SlideShare ist ein Scribd-Unternehmen logo
1 von 16
Downloaden Sie, um offline zu lesen
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Quantum Teleportation :
Theory and Experiment
Chithrabhanu P
chithrabhanu@prl.res.in
THEPH, PRL
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Quantum bits
Bit :- Fundamental unit of classical information {0,1}
Qubit :-Quantum analog to bit.
|ψ = α|0 + β|1 (1)
The state of the qubit is a vector in an two-dimensional
complex vector space. Qutrit, qudit :- 3 and higher
dimensions respectively.
|0 , |1 :- Computational basis states forming orthonormal
basis of the vector space. |α|2 :- Probability that system is
in |0 ; |β|2 :- Probability that system is in |1
Example of qubit states:- Two polarization states { |H ,
|V }, spin states { | ↑ ,| ↓ } etc.
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Entanglement
Non local quantum correlation between particles.
A two particle entangled state cannot be written as
product of two single particle states.
Ψ12 = φ1 ⊗ ξ2 (2)
Bell states :- Maximally entangled state of two qubits.
|Ψ±
=
1
√
2
(|0 |1 ± |1 |0 ) (3)
|Φ±
=
1
√
2
(|0 |0 ± |1 |1 ) (4)
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Quantum gates
Basic unit of a quantum circuit.
NOT gate { X }
X (α|0 + β|1 ) → α|1 + β|0 (5)
Z gate
Z (α|0 + β|1 ) → α|0 − β|1 (6)
Hadamard gate {H}
H (α|0 + β|1 ) = α
|0 + |1
√
2
+ β
|0 − |1
√
2
(7)
CNOT gate :- Two qubit state. Flips the second qubit
(target) if the first qubit (control) is 1. Similar to XOR
|A, B → |A, B ⊕ A
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Quantum gates cont..
Hadamard and CNOT operation to prepare Bell states.
x, y are |0 or |1 logic. βxy - Bell states.
In case of polarization; a half wave plate (HWP), can
perform many single qubit operations by keeping its fast
axis at different angle with respect to the incident
polarization. { 0 → ˆZ, π
4 → ˆX, π
8 → ˆH }
Polarization CNOT :- not trivial. Requires interaction of
two qubits (Zhao et al., PRL 2005; Bao et al., PRL 2007).
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Quantum Teleportation
VOLUME 70 29 MARCH l993 NUMBER 13
Teleporting an Unknown Quantum State via Dual Classical and
Einstein-Podolsky-Rosen Channels
Charles H. Bennett, ~ ) Gilles Brassard, ( ) Claude Crepeau, ( ) ( )
Richard Jozsa, ( ) Asher Peres, ~4) and William K. Wootters( )
' IBM Research Division, T.J. watson Research Center, Yorktomn Heights, ¹mYork 10598
( lDepartement IIto, Universite de Montreal, C.P OI28, Su. ccursale "A", Montreal, Quebec, Canada HBC 817
( lLaboratoire d'Informatique de 1'Ecole Normale Superieure, g5 rue d'Ulm, 7M80 Paris CEDEX 05, France~ i
l lDepartment of Physics, Technion Israel In—stitute of Technology, MOOO Haifa, Israel
l lDepartment of Physics, Williams College, Williamstoivn, Massachusetts OIP67
(Received 2 December 1992)
An unknown quantum state ]P) can be disassembled into, then later reconstructed from, purely
classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations. To do
so the sender, "Alice," and the receiver, "Bob," must prearrange the sharing of an EPR-correlated
pair of particles. Alice makes a joint measurement on her EPR particle and the unknown quantum
system, and sends Bob the classical result of this measurement. Knowing this, Bob can convert the
state of his EPR particle into an exact replica of the unknown state ]P) which Alice destroyed.
PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c
The existence of long range correlations between
Einstein-Podolsky-Rosen (EPR) [1] pairs of particles
raises the question of their use for information transfer.
Einstein himself used the word "telepathically" in this
contempt [2]. It is known that instantaneous information
transfer is definitely impossible [3]. Here, we show that
EPR correlations can nevertheless assist in the "telepor-
tation" of an intact quantum state from one place to
another, by a sender who knows neither the state to be
teleported nor the location of the intended receiver.
Suppose one observer, whom we shall call "Alice, " has
been given a quantum system such as a photon or spin-&
particle, prepared in a state ]P) unknown to her, and she
wishes to communicate to another observer, "Bob," suf-
ficient information about the quantum system for him to
make an accurate copy of it. Knowing the state vector
a perfectly accurate copy.
A trivial way for Alice to provide Bob with all the in-
formation in [P) would be to send the particle itself. If she
wants to avoid transferring the original particle, she can
make it.interact unitarily with another system, or "an-
cilla, " initially in a known state ~ap), in such a way that
after the interaction the original particle is left in a stan-
dard state ~Pp) and the ancilla is in an unknown state
]a) containing complete information about ~P). If Al-
ice now sends Bob the ancilla (perhaps technically easier
than sending the original particle), Bob can reverse her
actions to prepare a replica of her original state ~P). This
"spin-exchange measurement" [4] illustrates an essential
feature of quantum information: it can be swapped from
one system to another, but it cannot be duplicated or
"cloned" [5]. In this regard it is quite unlike classical
A non classical transfer of an unknown quantum state
using entanglement.
Sender (Alice) knows neither the state to be teleported
nor the location of the receiver (Bob )
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Teleportation protocol
Alice and Bob initially share a pair of entangled particles
(say 2 & 3).
Alice receives the particle with unknown state (say 1) .
Alice does a joint Bell operator measurement on the
unknown state particle and her entangled particle.
Projective measurement. 1 & 2 gets destroyed due to the
measurement.
Alice sends the outcome of her measurement to Bob
through a classical channel.
Bob does a unitary transformation on his particle (particle
3) with respect to Alice’s measurement results.
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
How teleportation works?
Initially, the unknown state and entangled pair are given by
|φ1 = α|0 + β|1 ; |Ψ−
23 =
1
√
2
(|01 − |10 ) (8)
Total wave function
|Ψ123 = 1√
2
(α|0 + β|1 ) ⊗ (|01 − |10 ) (9)
It can be written as
|Ψ123 = 1√
2
(α|00 12|1 3 − α|01 12|0 3 +
β|10 12|1 3 + β|11 12|0 3) (10)
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
How teleportation works?
From the Bell states (Eq.3 & Eq.4), we can have
|00 = |Φ+ +|Φ−
√
2
; |11 = |Φ+ −|Φ−
√
2
(11)
|01 = |Ψ+ +|Ψ−
√
2
; |10 = |Ψ+ −|Ψ−
√
2
(12)
Substituting in Eq.10 and rearranging the terms
|Ψ123 =
1
2
{ |Ψ−
12 (−α|0 3 − β|1 3) +
|Ψ+
12 (−α|0 3 + β|1 3) +
|Φ−
12 (α|1 3 + β|0 3) +
|Φ+
12 (α|1 3 − β|0 3)
} (13)
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
How teleportation works?
Outcome Unitary operator
Ψ− ˆσ0
Ψ+ ˆσ3
Φ− ˆσ1
Φ+ ˆσ3 ˆσ1
In polarization case
ˆσ0 −→ Free space propagation
ˆσ3 −→ HWP in 00
ˆσ1 −→ HWP in π
4
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Quantum circuit for teleportation
Single/double lines :- classical/quantum channels.
ˆH ˆCNOT :- Bell state preparation; ˆCNOT
ˆH :- Bell state
projection/detection
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Experimental teleportation
Bouwmeester et al.(Nature 1997) demonstrated quantum
teleportation using photons.
Figure: Experimental teleportation- Bouwmeester et al.(1997)
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Experimental teleportation
Entangled pair :- parametric down converted photons
Bell projection :- beam splitter and detectors
Figure: Experimental teleportation- Bouwmeester et al.(1997)
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Experimental teleportation
Only particles with anti symmetric wave function ( |Ψ− )
will emerge from both ends of beam splitter (Loudon, R.
Coherence and Quantum Optics VI).
Coincidence in detectors f1&f2 only when state is |Ψ−
12 .
Unitary operation :- free space propagation.
Initial state is prepared in +45 (-45) polarization states .
ie 1√
2
(|H ± |V )
PBS differentiate +45 & -45 polarization. Detector on
each port (d1&d2)
A delay is given in photon 2 path.
Delay = 0 - no mixing - f1f2 coincidence 50% - f1f2d1 &
f1f2d2 coincidence 25%
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation
Teleportation results
initial state +45.
Delay 0 - f1f2 coincidence 25% - f1f2d1 coincidence 25% -
f1f2d2 coincidence 0%
Figure: Bouwmeester et al.(1997)
The absence of coincidence corresponding to zero delay
confirms the teleportation.
Quantum
Teleportation
:- Theory and
experiment
Chithrabhanu
P
Introduction
Quantum
Teleportation THANK YOU

Weitere ähnliche Inhalte

Was ist angesagt?

Quantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's InequalityQuantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's InequalityStefano Franco
 
Quantum teleportation.ppt
Quantum teleportation.pptQuantum teleportation.ppt
Quantum teleportation.pptnastrika
 
Theory of phonon-assisted luminescence: application to h-BN
Theory of phonon-assisted luminescence: application to h-BNTheory of phonon-assisted luminescence: application to h-BN
Theory of phonon-assisted luminescence: application to h-BNClaudio Attaccalite
 
Introduction to Cosmology
Introduction to CosmologyIntroduction to Cosmology
Introduction to CosmologyDanielBaumann11
 
PART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsPART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsMaurice R. TREMBLAY
 
Basic Concepts of Entanglement Measures
Basic Concepts of Entanglement MeasuresBasic Concepts of Entanglement Measures
Basic Concepts of Entanglement MeasuresRyohei Suzuki
 
General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and CosmologyPratik Tarafdar
 
Quantum Information Science and Quantum Neuroscience.ppt
Quantum Information Science and Quantum Neuroscience.pptQuantum Information Science and Quantum Neuroscience.ppt
Quantum Information Science and Quantum Neuroscience.pptMelanie Swan
 
Quantum entanglement (1).pptx
Quantum entanglement (1).pptxQuantum entanglement (1).pptx
Quantum entanglement (1).pptxSandraJoseph49
 
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...Professor Lili Saghafi
 
Spin of electron and proton
Spin of electron and protonSpin of electron and proton
Spin of electron and protonayesha455941
 
Overview of quantum computing and it's application in artificial intelligence
Overview of quantum computing and it's application in artificial intelligenceOverview of quantum computing and it's application in artificial intelligence
Overview of quantum computing and it's application in artificial intelligenceBincySam2
 
Nonlinear response of solids with Green's functions and TD-D(P)FT
Nonlinear response  of solids with Green's functions and TD-D(P)FTNonlinear response  of solids with Green's functions and TD-D(P)FT
Nonlinear response of solids with Green's functions and TD-D(P)FTClaudio Attaccalite
 

Was ist angesagt? (20)

Quantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's InequalityQuantum computation: EPR Paradox and Bell's Inequality
Quantum computation: EPR Paradox and Bell's Inequality
 
Quantum teleportation.ppt
Quantum teleportation.pptQuantum teleportation.ppt
Quantum teleportation.ppt
 
Quantum teleportation
Quantum teleportationQuantum teleportation
Quantum teleportation
 
Theory of phonon-assisted luminescence: application to h-BN
Theory of phonon-assisted luminescence: application to h-BNTheory of phonon-assisted luminescence: application to h-BN
Theory of phonon-assisted luminescence: application to h-BN
 
Introduction to Cosmology
Introduction to CosmologyIntroduction to Cosmology
Introduction to Cosmology
 
PART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsPART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum Electrodynamics
 
Basic Concepts of Entanglement Measures
Basic Concepts of Entanglement MeasuresBasic Concepts of Entanglement Measures
Basic Concepts of Entanglement Measures
 
General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and Cosmology
 
Quantum Information Science and Quantum Neuroscience.ppt
Quantum Information Science and Quantum Neuroscience.pptQuantum Information Science and Quantum Neuroscience.ppt
Quantum Information Science and Quantum Neuroscience.ppt
 
Quantum entanglement (1).pptx
Quantum entanglement (1).pptxQuantum entanglement (1).pptx
Quantum entanglement (1).pptx
 
Polarization
PolarizationPolarization
Polarization
 
Teleportation
TeleportationTeleportation
Teleportation
 
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
Quantum Computers_Superposition Interference Entanglement and Quantum Error C...
 
Crystal dynamics
Crystal dynamicsCrystal dynamics
Crystal dynamics
 
Spin of electron and proton
Spin of electron and protonSpin of electron and proton
Spin of electron and proton
 
Overview of quantum computing and it's application in artificial intelligence
Overview of quantum computing and it's application in artificial intelligenceOverview of quantum computing and it's application in artificial intelligence
Overview of quantum computing and it's application in artificial intelligence
 
Nonlinear response of solids with Green's functions and TD-D(P)FT
Nonlinear response  of solids with Green's functions and TD-D(P)FTNonlinear response  of solids with Green's functions and TD-D(P)FT
Nonlinear response of solids with Green's functions and TD-D(P)FT
 
Quantum entaglement
Quantum entaglementQuantum entaglement
Quantum entaglement
 
Brillouin
BrillouinBrillouin
Brillouin
 
CM [014] The Phonon
CM [014] The PhononCM [014] The Phonon
CM [014] The Phonon
 

Ähnlich wie Quantum Teleportation : Theory and Experiment

Il teletrasporto dell'energia quantistica
Il teletrasporto dell'energia quantisticaIl teletrasporto dell'energia quantistica
Il teletrasporto dell'energia quantisticaDario Caliendo
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationCosmoAIMS Bassett
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum ComputingAmr Mohamed
 
Semi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.pptSemi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.pptVivekDixit100
 
Epidemiology Meets Quantum: Statistics, Causality, and Bell's Theorem
Epidemiology Meets Quantum: Statistics, Causality, and Bell's TheoremEpidemiology Meets Quantum: Statistics, Causality, and Bell's Theorem
Epidemiology Meets Quantum: Statistics, Causality, and Bell's TheoremRichard Gill
 
Quantum Cryptography - Seminar report
Quantum Cryptography - Seminar reportQuantum Cryptography - Seminar report
Quantum Cryptography - Seminar reportShyam Mohan
 
Multi Qubit Transmission in Quantum Channels Using Fibre Optics Synchronously...
Multi Qubit Transmission in Quantum Channels Using Fibre Optics Synchronously...Multi Qubit Transmission in Quantum Channels Using Fibre Optics Synchronously...
Multi Qubit Transmission in Quantum Channels Using Fibre Optics Synchronously...researchinventy
 
EPR pairs and applications into QIS Poster PDF
EPR pairs and applications into QIS Poster PDFEPR pairs and applications into QIS Poster PDF
EPR pairs and applications into QIS Poster PDFarankaila
 
Quantum Cryptography Using Past-Future Entanglement
Quantum Cryptography Using Past-Future EntanglementQuantum Cryptography Using Past-Future Entanglement
Quantum Cryptography Using Past-Future EntanglementIOSR Journals
 
Quantum Teleportation
Quantum Teleportation Quantum Teleportation
Quantum Teleportation RajiuddinSk
 

Ähnlich wie Quantum Teleportation : Theory and Experiment (20)

Il teletrasporto dell'energia quantistica
Il teletrasporto dell'energia quantisticaIl teletrasporto dell'energia quantistica
Il teletrasporto dell'energia quantistica
 
H0324143
H0324143H0324143
H0324143
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological Reionization
 
1416336962.pdf
1416336962.pdf1416336962.pdf
1416336962.pdf
 
Ieee lecture
Ieee lectureIeee lecture
Ieee lecture
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
 
MZ2
MZ2MZ2
MZ2
 
Teleportation
TeleportationTeleportation
Teleportation
 
Presentation.pptx
Presentation.pptxPresentation.pptx
Presentation.pptx
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
Semi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.pptSemi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.ppt
 
Epidemiology Meets Quantum: Statistics, Causality, and Bell's Theorem
Epidemiology Meets Quantum: Statistics, Causality, and Bell's TheoremEpidemiology Meets Quantum: Statistics, Causality, and Bell's Theorem
Epidemiology Meets Quantum: Statistics, Causality, and Bell's Theorem
 
Quantum Cryptography - Seminar report
Quantum Cryptography - Seminar reportQuantum Cryptography - Seminar report
Quantum Cryptography - Seminar report
 
MASTER_THESIS-libre
MASTER_THESIS-libreMASTER_THESIS-libre
MASTER_THESIS-libre
 
Multi Qubit Transmission in Quantum Channels Using Fibre Optics Synchronously...
Multi Qubit Transmission in Quantum Channels Using Fibre Optics Synchronously...Multi Qubit Transmission in Quantum Channels Using Fibre Optics Synchronously...
Multi Qubit Transmission in Quantum Channels Using Fibre Optics Synchronously...
 
Kent_2007
Kent_2007Kent_2007
Kent_2007
 
EPR pairs and applications into QIS Poster PDF
EPR pairs and applications into QIS Poster PDFEPR pairs and applications into QIS Poster PDF
EPR pairs and applications into QIS Poster PDF
 
Quantum Cryptography Using Past-Future Entanglement
Quantum Cryptography Using Past-Future EntanglementQuantum Cryptography Using Past-Future Entanglement
Quantum Cryptography Using Past-Future Entanglement
 
Quantum teleportation
Quantum teleportationQuantum teleportation
Quantum teleportation
 
Quantum Teleportation
Quantum Teleportation Quantum Teleportation
Quantum Teleportation
 

Kürzlich hochgeladen

2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 

Kürzlich hochgeladen (20)

2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

Quantum Teleportation : Theory and Experiment

  • 1. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Quantum Teleportation : Theory and Experiment Chithrabhanu P chithrabhanu@prl.res.in THEPH, PRL
  • 2. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Quantum bits Bit :- Fundamental unit of classical information {0,1} Qubit :-Quantum analog to bit. |ψ = α|0 + β|1 (1) The state of the qubit is a vector in an two-dimensional complex vector space. Qutrit, qudit :- 3 and higher dimensions respectively. |0 , |1 :- Computational basis states forming orthonormal basis of the vector space. |α|2 :- Probability that system is in |0 ; |β|2 :- Probability that system is in |1 Example of qubit states:- Two polarization states { |H , |V }, spin states { | ↑ ,| ↓ } etc.
  • 3. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Entanglement Non local quantum correlation between particles. A two particle entangled state cannot be written as product of two single particle states. Ψ12 = φ1 ⊗ ξ2 (2) Bell states :- Maximally entangled state of two qubits. |Ψ± = 1 √ 2 (|0 |1 ± |1 |0 ) (3) |Φ± = 1 √ 2 (|0 |0 ± |1 |1 ) (4)
  • 4. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Quantum gates Basic unit of a quantum circuit. NOT gate { X } X (α|0 + β|1 ) → α|1 + β|0 (5) Z gate Z (α|0 + β|1 ) → α|0 − β|1 (6) Hadamard gate {H} H (α|0 + β|1 ) = α |0 + |1 √ 2 + β |0 − |1 √ 2 (7) CNOT gate :- Two qubit state. Flips the second qubit (target) if the first qubit (control) is 1. Similar to XOR |A, B → |A, B ⊕ A
  • 5. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Quantum gates cont.. Hadamard and CNOT operation to prepare Bell states. x, y are |0 or |1 logic. βxy - Bell states. In case of polarization; a half wave plate (HWP), can perform many single qubit operations by keeping its fast axis at different angle with respect to the incident polarization. { 0 → ˆZ, π 4 → ˆX, π 8 → ˆH } Polarization CNOT :- not trivial. Requires interaction of two qubits (Zhao et al., PRL 2005; Bao et al., PRL 2007).
  • 6. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Quantum Teleportation VOLUME 70 29 MARCH l993 NUMBER 13 Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels Charles H. Bennett, ~ ) Gilles Brassard, ( ) Claude Crepeau, ( ) ( ) Richard Jozsa, ( ) Asher Peres, ~4) and William K. Wootters( ) ' IBM Research Division, T.J. watson Research Center, Yorktomn Heights, ¹mYork 10598 ( lDepartement IIto, Universite de Montreal, C.P OI28, Su. ccursale "A", Montreal, Quebec, Canada HBC 817 ( lLaboratoire d'Informatique de 1'Ecole Normale Superieure, g5 rue d'Ulm, 7M80 Paris CEDEX 05, France~ i l lDepartment of Physics, Technion Israel In—stitute of Technology, MOOO Haifa, Israel l lDepartment of Physics, Williams College, Williamstoivn, Massachusetts OIP67 (Received 2 December 1992) An unknown quantum state ]P) can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations. To do so the sender, "Alice," and the receiver, "Bob," must prearrange the sharing of an EPR-correlated pair of particles. Alice makes a joint measurement on her EPR particle and the unknown quantum system, and sends Bob the classical result of this measurement. Knowing this, Bob can convert the state of his EPR particle into an exact replica of the unknown state ]P) which Alice destroyed. PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c The existence of long range correlations between Einstein-Podolsky-Rosen (EPR) [1] pairs of particles raises the question of their use for information transfer. Einstein himself used the word "telepathically" in this contempt [2]. It is known that instantaneous information transfer is definitely impossible [3]. Here, we show that EPR correlations can nevertheless assist in the "telepor- tation" of an intact quantum state from one place to another, by a sender who knows neither the state to be teleported nor the location of the intended receiver. Suppose one observer, whom we shall call "Alice, " has been given a quantum system such as a photon or spin-& particle, prepared in a state ]P) unknown to her, and she wishes to communicate to another observer, "Bob," suf- ficient information about the quantum system for him to make an accurate copy of it. Knowing the state vector a perfectly accurate copy. A trivial way for Alice to provide Bob with all the in- formation in [P) would be to send the particle itself. If she wants to avoid transferring the original particle, she can make it.interact unitarily with another system, or "an- cilla, " initially in a known state ~ap), in such a way that after the interaction the original particle is left in a stan- dard state ~Pp) and the ancilla is in an unknown state ]a) containing complete information about ~P). If Al- ice now sends Bob the ancilla (perhaps technically easier than sending the original particle), Bob can reverse her actions to prepare a replica of her original state ~P). This "spin-exchange measurement" [4] illustrates an essential feature of quantum information: it can be swapped from one system to another, but it cannot be duplicated or "cloned" [5]. In this regard it is quite unlike classical A non classical transfer of an unknown quantum state using entanglement. Sender (Alice) knows neither the state to be teleported nor the location of the receiver (Bob )
  • 7. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Teleportation protocol Alice and Bob initially share a pair of entangled particles (say 2 & 3). Alice receives the particle with unknown state (say 1) . Alice does a joint Bell operator measurement on the unknown state particle and her entangled particle. Projective measurement. 1 & 2 gets destroyed due to the measurement. Alice sends the outcome of her measurement to Bob through a classical channel. Bob does a unitary transformation on his particle (particle 3) with respect to Alice’s measurement results.
  • 8. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation How teleportation works? Initially, the unknown state and entangled pair are given by |φ1 = α|0 + β|1 ; |Ψ− 23 = 1 √ 2 (|01 − |10 ) (8) Total wave function |Ψ123 = 1√ 2 (α|0 + β|1 ) ⊗ (|01 − |10 ) (9) It can be written as |Ψ123 = 1√ 2 (α|00 12|1 3 − α|01 12|0 3 + β|10 12|1 3 + β|11 12|0 3) (10)
  • 9. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation How teleportation works? From the Bell states (Eq.3 & Eq.4), we can have |00 = |Φ+ +|Φ− √ 2 ; |11 = |Φ+ −|Φ− √ 2 (11) |01 = |Ψ+ +|Ψ− √ 2 ; |10 = |Ψ+ −|Ψ− √ 2 (12) Substituting in Eq.10 and rearranging the terms |Ψ123 = 1 2 { |Ψ− 12 (−α|0 3 − β|1 3) + |Ψ+ 12 (−α|0 3 + β|1 3) + |Φ− 12 (α|1 3 + β|0 3) + |Φ+ 12 (α|1 3 − β|0 3) } (13)
  • 10. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation How teleportation works? Outcome Unitary operator Ψ− ˆσ0 Ψ+ ˆσ3 Φ− ˆσ1 Φ+ ˆσ3 ˆσ1 In polarization case ˆσ0 −→ Free space propagation ˆσ3 −→ HWP in 00 ˆσ1 −→ HWP in π 4
  • 11. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Quantum circuit for teleportation Single/double lines :- classical/quantum channels. ˆH ˆCNOT :- Bell state preparation; ˆCNOT ˆH :- Bell state projection/detection
  • 12. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Experimental teleportation Bouwmeester et al.(Nature 1997) demonstrated quantum teleportation using photons. Figure: Experimental teleportation- Bouwmeester et al.(1997)
  • 13. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Experimental teleportation Entangled pair :- parametric down converted photons Bell projection :- beam splitter and detectors Figure: Experimental teleportation- Bouwmeester et al.(1997)
  • 14. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Experimental teleportation Only particles with anti symmetric wave function ( |Ψ− ) will emerge from both ends of beam splitter (Loudon, R. Coherence and Quantum Optics VI). Coincidence in detectors f1&f2 only when state is |Ψ− 12 . Unitary operation :- free space propagation. Initial state is prepared in +45 (-45) polarization states . ie 1√ 2 (|H ± |V ) PBS differentiate +45 & -45 polarization. Detector on each port (d1&d2) A delay is given in photon 2 path. Delay = 0 - no mixing - f1f2 coincidence 50% - f1f2d1 & f1f2d2 coincidence 25%
  • 15. Quantum Teleportation :- Theory and experiment Chithrabhanu P Introduction Quantum Teleportation Teleportation results initial state +45. Delay 0 - f1f2 coincidence 25% - f1f2d1 coincidence 25% - f1f2d2 coincidence 0% Figure: Bouwmeester et al.(1997) The absence of coincidence corresponding to zero delay confirms the teleportation.