laplace Transform Impedance Laplace, and all those before him makes it so that we don’t have to solve differential time domain equations to calculate how resistors, capacitors, and inductors behave at any given frequency. Copyright David F and Justin W Sorrells, 2011
  • 11. Easy as Pi Imaginary Axis The inductive impedance is plotted on the +j or positive imaginary axis The capacitive impedance is plotted on the –j or negative imaginary axis The resistance is plotted on the real axis f = frequency L = inductance C = capacitance R = resistance j2πfL R Real Axis -j 2πfC Copyright David F and Justin W Sorrells, 2011
  • 12.
  • 13. Voltage = Current * Resistance
  • 14. V = i * R
  • 15. Ohm’s Law for Alternating Current (AC):
  • 16. Voltage = Current * Impedance
  • 17. V = i * Z
  • 18. Impedance is a complex parameter defined as Re+jXCopyright David F and Justin W Sorrells, 2011
  • 19.
  • 20. Step 1: Plot the Complex Impedance (Z) Z = 50 + j62.83 – j159.16 Z = 50 – j96.33 Zmag = 502 – j96.332 = 108.53 θ = -tan-1(96.33/50) = -62.57deg Xl = j62.83 = R = 50 -62.57deg Zmag=108.53 Xl = -j159.16 Copyright David F and Justin W Sorrells, 2011
  • 21. Step 2: Calculate the Complex Current i = VSinInput / Z i = 1 / (108.53 -62.57) i = 9.214x10-3 62.57 imag=9.214x10-3 +62.57deg -62.57deg Zmag=108.53 Copyright David F and Justin W Sorrells, 2011
  • 22. Step 3: Calculate the Voltage across the Capacitor From Ohm’s Law: V = i * Z ; and in this case Z is the Impedance of the Capacitor (Zc) Zc = -jXc = -j159.16 or in Polar Coordinates Zc = 159.16 -90 Vc = (9.214x10-3 62.57) * 159.16 -90 Vc = 1.466 -27.43 Copyright David F and Justin W Sorrells, 2011
  • 23. Convert back to Complex Coordinates for Completeness Vc = 1.466 -27.43 Re (aka x) = r * cos(θ) Re = 1.466 * cos(-27.43) Re = 1.301 Im (aka y) = r * sin (θ) Im = 1.466 * sin(-27.43) Im = -.675 Vc = 1.301 - j.675 VSinInput -27.43deg Vc_mag=1.466 Copyright David F and Justin W Sorrells, 2011
  • 24. Let’s Check our Work We calculated Vc as 1.466V -27.43 Correct! Copyright David F and Justin W Sorrells, 2011
  • 25. Result Today we manipulated and solved a 2nd order differential calculus equation using simple algebra and Cartesian coordinates thanks to many brilliant mathematicians dating back to Ancient Greece Copyright David F and Justin W Sorrells, 2011
  • 26. Conclusion Engineers use the mathematical techniques in this presentation to calculate complex voltages, currents, and impedances to design and optimize radio frequency (RF) circuitry. Their goal is to continually improve the distance, coverage, and reliability of one of our most modern devices – Cell Phones Copyright David F and Justin W Sorrells, 2011