SlideShare ist ein Scribd-Unternehmen logo
1 von 90
Downloaden Sie, um offline zu lesen
CTICS 2012                                     Jan 25th, 2012




Dark Matter detection (2)



Sergio Colafrancesco
Wits University - DST/NRF SKA Research Chair
INAF - OAR
Email: Sergio.Colafrancesco@wits.ac.za
Email
       Sergio.Colafrancesco@oa-roma.inaf.it

                                                                1
Outline
 Multi-epoch
   The Dark Matter Timeline
   The present


 Multi-Scale + M3
   Galactic center
   Galactic structures
   Galaxy Clusters


 The Future
   The DM search challenge

                              2
Viable DM candidates: signals
  Neutralinos                                            Sterile ν’s

                  Annihilation                      Radiative decay: line
                                                                νs → να + γ




  DM annihilation flux                                     DM decay flux
    1 ρ DM ( r )
        2
                                                           1 ρ DM ( r )
F ∝  2     2
                 〈σ V 〉           Astro physics     F ∝     2
                                                                        〈 Γ rad 〉
    DL  Mχ                                                 DL  Mv
                     dE 
× [ f ann ( E ; χ )]           Particle physics    [           ]
                                                                  dE 
                                                    × Eγ ( M v )     
                     dν                                         dν 

                                                                             3
Viable DM candidates: signals
 Neutralinos                                         Sterile ν’s

                 Annihilation                      Radiative decay: line
                                                              νs → να + γ



                                                     Ms



Inverse Compton scattering

                   π0    Mχ
Synchr.

                                Particle physics
     Bremsstrahlung
                                                                           4
SUSY neutralino DM



                     5
High frequency


  X-rays                      p
bremsstrahlung




                                                Ha oces
                                                Ha ces
     ICS




                                                  prr
                                                  po
                                                  drr se
                                                              γ+γ




                                                   d o se
                    γCMB       e±                    π0




                                                      on s
                                                       niic s
                                                          c
                      Le
                      Le
                      π±             χ
                         pt
                         pt
                           on
                            on

                                            χ             p             Gamma rays
                              iic

                 e±
                                cp
                                                                          (π0 decay)
                                e±
                                  pr

                                                e±
                                   ro

                                     γCMB
                                     oc
                                      cees

                                                                        Gamma rays
                                         ssse

                                                                        bremsstrahlung
                                            es

Low frequency                  B
                                              s

                                                                             ICS


  Radio emission                                  SZ effect
                                                      ICS
      Synchrotron                                                                  6
Covering the whole e.m. spectrum

                                    χχ
                            annihilation
                              products

                                            Br          Br
                    on                         e           e     m


                                t
                  tr
                            fec
              o                                    m                 .+
            hr                                         .+                 IC
                         Ef

                                    IC S
        c                                                   IC                 S+




                                           IC
      yn                                                         S                  π0
                    SZ
    S



                                           S




                                                                                         7
Leptons: e± equilibrium spectrum
         ∂ ne ( E , r )                                ∂
                        − ∇ [ D( E )∇ ne ( E , r )] −    [ be ( E )ne ( E , r )] = Qe ( E , r )
              ∂t                                      ∂E



Production                                                                      Equilibrium

   Qe ( E , r )                                                                      ne ( E , r )




    Diffusion                                                          E losses

D( E ) = D0 E γ B − γ                              be ( E ) = bIC + bsync + bCoul + bbrem
                                                                                                    8
Solution: complete
                                              Mχ
                                      1                ˆ
                     ne ( E , r ) =
                                    b( E )     ∫
                                               E
                                                   dE ′G (r , λ − λ ′ )Qe ( E , r )


            NFW04
                                                                       Galaxy clusters



                                                                       Galaxies


                                       (r ′ ) 2                          (rn′ + r ) 2   nχ (r ′ )
                              Rh                                                             2
        1           +∞
                                                   (r ′ − rn ) 2 
ˆ=
G
   [4π ∆ λ ]1/ 2
                    ∑− ∞ (− 1) n ∫ dr ′ '  exp −
                                        rn r         4∆ λ 
                                                                   − exp −
                                                                                       2
                                                                              4 ∆ λ   nχ ( r )
                   n=            0                                                    
                         [Colafrancesco, Profumo & Ullio 2006-2007]                                 9
Energy losses vs. Diffusion
                                                        2
                 E                                    Rh
τ loss   =                                 τ   D   =
           b( E , B, nth )                           D( E )




B increase                                nth decrease




                                          Rh decrease



                                                         10
Solution: qualitative
                                                                  Vsource            τD
                  ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅                       ⋅
                                                            Vsource + Vdiffusion τ D + τ loss



                                                      VD                                       VD

            Vs                                         Vs



     τ loss « τ D                                                                        τ loss » τ D
                                                                                                    Vsource τ D
ne ( E , r ) = [ Qe ( E , r )τ loss ]                       ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅           ⋅
                                                                                                    Vdiffusion τ loss

  Galaxy clusters                                                                Galaxies                        11
Neutralino DM: SED
              −8
τ π ± ≈ 2.6 ⋅ 10 s        Synch.       ICS on CMB        π0 decay τ 0 ≈ 8.4 ⋅ 10− 17 s
                                                                   π
                          Coma                   DUAL
                           Mχ=40 GeV                    Fermi
                              _
                            bb


                                                                     CTA

                                                 NuSTAR




                             Secondary products           Prompt
                                       leptons            hadrons
                     .
                     .

                     10-30-31 ←SKA (1GHz)                                       12
DM - Astrophysical Laboratories
                         GC




                         Leo I dSph




                         NGC3338




                         Bullet cluster



                                          13
The Galactic Center


                      Radio 90 cm




                              14
The Galactic Center


                      Mid-IR




                         15
The Galactic Center


                      X-rays 1-8 keV




                                 16
The Galactic Center


                                                                                     Multi-ν




Galactic center region across the spectrum:
red: radio 90 cm (VLA); green: mid-infrared; blue: X-ray (1-8 keV; Chandra ACIS-I)

                                                                                         17
The Galactic Center: a close up




Galactic Center (Survey) Multiwavelength Close-Up
A multiwavelength close-up of the recent massive star-forming region near the Galactic center.
The color image, plotted also in standard Galactic coordinates, is a composite of 20-cm radio
continuum (red); 25-µm mid-infrared (green); and 6.4-keV line emission (blue).                   18
Galactic Center demography
      Crowded, active environment

                                           HESS        CTA
                      Fermi (1GeV)
                                             EGRET source


                                            Central Black Hole




X-ray source    SNR       Sgr A East non-thermal filaments (radio)
                                                              19
The GC region DM challenge
Gondolo            1998
Gondolo & Silk     1999
…
Cesarini et al.    2003
…
De Boer et al.     2005
…
Hooper et al.      2008
…
Borriello et al.   2008
Regis & Ullio      2008
Crocker et al.     2010


                               Sgr-A SED in quiescent radio + X-ray stage
                                                     [Regis & Ullio 2008]

                                                                        20
The GC region DM challenge: limits
Constraints from radio + γ-rays
• Radio: constrain to ~ GeV-TeV mass
• γ-rays: constrain to ≤ GeV    mass
• ν’s : constrain to > 10 TeV mass


                          Borriello et al. 2008




         Radio + EGRET



                         [Crocker et al. 2010]
               Radio + HESS
                                                  [Regis & Ullio 2008]
                                                                   21
The GC region DM challenge: limits
Fermi-LAT results on the diffuse γ-ray emission improves DM limits
  → by a factor ~ 20-50




                                                              [Abazajian et al. 2010]
Caveats
• modelling of diffuse foregrounds (Galactic, Extra-Galactic)
• unresolved point-like sources (PSR, MCs, AGNs, Starburst gal., Clusters, GRBs,..)
• data analysis techniques (Likelihood vs. photon counts)                      22
The GC region DM challenge: HESS
                Search for a DM annihilation signal
                from the Galactic Center halo with
                H.E.S.S.         (arXiv:1103.3266v)




                                       Thermal Dark Matter




                                                      23
The GC region DM challenge
Strongest constraints from SKA + CTA
• Radio: constrain to ~ GeV-TeV mass
• γ-rays: constrain to ~ GeV-TeV mass                      VLA
• ν’s : constrain to > 10 TeV mass
                                                                           T
                                                                      G RE
                                                               io   +E
                                                           Rad                        ES
                                                                                        S
                                                                                o   +H
                                                                           R adi
                                                                               S
                                                                          H ES
                                                                      +
                                                                  K AT
                                                          M eer

            SKA      CTA
                                                     P1                  C TA
                                        -28        A                 +
                                              SK              P2
                                                            A
                                                      SK
                                        -29                                                 24
The GC region DM challenge: uncertainties
B-field at GC
• from 4 to 1000 µG
• > 50µG (radio + γ-rays)
     [Crocker et al. 2010]


Diffusion



DM density profile

DM dynamics at GC
DM vs. BH

Astrophysical sources
                             [Regis & Ullio 2008]
Stationary & Transient
                                                    25
The GC Haze
Radio emission due to secondary e±
is spatially extended (ν-dependent)
      Radio halo (haze)
      RH size decreases with increasing ν

ICS emission due to secondary e±
is spatially extended (ν-dependent)
      IC halo (haze)
      ICH size decreases with increasing ν
The angular size for the equilibrium n.
density of high-E e± is much broader
than the γ-ray flux from π0 decays
      π0 halo (haze) = DM source
     πH size smaller than RH / ICH size      26
WMAP vs. Fermi haze


Cosmic ray electrons interacting
with the Galactic magnetic field




cosmic ray electrons interacting
with the ISRF to produce ICS
                                   27
GC hazes: puzzles or certainties
Dark Matter

- DM (W±,bb) is not the
 origin of Fermi haze
- DM (e±) can fit the
  Fermi haze with a
  boost factor ~ 100       DM prediction    Fermi data
  → multi-ν problems       Galprop          (Dobler et al. 2009)

ms Pulsars

- 50 % energy
  conversion in e±
- 30,000 msP in GC
- msP not resolved
  in radio and gamma.
  → Haze of unresolved                     [Malyshev et al. 2010]
      point-like sources                                            28
msP around the GC




                    [Wang 2005]




                                  29
Galaxy DM sub-halos: radio emission


                                                        VLA obs.


                                                           DM



           16     0.16    1.610-4 1.610-7 mJy

Radio emission from DM clumps                   • Angular power spectrum Cll(l+1)
- Strong diffusion effects                        → typical scale: λmax(E,B)
- Degeneracy of ne and B-field                  • Break ne – B degeneracy
- B-field uncertainty                             → SZE (@30 GHz) observations
      [Baltz & Wai 2004, …Borriello et al. 2008… Colafrancesco et al. 2012]   30
Galaxy DM sub-halos: γ-rays
Possibility to detect single or a population of        CAVEATS
DM clumps via their π0 decay γ-ray emission.      Galactic diffuse emission
                                                   plus its fluctuations
                                                   (spatial + spectral)
                                                  Foreground removal
                                                  - Galaxy
                                                  - Blazars
                                                  - Galaxies
                                                  - Starburst galaxies
                                                  - Galaxy clusters
                                                  - Pulsars
                                                  - SNRs
                                                  - MCs
                                                  Variability
                                                  Spectral separation
  [DM simulation Kuhlen et al. arXiv:0704.0944]   Clustering properties
                                                  …
                                                                       31
The Gamma-ray sky
Fermi all-sky survey                  Angular power spectrum
                                                       Blazars

                                     [Ando 2005]

                                         Variability




                       l(l+1)Cl/2π
                                      DM




                               1             10        102            103
                                              multipole          32
Dwarf Spheroidal Galaxies: DM halos
Small-size, dynamically un-relaxed… but few good cases !




                                                    33
The darkest galaxies in the universe




   Segue 1 dwarf galaxy → M/LV ~ 3400 M/L
                                              34
Dwarf galaxies & DM: Fermi
       MSUGRA                                  MSSM




                            [Fermi-LAT collaboration 2010]
Assumptions
- NFW profile
- No boost factor (no substructures)
                                                             35
The Dwarf Galaxies DM challenge
                                                                                 Vsource            τD
Sub-galactic size systems        ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅                       ⋅
- R ~ kpc                                                                  Vsource + Vdiffusion τ D + τ loss
- No gas
- Little dust                                                          VD
- No Crs
- 1 (or 2) stellar populations                                             Vs
- M/L ~ 500 - 3500



                                                                τ loss » τ D
+ Ideal systems to probe DM
                                                                                  Vsource τ D
+ Clean multi-ν features                  ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅           ⋅
                                                                                  Vdiffusion τ loss
but…
                                         Iν
- Strong diffusion effects
- Low signals                                                                                           r
                                                                                                        36
Dwarf Sph. galaxies & DM constraints
                                          σv             VD
         I (ν ) ∝ B ⊗ De ⊗ n ( Ee ,ν , r ) 2
                             2
                             e
                                          Mχ
                                                         VS
                                        γ
                    De = D0 ( Ee / B)

    Spectrum
                      B χ                   Brightness




                                                              37
ATCA → MeerKAT → SKA



             ATCA
            MeerKAT

              SKA


ATCA                  MeerKAT
                                SKA




                                      38
Dark Matter search @ radio
                               121.5 hr @ ATCA
                           to observe 6 dwarf galaxies
                                [S.C. et al. 2011]


                         Constraints on DM parameter space



Segue-3         Carina


                              Fermi 2yr


                              ATCA 121hr
                                 MeerKAT
                                 SKA-P1
                                                         39
Expectations: the HXR range
Normalization fixed by the lack of    HXR and radio profiles are different
detection in ATCA (F1.3GHz < 10µJy)   HXR and –ray profiles are similar


    σV=4 10-28 cm3/s
                                                        Draco
                                                        σV=4 10-28 cm3/s
                       0.1µG                                  π0
                                                               ICS
                                                                  Synch
               1µG                           no diff
                                             diff
        ATCA


                                           NuSTAR      DUAL

                                                                     40
SZE from DM annihilation
Inverse Compton Scattering
                                           ∆ TCMB
      of CMB photons                              ≈ g ( x; M χ ) ⋅ ∫ d ⋅ Pe
by secondary DM electrons                   TCMB
                                             DM halo




       SKA-P2 (0.1-45 GHz)
       MeerKAT (0.7-30 GHz)
• Measure radio (low ν) & ICS emission (high ν) from DM halos
• Disentangle electron population and B-field → Fradio/FICS = UB/UCMB
                                                                    41
•
Gamma-ray         Radio


                  XMM




            CTA           SKA P1
                          SKA P2


                                   42
Galaxy clusters: the largest DM labs.




Large-size, dynamically stable… but co-spatial DM+baryon
                      … except one!                  43
The cluster 1ES0657-556
Gas clump A)                     Gas clump B)
T = 14 keV                       T = 6 keV




                                      DM clump B)
                                      M = 6 1013 M

DM clump A)
M = 1015 M
                                                44
Normal clusters of galaxies
  Coma                   A2163




         A2255
                              A2319




                                  45
Multi-ν expectations from DM




          [Colafrancesco, Profumo & Ullio 2006]
                                                  46
Neutralino DM: ICS of CMB (SZE)




                                  47
The SZ effect



                                      Thermal
                     I0(x)                 I(x)

                                                    Irel(x)

                            Relativistic



                                       ∆ν    kT
                thermal NR e      -       ≈ 4 e2
                                       ν     me c
                                       ∆ν 4
                relativistic e-          ≈ γ    2

                                       ν  3
                                                     48
SZE in DM halos
                               SZth
A structure with:

• Hot gas
                                       SZwarm
• Warm gas
• Rel. Plasma
• DM
• (Vr ≈ 0)
                                      SZrel

                        SZDM




                                              49
SZE in DM halos
                               SZth
A structure with:

• Hot gas
                                      SZwarm
• Warm gas
•
• DM
• (Vr ≈ 0)


                        SZDM




                                          50
SZE in DM halos          [Colafrancesco 2004, A&A, 422, L23]




A structure with:

•
•
•
• DM
• (Vr ≈ 0)


                         SZDM

  Pure DM halo


                                                                  51
The cluster 1ES0657-556
Gas clump A)                     Gas clump B)
T = 14 keV                       T = 6 keV




                                      DM clump B)
                                      M = 6 1013 M

DM clump A)
M = 1015 M
                                                52
SZE in 1ES0657-556




              gas SZE




                        DM SZE


                                 53
Isolating SZDM at ∼223 GHz   [Colafrancesco et al. 2007]




                                                          Neutralino mass (ν=223 GHz)
Frequency (Mχ= 20 GeV)




                                                                                        54
Neutralino DM: radio emission




                                55
Clusters                                                   of galaxies

        Integrated spectrum                                       Brightness distribution
           (30 MHz-5 GHz)                                              (@ 1.4 GHz)
I (ν ) ∝ B ⊗ De ⊗ ne2 ( Ee ,ν , r ) σ v         B            S (ν ) ∝ B ⊗ De ⊗ ne2 ( Ee ,ν , r ) σ v


                                Coma

                                                 χ                              su
                                                                                   b-h
                                                                                       alo
                                                                                          s




                                  [Colafrancesco, Profumo & Ullio 2006]                         56
Galaxy clusters: DM challenge
               Baryons + Cosmic Rays
Dark Matter




DM only              CRs only

                                 57
Neutralino DM: X-ray emission




                                58
A Dark Temptation
Explain HXR in cluster as DM annihilation signals
A3627              More than 20 clusters with Hard X-ray excess
                   at E> 20 keV (Swift-BAT data, BeppoSAX data)

                   Equally fit with:
                   - Two temperature (thermal) plasma
                   - Thermal plasma + non-thermal power-law


                  AGN emission or ICS from DM / CR interaction




OPHIUCHUS
                                                              59
Hard X-ray excess           Consequence




[Colafrancesco & Marchegiani 2009]                 60
DM & heating

                                         DM models that fit the HXR flux
                                         of galaxy clusters produce also
                                         an excess heating of the gas.



Heating            ICS
                                                    DM annih. heating

                                                        Th. Brem. cooling




    [Colafrancesco & Marchegiani 2009]                                      61
Dark temptations never go away...
 Normalized to F(E> 0.1 GeV)            Possible detection for texp> 4Msec




                  [Jeltema & Profumo arXiv:1108.1407]
                                                                     62
HXR – Gamma vs. HXR - Radio
 Normalized to F(ν=1.4GHz)     GeV experiments are far from
 With known B=5µG              DM signal detections



σV=7·10-21 cm3/s                σV=10-25 cm3/s




      5µG
                                       5µG
     1µG
                                     1µG
   0.2µG
                                   0.2µG

HXR – Radio correlation provides stronger constraints on DM
(MeerKAT/SKA vs. NuSTAR/DUAL combined obs. @ Wits University)
                                                         63
DM signal profiles: HXR-Radio-gamma

                         A2163                                  Hydra
                         σV=7·10-21 cm3/s                       σV=10-25 cm3/s

                            Sπ0(1 GeV)                              Sπ0(1 GeV)

                               SICS(50 keV)   Ssynch(1.4 GHz)           SICS(50 keV)
       Ssynch(1.4 GHz)
       B=5 µG                                 B=1 µG
             NuSTAR DUAL                              NuSTAR DUAL




There is a spatial signature of DM signals visible in the HXRs

      Clear HXR-radio correlations at large angular scales (> 1 arcmin)

      No clear HXR-gamma correlation at all angular scales                       64
DM & γ-rays: Fermi limits
Neutralino upper limits from 2 recent preprints:
Q.Yuan et al. 2010 (arXiv:1002.0197)
Fermi-LAT collaboration 2010 (arXiv:1002.2239)


                       no substructures            substructures




   … but very optimistic upper limits (no CRs, no AGNs, no gal.,65…)
DM models & non-thermal phenomena
Coma               Coma               Coma




             CTA                CTA                 CTA




       SKA                SKA                SKA
                                                   66
Astrophysics vs. Underground DM search

                             [arXiv:1109.0702]




                                            67
CRs (and γ-rays) from Perseus RGs




        Chandra            FERMI




        SHALOM             MAGIC

                                    68
Modelling the Perseus cluster
RG (3C84)
Mini RH
Sy 1.5                                              NGC1275
Blazar                                              Blazar
                                                    core
                                            1


                                            2   3




             [Colafrancesco et al. 2010]]                     69
DM @ γ-rays: disentangling CRs, AGN, DM
                                 Possibility to detect γ-rays from Perseus
                                 • in low-states of the central AGN
                                 • in the outer parts of the cluster (>780kpc)

                                                     Perseus + NGC1275
[Colafrancesco & Marchegiani 2010]
[Abdo et al.+S.C. 2009]

                         heating                                          high

                                                                       DM

                                                                          low



                                                                          70
Overall contraints to DM scenarios




                                71
Exploring DM universes

Direct
Detection
Techniques

p-χ cross-section



                          Neutralino χ mass




                                              72
Exploring DM universes

 Direct
 Detection
 Techniques

 p-χ cross-section

    9 orders
   of mag. in
direct detection
 cross-section
     usually
   not shown


                           Neutralino χ mass   73
Exploring DM universes
        Direct
        Detection
Underground detectors




                         SKA   CTA   Fermi       Astrophysics
                                             Indirect Detection
                                                           74
Exploring DM universes
Direct
          DM detectors + Astrophysics      LHC + Astrophysics
Detection




                                                         SKA


               SKA     CTA       Fermi
                      Indirect Detection                   75
Sterile neutrino DM



                      76
Sterile neutrino DM: line
Dark Matter                       Hot gas




                                            expectation




                    νs → να + γ                    77
Sterile neutrinos: limits



                             d ed
                           lu
                     E   xc
Excluded by Ly-α




                                                    Bullet cluster




                                [Watson et al. 2006 (astro-ph/0605424)]
                                [Colafrancesco 2007]             78
[Yuksel et al. 2007]
                                        [Colafrancesco 2007]



DUAL



NHXM            Coma constraints from
                 20-80 keV emission
       NEXT
       nuStar




                                                         79
Sterile neutrinos and GC lines
Fact:
Excess of the intensity in the 8.7 keV line (at the energy of
the FeXXVI Lyγ line) in the spectrum of the Galactic Center
observed by the Suzaku X-ray mission.
Not easily explained by standard ionization and
recombination processes.

Proposed issue:
the origin of this excess is via decays of sterile neutrinos with
m ~ 17.4 keV and mixing angle sin2(2θ) =(4.1±2.2)×10−12
                                                   [Prokhorov & Silk 2010]


But:
- possible non-standard ionization and recombination processes
                                                                         80
Other DM options



                   81
Neutralino DM: particles




e- e+
p p-
…
                              82
Pamela and ATIC
Charge-dependent solar      Rapid climb above 10 GeV
modulation important        indicates the presence of a
below 5-10 GeV              primary source of cosmic
                            ray positrons!

                              Pamela
                                                          ATIC




          Astrophysical expectation
          (secondary production)                             83
HESS and Fermi
Fermi and HESS do not confirm ATIC:    Astrophysics can explain PAMELA:
→ consistent with bkgd. expectations   - Pulsars
                                       - SN remnants
                                       - Diffusion effects




                                                                Fermi Collaboration (2009)




                                           [Zhang, Cheng (2001); Hooper et al. (2008)
                                           Yuksel et al. (2008); Profumo (2008)
                                           Fermi LAT Collaboration (2009)]
                                                                                             84
Outline
 Multi-epoch
   The Dark Matter Timeline
   The present


 Multi-Scale
   DM search at various astronomical scales
    • Galactic center
    • Galactic structures
    • Galaxy Clusters


 The Future
   The DM search challenge
                                              85
Neutralino DM:                              Hidden DM !?!
Experimental Frustration
  • No direct evidence (DAMA vs. other underground experiments)
  • No photonic signals (only upper limits from Multi-ν analysis)
  • No particle signal  (Pamela → ATIC: embarassing results)
         What do we really know about dark matter?
Pause       All solid evidence is gravitational
            Also solid evidence against strong and EM interactions
         The anomalies (DAMA, PAMELA, ATIC, …) are not easily explained
 @         by canonical WIMPs → go beyond MSSM WIMP model

         A reasonable 1st order guess:
Return   Dark Matter has no SM gauge interactions, i.e., it is hidden
                                    [Kobsarev, Okun, Pomeranchuk (1966); many others]
         What one seemingly      loses:                              [Feng et al. 2009]

 Esc        Connection to central problems of particle physics
            Non-gravitational signals
                                                                                   86
            The WIMP miracle
… some conclusions
• Astrophysical (e.m.) search is a crucial probe for the DM nature.
• Multi3-4 search in optimal astrophysical laboratories is the key
  issue but is challenging.
• The temptation to explain every astrophysical anomaly as due to
  DM is pushing DM search towards a fundamentalist approach
  rather than to search for the its fundamental nature.
• The possible lack of DM evidence should be considered
  positively as the necessity to explore in further details the basic
  laws of the Universe
   → Gravity field modification on cosmological scales…




                                                                 87
DM … or Modified Gravity !?!

         Dark Matter




        Could MOG explain also the dynamics
               of the bullet cluster ?

J. Moffat says, "If the multi-billion dollar laboratory experiments now underway succeed
in directly detecting dark matter, then I will be happy to see Einstein and Newtonian
gravity retained. However, if dark matter is not detected and we have to conclude that
it does not exist, then Einstein and Newtonian gravity must be modified to fit the
extensive amount of astronomical and cosmological data, such as the bullet cluster,
that cannot otherwise be explained.
                                                                                   88
DM

G    89
THANKS

for your attention !




                       90

Weitere ähnliche Inhalte

Ähnlich wie Colafrancesco - Dark Matter Dectection 2

Models of neuronal populations
Models of neuronal populationsModels of neuronal populations
Models of neuronal populationsSSA KPI
 
Neuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experimentsNeuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experimentsSSA KPI
 
Searches with LHC
Searches with LHCSearches with LHC
Searches with LHCkneemo
 
Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...Dhanesh Rajan
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applicationsvvk0
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpointKris Ann Ferrer
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationColm Connaughton
 
Oxidised cosmic acceleration
Oxidised cosmic accelerationOxidised cosmic acceleration
Oxidised cosmic accelerationdhwesley
 
E6 GUT Model and the Higgs boson search
E6 GUT Model and the Higgs boson searchE6 GUT Model and the Higgs boson search
E6 GUT Model and the Higgs boson searchkneemo
 
Coherent feedback formulation of a continuous quantum error correction protocol
Coherent feedback formulation of a continuous quantum error correction protocolCoherent feedback formulation of a continuous quantum error correction protocol
Coherent feedback formulation of a continuous quantum error correction protocolhendrai
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometrynirupam12
 
L. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceL. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceSEENET-MTP
 
CS 354 Global Illumination
CS 354 Global IlluminationCS 354 Global Illumination
CS 354 Global IlluminationMark Kilgard
 
Benchmark Calculations of Atomic Data for Modelling Applications
 Benchmark Calculations of Atomic Data for Modelling Applications Benchmark Calculations of Atomic Data for Modelling Applications
Benchmark Calculations of Atomic Data for Modelling ApplicationsAstroAtom
 
The Cambridge Trimaster 2013
The Cambridge Trimaster 2013The Cambridge Trimaster 2013
The Cambridge Trimaster 2013malcolmmackley
 

Ähnlich wie Colafrancesco - Dark Matter Dectection 2 (20)

Lecture3
Lecture3Lecture3
Lecture3
 
Models of neuronal populations
Models of neuronal populationsModels of neuronal populations
Models of neuronal populations
 
Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis
 
Waveguide
WaveguideWaveguide
Waveguide
 
Neuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experimentsNeuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experiments
 
Searches with LHC
Searches with LHCSearches with LHC
Searches with LHC
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
 
Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...Coercivity weighted Langevin magnetisation: A new approach to interpret super...
Coercivity weighted Langevin magnetisation: A new approach to interpret super...
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregation
 
Oxidised cosmic acceleration
Oxidised cosmic accelerationOxidised cosmic acceleration
Oxidised cosmic acceleration
 
E6 GUT Model and the Higgs boson search
E6 GUT Model and the Higgs boson searchE6 GUT Model and the Higgs boson search
E6 GUT Model and the Higgs boson search
 
Jan2010 Triumf2
Jan2010 Triumf2Jan2010 Triumf2
Jan2010 Triumf2
 
Coherent feedback formulation of a continuous quantum error correction protocol
Coherent feedback formulation of a continuous quantum error correction protocolCoherent feedback formulation of a continuous quantum error correction protocol
Coherent feedback formulation of a continuous quantum error correction protocol
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
L. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceL. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological Quintessence
 
CS 354 Global Illumination
CS 354 Global IlluminationCS 354 Global Illumination
CS 354 Global Illumination
 
Benchmark Calculations of Atomic Data for Modelling Applications
 Benchmark Calculations of Atomic Data for Modelling Applications Benchmark Calculations of Atomic Data for Modelling Applications
Benchmark Calculations of Atomic Data for Modelling Applications
 
The Cambridge Trimaster 2013
The Cambridge Trimaster 2013The Cambridge Trimaster 2013
The Cambridge Trimaster 2013
 

Mehr von CosmoAIMS Bassett

Mauritius Big Data and Machine Learning JEDI workshop
Mauritius Big Data and Machine Learning JEDI workshopMauritius Big Data and Machine Learning JEDI workshop
Mauritius Big Data and Machine Learning JEDI workshopCosmoAIMS Bassett
 
Testing dark energy as a function of scale
Testing dark energy as a function of scaleTesting dark energy as a function of scale
Testing dark energy as a function of scaleCosmoAIMS Bassett
 
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013CosmoAIMS Bassett
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm lineCosmoAIMS Bassett
 
Tuning your radio to the cosmic dawn
Tuning your radio to the cosmic dawnTuning your radio to the cosmic dawn
Tuning your radio to the cosmic dawnCosmoAIMS Bassett
 
A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...CosmoAIMS Bassett
 
Decomposing Profiles of SDSS Galaxies
Decomposing Profiles of SDSS GalaxiesDecomposing Profiles of SDSS Galaxies
Decomposing Profiles of SDSS GalaxiesCosmoAIMS Bassett
 
Cluster abundances and clustering Can theory step up to precision cosmology?
Cluster abundances and clustering Can theory step up to precision cosmology?Cluster abundances and clustering Can theory step up to precision cosmology?
Cluster abundances and clustering Can theory step up to precision cosmology?CosmoAIMS Bassett
 
An Overview of Gravitational Lensing
An Overview of Gravitational LensingAn Overview of Gravitational Lensing
An Overview of Gravitational LensingCosmoAIMS Bassett
 
Testing cosmology with galaxy clusters, the CMB and galaxy clustering
Testing cosmology with galaxy clusters, the CMB and galaxy clusteringTesting cosmology with galaxy clusters, the CMB and galaxy clustering
Testing cosmology with galaxy clusters, the CMB and galaxy clusteringCosmoAIMS Bassett
 
Galaxy Formation: An Overview
Galaxy Formation: An OverviewGalaxy Formation: An Overview
Galaxy Formation: An OverviewCosmoAIMS Bassett
 
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio DataSpit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio DataCosmoAIMS Bassett
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationCosmoAIMS Bassett
 
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?CosmoAIMS Bassett
 
Binary pulsars as tools to study gravity
Binary pulsars as tools to study gravityBinary pulsars as tools to study gravity
Binary pulsars as tools to study gravityCosmoAIMS Bassett
 
Cross Matching EUCLID and SKA using the Likelihood Ratio
Cross Matching EUCLID and SKA using the Likelihood RatioCross Matching EUCLID and SKA using the Likelihood Ratio
Cross Matching EUCLID and SKA using the Likelihood RatioCosmoAIMS Bassett
 
Machine Learning Challenges in Astronomy
Machine Learning Challenges in AstronomyMachine Learning Challenges in Astronomy
Machine Learning Challenges in AstronomyCosmoAIMS Bassett
 

Mehr von CosmoAIMS Bassett (20)

Machine learning clustering
Machine learning clusteringMachine learning clustering
Machine learning clustering
 
Mauritius Big Data and Machine Learning JEDI workshop
Mauritius Big Data and Machine Learning JEDI workshopMauritius Big Data and Machine Learning JEDI workshop
Mauritius Big Data and Machine Learning JEDI workshop
 
Testing dark energy as a function of scale
Testing dark energy as a function of scaleTesting dark energy as a function of scale
Testing dark energy as a function of scale
 
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm line
 
Tuning your radio to the cosmic dawn
Tuning your radio to the cosmic dawnTuning your radio to the cosmic dawn
Tuning your radio to the cosmic dawn
 
A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...
 
Decomposing Profiles of SDSS Galaxies
Decomposing Profiles of SDSS GalaxiesDecomposing Profiles of SDSS Galaxies
Decomposing Profiles of SDSS Galaxies
 
Cluster abundances and clustering Can theory step up to precision cosmology?
Cluster abundances and clustering Can theory step up to precision cosmology?Cluster abundances and clustering Can theory step up to precision cosmology?
Cluster abundances and clustering Can theory step up to precision cosmology?
 
An Overview of Gravitational Lensing
An Overview of Gravitational LensingAn Overview of Gravitational Lensing
An Overview of Gravitational Lensing
 
Testing cosmology with galaxy clusters, the CMB and galaxy clustering
Testing cosmology with galaxy clusters, the CMB and galaxy clusteringTesting cosmology with galaxy clusters, the CMB and galaxy clustering
Testing cosmology with galaxy clusters, the CMB and galaxy clustering
 
Galaxy Formation: An Overview
Galaxy Formation: An OverviewGalaxy Formation: An Overview
Galaxy Formation: An Overview
 
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio DataSpit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
 
MeerKAT: an overview
MeerKAT: an overviewMeerKAT: an overview
MeerKAT: an overview
 
Casa cookbook for KAT 7
Casa cookbook for KAT 7Casa cookbook for KAT 7
Casa cookbook for KAT 7
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological Reionization
 
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
 
Binary pulsars as tools to study gravity
Binary pulsars as tools to study gravityBinary pulsars as tools to study gravity
Binary pulsars as tools to study gravity
 
Cross Matching EUCLID and SKA using the Likelihood Ratio
Cross Matching EUCLID and SKA using the Likelihood RatioCross Matching EUCLID and SKA using the Likelihood Ratio
Cross Matching EUCLID and SKA using the Likelihood Ratio
 
Machine Learning Challenges in Astronomy
Machine Learning Challenges in AstronomyMachine Learning Challenges in Astronomy
Machine Learning Challenges in Astronomy
 

Kürzlich hochgeladen

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGSujit Pal
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 

Kürzlich hochgeladen (20)

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAG
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 

Colafrancesco - Dark Matter Dectection 2

  • 1. CTICS 2012 Jan 25th, 2012 Dark Matter detection (2) Sergio Colafrancesco Wits University - DST/NRF SKA Research Chair INAF - OAR Email: Sergio.Colafrancesco@wits.ac.za Email Sergio.Colafrancesco@oa-roma.inaf.it 1
  • 2. Outline Multi-epoch The Dark Matter Timeline The present Multi-Scale + M3 Galactic center Galactic structures Galaxy Clusters The Future The DM search challenge 2
  • 3. Viable DM candidates: signals Neutralinos Sterile ν’s Annihilation Radiative decay: line νs → να + γ DM annihilation flux DM decay flux 1 ρ DM ( r ) 2 1 ρ DM ( r ) F ∝ 2 2 〈σ V 〉 Astro physics F ∝ 2 〈 Γ rad 〉 DL Mχ DL Mv  dE  × [ f ann ( E ; χ )]  Particle physics [ ]  dE  × Eγ ( M v )    dν   dν  3
  • 4. Viable DM candidates: signals Neutralinos Sterile ν’s Annihilation Radiative decay: line νs → να + γ Ms Inverse Compton scattering π0 Mχ Synchr. Particle physics Bremsstrahlung 4
  • 6. High frequency X-rays p bremsstrahlung Ha oces Ha ces ICS prr po drr se γ+γ d o se γCMB e± π0 on s niic s c Le Le π± χ pt pt on on χ p Gamma rays iic e± cp (π0 decay) e± pr e± ro γCMB oc cees Gamma rays ssse bremsstrahlung es Low frequency B s ICS Radio emission SZ effect ICS Synchrotron 6
  • 7. Covering the whole e.m. spectrum χχ annihilation products Br Br on e e m t tr fec o m .+ hr .+ IC Ef IC S c IC S+ IC yn S π0 SZ S S 7
  • 8. Leptons: e± equilibrium spectrum ∂ ne ( E , r ) ∂ − ∇ [ D( E )∇ ne ( E , r )] − [ be ( E )ne ( E , r )] = Qe ( E , r ) ∂t ∂E Production Equilibrium Qe ( E , r ) ne ( E , r ) Diffusion E losses D( E ) = D0 E γ B − γ be ( E ) = bIC + bsync + bCoul + bbrem 8
  • 9. Solution: complete Mχ 1 ˆ ne ( E , r ) = b( E ) ∫ E dE ′G (r , λ − λ ′ )Qe ( E , r ) NFW04 Galaxy clusters Galaxies (r ′ ) 2   (rn′ + r ) 2   nχ (r ′ ) Rh 2 1 +∞  (r ′ − rn ) 2  ˆ= G [4π ∆ λ ]1/ 2 ∑− ∞ (− 1) n ∫ dr ′ '  exp − rn r   4∆ λ   − exp −    2 4 ∆ λ   nχ ( r ) n= 0    [Colafrancesco, Profumo & Ullio 2006-2007] 9
  • 10. Energy losses vs. Diffusion 2 E Rh τ loss = τ D = b( E , B, nth ) D( E ) B increase nth decrease Rh decrease 10
  • 11. Solution: qualitative Vsource τD ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅ ⋅ Vsource + Vdiffusion τ D + τ loss VD VD Vs Vs τ loss « τ D τ loss » τ D Vsource τ D ne ( E , r ) = [ Qe ( E , r )τ loss ] ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅ ⋅ Vdiffusion τ loss Galaxy clusters Galaxies 11
  • 12. Neutralino DM: SED −8 τ π ± ≈ 2.6 ⋅ 10 s Synch. ICS on CMB π0 decay τ 0 ≈ 8.4 ⋅ 10− 17 s π Coma DUAL Mχ=40 GeV Fermi _ bb CTA NuSTAR Secondary products Prompt leptons hadrons . . 10-30-31 ←SKA (1GHz) 12
  • 13. DM - Astrophysical Laboratories GC Leo I dSph NGC3338 Bullet cluster 13
  • 14. The Galactic Center Radio 90 cm 14
  • 15. The Galactic Center Mid-IR 15
  • 16. The Galactic Center X-rays 1-8 keV 16
  • 17. The Galactic Center Multi-ν Galactic center region across the spectrum: red: radio 90 cm (VLA); green: mid-infrared; blue: X-ray (1-8 keV; Chandra ACIS-I) 17
  • 18. The Galactic Center: a close up Galactic Center (Survey) Multiwavelength Close-Up A multiwavelength close-up of the recent massive star-forming region near the Galactic center. The color image, plotted also in standard Galactic coordinates, is a composite of 20-cm radio continuum (red); 25-µm mid-infrared (green); and 6.4-keV line emission (blue). 18
  • 19. Galactic Center demography Crowded, active environment HESS CTA Fermi (1GeV) EGRET source Central Black Hole X-ray source SNR Sgr A East non-thermal filaments (radio) 19
  • 20. The GC region DM challenge Gondolo 1998 Gondolo & Silk 1999 … Cesarini et al. 2003 … De Boer et al. 2005 … Hooper et al. 2008 … Borriello et al. 2008 Regis & Ullio 2008 Crocker et al. 2010 Sgr-A SED in quiescent radio + X-ray stage [Regis & Ullio 2008] 20
  • 21. The GC region DM challenge: limits Constraints from radio + γ-rays • Radio: constrain to ~ GeV-TeV mass • γ-rays: constrain to ≤ GeV mass • ν’s : constrain to > 10 TeV mass Borriello et al. 2008 Radio + EGRET [Crocker et al. 2010] Radio + HESS [Regis & Ullio 2008] 21
  • 22. The GC region DM challenge: limits Fermi-LAT results on the diffuse γ-ray emission improves DM limits → by a factor ~ 20-50 [Abazajian et al. 2010] Caveats • modelling of diffuse foregrounds (Galactic, Extra-Galactic) • unresolved point-like sources (PSR, MCs, AGNs, Starburst gal., Clusters, GRBs,..) • data analysis techniques (Likelihood vs. photon counts) 22
  • 23. The GC region DM challenge: HESS Search for a DM annihilation signal from the Galactic Center halo with H.E.S.S. (arXiv:1103.3266v) Thermal Dark Matter 23
  • 24. The GC region DM challenge Strongest constraints from SKA + CTA • Radio: constrain to ~ GeV-TeV mass • γ-rays: constrain to ~ GeV-TeV mass VLA • ν’s : constrain to > 10 TeV mass T G RE io +E Rad ES S o +H R adi S H ES + K AT M eer SKA CTA P1 C TA -28 A + SK P2 A SK -29 24
  • 25. The GC region DM challenge: uncertainties B-field at GC • from 4 to 1000 µG • > 50µG (radio + γ-rays) [Crocker et al. 2010] Diffusion DM density profile DM dynamics at GC DM vs. BH Astrophysical sources [Regis & Ullio 2008] Stationary & Transient 25
  • 26. The GC Haze Radio emission due to secondary e± is spatially extended (ν-dependent) Radio halo (haze) RH size decreases with increasing ν ICS emission due to secondary e± is spatially extended (ν-dependent) IC halo (haze) ICH size decreases with increasing ν The angular size for the equilibrium n. density of high-E e± is much broader than the γ-ray flux from π0 decays π0 halo (haze) = DM source πH size smaller than RH / ICH size 26
  • 27. WMAP vs. Fermi haze Cosmic ray electrons interacting with the Galactic magnetic field cosmic ray electrons interacting with the ISRF to produce ICS 27
  • 28. GC hazes: puzzles or certainties Dark Matter - DM (W±,bb) is not the origin of Fermi haze - DM (e±) can fit the Fermi haze with a boost factor ~ 100 DM prediction Fermi data → multi-ν problems Galprop (Dobler et al. 2009) ms Pulsars - 50 % energy conversion in e± - 30,000 msP in GC - msP not resolved in radio and gamma. → Haze of unresolved [Malyshev et al. 2010] point-like sources 28
  • 29. msP around the GC [Wang 2005] 29
  • 30. Galaxy DM sub-halos: radio emission VLA obs. DM 16 0.16 1.610-4 1.610-7 mJy Radio emission from DM clumps • Angular power spectrum Cll(l+1) - Strong diffusion effects → typical scale: λmax(E,B) - Degeneracy of ne and B-field • Break ne – B degeneracy - B-field uncertainty → SZE (@30 GHz) observations [Baltz & Wai 2004, …Borriello et al. 2008… Colafrancesco et al. 2012] 30
  • 31. Galaxy DM sub-halos: γ-rays Possibility to detect single or a population of CAVEATS DM clumps via their π0 decay γ-ray emission. Galactic diffuse emission plus its fluctuations (spatial + spectral) Foreground removal - Galaxy - Blazars - Galaxies - Starburst galaxies - Galaxy clusters - Pulsars - SNRs - MCs Variability Spectral separation [DM simulation Kuhlen et al. arXiv:0704.0944] Clustering properties … 31
  • 32. The Gamma-ray sky Fermi all-sky survey Angular power spectrum Blazars [Ando 2005] Variability l(l+1)Cl/2π DM 1 10 102 103 multipole 32
  • 33. Dwarf Spheroidal Galaxies: DM halos Small-size, dynamically un-relaxed… but few good cases ! 33
  • 34. The darkest galaxies in the universe Segue 1 dwarf galaxy → M/LV ~ 3400 M/L 34
  • 35. Dwarf galaxies & DM: Fermi MSUGRA MSSM [Fermi-LAT collaboration 2010] Assumptions - NFW profile - No boost factor (no substructures) 35
  • 36. The Dwarf Galaxies DM challenge Vsource τD Sub-galactic size systems ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅ ⋅ - R ~ kpc Vsource + Vdiffusion τ D + τ loss - No gas - Little dust VD - No Crs - 1 (or 2) stellar populations Vs - M/L ~ 500 - 3500 τ loss » τ D + Ideal systems to probe DM Vsource τ D + Clean multi-ν features ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅ ⋅ Vdiffusion τ loss but… Iν - Strong diffusion effects - Low signals r 36
  • 37. Dwarf Sph. galaxies & DM constraints σv VD I (ν ) ∝ B ⊗ De ⊗ n ( Ee ,ν , r ) 2 2 e Mχ VS γ De = D0 ( Ee / B) Spectrum B χ Brightness 37
  • 38. ATCA → MeerKAT → SKA ATCA MeerKAT SKA ATCA MeerKAT SKA 38
  • 39. Dark Matter search @ radio 121.5 hr @ ATCA to observe 6 dwarf galaxies [S.C. et al. 2011] Constraints on DM parameter space Segue-3 Carina Fermi 2yr ATCA 121hr MeerKAT SKA-P1 39
  • 40. Expectations: the HXR range Normalization fixed by the lack of HXR and radio profiles are different detection in ATCA (F1.3GHz < 10µJy) HXR and –ray profiles are similar σV=4 10-28 cm3/s Draco σV=4 10-28 cm3/s 0.1µG π0 ICS Synch 1µG no diff diff ATCA NuSTAR DUAL 40
  • 41. SZE from DM annihilation Inverse Compton Scattering ∆ TCMB of CMB photons ≈ g ( x; M χ ) ⋅ ∫ d ⋅ Pe by secondary DM electrons TCMB DM halo SKA-P2 (0.1-45 GHz) MeerKAT (0.7-30 GHz) • Measure radio (low ν) & ICS emission (high ν) from DM halos • Disentangle electron population and B-field → Fradio/FICS = UB/UCMB 41 •
  • 42. Gamma-ray Radio XMM CTA SKA P1 SKA P2 42
  • 43. Galaxy clusters: the largest DM labs. Large-size, dynamically stable… but co-spatial DM+baryon … except one! 43
  • 44. The cluster 1ES0657-556 Gas clump A) Gas clump B) T = 14 keV T = 6 keV DM clump B) M = 6 1013 M DM clump A) M = 1015 M 44
  • 45. Normal clusters of galaxies Coma A2163 A2255 A2319 45
  • 46. Multi-ν expectations from DM [Colafrancesco, Profumo & Ullio 2006] 46
  • 47. Neutralino DM: ICS of CMB (SZE) 47
  • 48. The SZ effect Thermal I0(x) I(x) Irel(x) Relativistic ∆ν kT thermal NR e - ≈ 4 e2 ν me c ∆ν 4 relativistic e- ≈ γ 2 ν 3 48
  • 49. SZE in DM halos SZth A structure with: • Hot gas SZwarm • Warm gas • Rel. Plasma • DM • (Vr ≈ 0) SZrel SZDM 49
  • 50. SZE in DM halos SZth A structure with: • Hot gas SZwarm • Warm gas • • DM • (Vr ≈ 0) SZDM 50
  • 51. SZE in DM halos [Colafrancesco 2004, A&A, 422, L23] A structure with: • • • • DM • (Vr ≈ 0) SZDM Pure DM halo 51
  • 52. The cluster 1ES0657-556 Gas clump A) Gas clump B) T = 14 keV T = 6 keV DM clump B) M = 6 1013 M DM clump A) M = 1015 M 52
  • 53. SZE in 1ES0657-556 gas SZE DM SZE 53
  • 54. Isolating SZDM at ∼223 GHz [Colafrancesco et al. 2007] Neutralino mass (ν=223 GHz) Frequency (Mχ= 20 GeV) 54
  • 55. Neutralino DM: radio emission 55
  • 56. Clusters of galaxies Integrated spectrum Brightness distribution (30 MHz-5 GHz) (@ 1.4 GHz) I (ν ) ∝ B ⊗ De ⊗ ne2 ( Ee ,ν , r ) σ v B S (ν ) ∝ B ⊗ De ⊗ ne2 ( Ee ,ν , r ) σ v Coma χ su b-h alo s [Colafrancesco, Profumo & Ullio 2006] 56
  • 57. Galaxy clusters: DM challenge Baryons + Cosmic Rays Dark Matter DM only CRs only 57
  • 58. Neutralino DM: X-ray emission 58
  • 59. A Dark Temptation Explain HXR in cluster as DM annihilation signals A3627 More than 20 clusters with Hard X-ray excess at E> 20 keV (Swift-BAT data, BeppoSAX data) Equally fit with: - Two temperature (thermal) plasma - Thermal plasma + non-thermal power-law AGN emission or ICS from DM / CR interaction OPHIUCHUS 59
  • 60. Hard X-ray excess Consequence [Colafrancesco & Marchegiani 2009] 60
  • 61. DM & heating DM models that fit the HXR flux of galaxy clusters produce also an excess heating of the gas. Heating ICS DM annih. heating Th. Brem. cooling [Colafrancesco & Marchegiani 2009] 61
  • 62. Dark temptations never go away... Normalized to F(E> 0.1 GeV) Possible detection for texp> 4Msec [Jeltema & Profumo arXiv:1108.1407] 62
  • 63. HXR – Gamma vs. HXR - Radio Normalized to F(ν=1.4GHz) GeV experiments are far from With known B=5µG DM signal detections σV=7·10-21 cm3/s σV=10-25 cm3/s 5µG 5µG 1µG 1µG 0.2µG 0.2µG HXR – Radio correlation provides stronger constraints on DM (MeerKAT/SKA vs. NuSTAR/DUAL combined obs. @ Wits University) 63
  • 64. DM signal profiles: HXR-Radio-gamma A2163 Hydra σV=7·10-21 cm3/s σV=10-25 cm3/s Sπ0(1 GeV) Sπ0(1 GeV) SICS(50 keV) Ssynch(1.4 GHz) SICS(50 keV) Ssynch(1.4 GHz) B=5 µG B=1 µG NuSTAR DUAL NuSTAR DUAL There is a spatial signature of DM signals visible in the HXRs Clear HXR-radio correlations at large angular scales (> 1 arcmin) No clear HXR-gamma correlation at all angular scales 64
  • 65. DM & γ-rays: Fermi limits Neutralino upper limits from 2 recent preprints: Q.Yuan et al. 2010 (arXiv:1002.0197) Fermi-LAT collaboration 2010 (arXiv:1002.2239) no substructures substructures … but very optimistic upper limits (no CRs, no AGNs, no gal.,65…)
  • 66. DM models & non-thermal phenomena Coma Coma Coma CTA CTA CTA SKA SKA SKA 66
  • 67. Astrophysics vs. Underground DM search [arXiv:1109.0702] 67
  • 68. CRs (and γ-rays) from Perseus RGs Chandra FERMI SHALOM MAGIC 68
  • 69. Modelling the Perseus cluster RG (3C84) Mini RH Sy 1.5 NGC1275 Blazar Blazar core 1 2 3 [Colafrancesco et al. 2010]] 69
  • 70. DM @ γ-rays: disentangling CRs, AGN, DM Possibility to detect γ-rays from Perseus • in low-states of the central AGN • in the outer parts of the cluster (>780kpc) Perseus + NGC1275 [Colafrancesco & Marchegiani 2010] [Abdo et al.+S.C. 2009] heating high DM low 70
  • 71. Overall contraints to DM scenarios 71
  • 72. Exploring DM universes Direct Detection Techniques p-χ cross-section Neutralino χ mass 72
  • 73. Exploring DM universes Direct Detection Techniques p-χ cross-section 9 orders of mag. in direct detection cross-section usually not shown Neutralino χ mass 73
  • 74. Exploring DM universes Direct Detection Underground detectors SKA CTA Fermi Astrophysics Indirect Detection 74
  • 75. Exploring DM universes Direct DM detectors + Astrophysics LHC + Astrophysics Detection SKA SKA CTA Fermi Indirect Detection 75
  • 77. Sterile neutrino DM: line Dark Matter Hot gas expectation νs → να + γ 77
  • 78. Sterile neutrinos: limits d ed lu E xc Excluded by Ly-α Bullet cluster [Watson et al. 2006 (astro-ph/0605424)] [Colafrancesco 2007] 78
  • 79. [Yuksel et al. 2007] [Colafrancesco 2007] DUAL NHXM Coma constraints from 20-80 keV emission NEXT nuStar 79
  • 80. Sterile neutrinos and GC lines Fact: Excess of the intensity in the 8.7 keV line (at the energy of the FeXXVI Lyγ line) in the spectrum of the Galactic Center observed by the Suzaku X-ray mission. Not easily explained by standard ionization and recombination processes. Proposed issue: the origin of this excess is via decays of sterile neutrinos with m ~ 17.4 keV and mixing angle sin2(2θ) =(4.1±2.2)×10−12 [Prokhorov & Silk 2010] But: - possible non-standard ionization and recombination processes 80
  • 82. Neutralino DM: particles e- e+ p p- … 82
  • 83. Pamela and ATIC Charge-dependent solar Rapid climb above 10 GeV modulation important indicates the presence of a below 5-10 GeV primary source of cosmic ray positrons! Pamela ATIC Astrophysical expectation (secondary production) 83
  • 84. HESS and Fermi Fermi and HESS do not confirm ATIC: Astrophysics can explain PAMELA: → consistent with bkgd. expectations - Pulsars - SN remnants - Diffusion effects Fermi Collaboration (2009) [Zhang, Cheng (2001); Hooper et al. (2008) Yuksel et al. (2008); Profumo (2008) Fermi LAT Collaboration (2009)] 84
  • 85. Outline Multi-epoch The Dark Matter Timeline The present Multi-Scale DM search at various astronomical scales • Galactic center • Galactic structures • Galaxy Clusters The Future The DM search challenge 85
  • 86. Neutralino DM: Hidden DM !?! Experimental Frustration • No direct evidence (DAMA vs. other underground experiments) • No photonic signals (only upper limits from Multi-ν analysis) • No particle signal (Pamela → ATIC: embarassing results) What do we really know about dark matter? Pause All solid evidence is gravitational Also solid evidence against strong and EM interactions The anomalies (DAMA, PAMELA, ATIC, …) are not easily explained @ by canonical WIMPs → go beyond MSSM WIMP model A reasonable 1st order guess: Return Dark Matter has no SM gauge interactions, i.e., it is hidden [Kobsarev, Okun, Pomeranchuk (1966); many others] What one seemingly loses: [Feng et al. 2009] Esc Connection to central problems of particle physics Non-gravitational signals 86 The WIMP miracle
  • 87. … some conclusions • Astrophysical (e.m.) search is a crucial probe for the DM nature. • Multi3-4 search in optimal astrophysical laboratories is the key issue but is challenging. • The temptation to explain every astrophysical anomaly as due to DM is pushing DM search towards a fundamentalist approach rather than to search for the its fundamental nature. • The possible lack of DM evidence should be considered positively as the necessity to explore in further details the basic laws of the Universe → Gravity field modification on cosmological scales… 87
  • 88. DM … or Modified Gravity !?! Dark Matter Could MOG explain also the dynamics of the bullet cluster ? J. Moffat says, "If the multi-billion dollar laboratory experiments now underway succeed in directly detecting dark matter, then I will be happy to see Einstein and Newtonian gravity retained. However, if dark matter is not detected and we have to conclude that it does not exist, then Einstein and Newtonian gravity must be modified to fit the extensive amount of astronomical and cosmological data, such as the bullet cluster, that cannot otherwise be explained. 88
  • 89. DM G 89