SlideShare ist ein Scribd-Unternehmen logo
1 von 18
Downloaden Sie, um offline zu lesen
1
Arithmetical properties of tree generation codes and algorithm to
generate all tree codes for a given number of edges
K. Balasubramaniana
, S. Arunb
, N. Chandramowliswaranc
,
a
Department of Statistics , Indian Statistical Institute, New Delhi, India.
b
Department of Computer Science & Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha
Vidyalaya, Kanchipuram, Kanchipuram-631 561, India.
c
Department of Mathematics, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya,
Kanchipuram-631 561, India.
c
E Mail: ncmowli@hotmail.com
Abstract:
Graceful Code is a way to represent graceful graph in terms of sequence of
non-negative integers. Given a graceful graph G on “q” edges, we can generate its
graceful code in the form of (a1, a2, a3, …, aq−1, aq) to represent the graph. Similarly, we
can easily draw the graph from the given graceful code.
In this paper, we present an algorithm to generate all possible tree codes on a
given number of edges. Moreover, we also present the arithmetic properties of tree
generating codes and an algorithm to check whether the code of a given graceful graph
represents a tree or not. This algorithm uses prüfer code techniques on graceful codes to
perform tree checking. The prüfer technique of removing the lowest labeled leaf easily
determines the code to be a tree or not.
Keywords: Graceful graphs, Graceful codes, α-valuable codes.
Introduction:
Definition 1:
A Graceful labeling of a simple graph G with “q” edges is an injection “f ”
from the vertices of G to the set {0, 1, 2, 3, …, q} such that the induced function
g: E→{1, 2, …, q}, g(e) = | f(u) −−−− f(v) | for every edge e ={u, v}, is a bijective function
A graph, which has a graceful labeling, is called a Graceful graph.
This labeling was originally introduced in 1967 by Rosa who has also showed that the
existence of a graceful labeling of a given graph G with “q” edges is a sufficient
condition for the existence of a cyclic decomposition of a complete graph of order
“2q+1” into sub-graphs isomorphic to G. [See References]. The famous Graceful Tree
Conjecture says that all trees have a graceful labeling.
Section 1 of this paper describes definitions and notations of graceful codes.
Section 2 discusses Arithmetical Properties of Tree Generation Codes.
Section 3 describes algorithm to generate all tree codes for a given number of edges.
2
Section 1
Code of a Graceful Graph:
Let G be any graceful graph on “q” edges then (a1, a2, a3, …, aq− 1, aq) is called a graceful
code of G, if 0 ≤ ai ≤ q−−−− i, 1 ≤ i ≤ q. Here ai is the lower end vertex of the edge label “i”.
It is important to note that aq is always zero.
Example:
Code= (4, 3, 1, 2, 1, 0)
Figure 1 shows a graceful graph on 6 edges.
The code of this graceful graph is = (4, 3, 1, 2, 1, 0), where
a1= 4= lower end vertex of the edge label “1”.
a2= 3= lower end vertex of the edge label “2”.
a3= 1= lower end vertex of the edge label “3”.
a4= 2= lower end vertex of the edge label “4”.
a5= 1= lower end vertex of the edge label “5”.
a6= 0= lower end vertex of the edge label “6”.
For every graceful graph G we can write its corresponding graceful code. Conversely, for
every given graceful code we can draw the corresponding graceful graph as follows.
Join edges: {(a1, 1 + a1), (a2, 2 + a2), …, (aq −−−− 1, q −−−− 1 + aq −−−− 1), (aq, q + aq)}
Definition 2:
α-valuable Code:
Let G be a graceful graph on “q” edges. Then the code (a1, a2, a3,…, aq) is called
α-valuable code of G if
Here a1 is called the separator or critical value of the α-valuable code.
a1 ≥ ai ; for all i
Max {ai | 0 ≤ i ≤ q} < Min {i + ai | 0 ≤ i ≤ q}
3
The following Proposition gives the criteria for the graceful code to be an α-valuable
code,
Proposition
(a1, a2, a3, …, aq) represents an α-valuable code if and only if
0 ≤ (a1 – aq − i + 1 / q – i) ≤ 1
for all i, 1 ≤ i ≤ q −1
Equivalently, (a1, a2, a3, ..., aq − 1, aq) represents an α-valuable code if and only if
(a1 – aq, a1 – aq −−−−1, …, a1 – a3, a1 – a2, 0) represents a code of a graceful graph.
Notation: If X= (a1, a2, …, aq) is a given α-valuable code of a graph G, then
{a1, a2,…, aq}are lower vertices of G, and {1 + a1, 2 + a2, …,q + aq} are upper vertices of
G.
In this paper, we identify vertices as labels.
Section 2
Arithmetic properties of Tree Generation codes
THEOREM 1
Let X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges.
Let p ≤ q − a1. Then,
(σ (a1 + 1), σ (a1 + 2), …, σ (a1 + p), X) always represent a tree code on “q + p” edges for
any σ Є Sp= Symmetric group on “p” symbols.
Proof:
Let the code (σ (a1 + 1), σ (a1 + 2), …, σ (a1 + p), X) represent the graph H and
the code X represent a tree T, a subgraph of H such that the upper vertices of T in H are
{1 + a1 + p, 2 + a1+ p,…, q + p}. Consider the induced subgraph G of H on vertices
{1 + a1, 2 + a1,…, q}. This subgraph G has components G1, G2, …, Gk (Some of the
components contain only one vertex) with the following properties:
1. 1 + a1= t1 + a1∈ G1, …, ti + a1 ∈ Gi, (1≤ i ≤ k), 1≤ ti ≤ p
2. t1+ a1 < t2+ a1 < …< tk+ a1.
3. ti+ a1 is the least labeled pendant vertex in Gi,
such that any x< ti+ a1, i ≥ 2 ⇒ x∈ V(G1)∪…∪V(Gi –1)
4. Let Mi ∈ V(Gi) be the maximum label.
Now there is a unique edge ei = {Mi, Ci},
Ci ∈{1 + a1 + p, 2 + a1+ p,…, q + p}. Here it is easy to see that each Gi is a
caterpillar(removal of pendant vertices leads to a path), hence the given graph H
represent a tree.
4
………………
COROLLARY 1
Consider the following caterpillar,
( )11 2
,( 1) ,...,1 ,0N N
N N +
− α αα α
. Let “p” be any positive integer ≤
1
1
N
i
i
Nα
+
=
−∑
Then ( )11 2
( 1), ( 2),..., ( ), ,( 1) ,...,1 ,0N N
N N N p N Nσ σ σ +
+ + + − α αα α
always represent a
tree code on
1
1
N
i
i
pα
+
=
+∑ edges for any σ Є Sp= Symmetric group on “p” symbols.
COROLLARY 2
( )(1), (2),..., ( ),0q
qσ σ σ always represent a tree code on “2q” edges for
any σ Є Sp= Symmetric group on “p” symbols.
COROLLARY 3
Let Ψ be any permutation on {2q+1, 2q+2, …, 4q}.
Then (Ψ(2q+1),Ψ(2q+2), …, Ψ(4q), X) represents atree code on 6q edges.
Where X= (2q, 2q – 1, …, q + 1, q + σ(q), q – 1+ σ(q – 1), …, 2 + σ(2), 1 + σ(1),
σ(1), …, σ(q), 0q
), σ Є Sq= Symmetric group on “q” symbols.
Proof:
It is straight forward to verify
X= (2q, 2q – 1, …, q + 1, q + σ(q), q – 1+ σ(q – 1), …, 2 + σ(2), 1 + σ(1),
σ(1), …, σ(q), 0q
) represent a α- valuable tree code on “4q” edges and then
applying Theorem 1, we have the corollary –3.
THEOREM 2
Let X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges, such
that q − a1= odd integer. Then for any m ≥ 2,
( )1 1( 1, 2,..., ) ,m
a a q X+ + always represent a tree code on “m(q − a1) + q” edges.
COROLLARY 1
For any odd positive integer q and m ≥ 2,
( )1
( 1, 2,...,2 ) , , 1, 2,...,2,1,0m q q
q q q q q q+
+ + − − represent a tree code on “(m + 3)⋅ q”
edges.
T
ek
e2
e1
GkG2G1
C1 C2 Ck
1+a1 M1 t2 + a1 M2 tk + a1 Mk
5
THEOREM 3
Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges.
Assume q - a1= even integer. Then for any positive integer m ≥ 2,
( )1
1 1 1 1 1( 1, 2,..., , ) , 1, 2,..., 1, ,m
a a q a a a q q X−
+ + + + − represents a tree code on
“(m + 1)q − a1⋅ m + m −1” edges.
THEOREM 4
Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges
such that,
i. q is odd.
ii. a1 is even.
Then,
(1 + a1, σ (a1 + 3), 1 + a1, σ (a1 + 5), 1 + a1, …, 1 + a1, σ (q), 1 + a1, X) represents a tree
code on “2q − a1” edges.
Here σ is any permutation on “(q − a1 − 1)/ 2” symbols= {a1+3, a1+5, …, q}.
Here 1 + a1 is repeated “(q − a1 + 1)/ 2” times.
THEOREM 5
Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges.
Assume,
1) 3│q and 3│a1.
2) a1 ≤ 2⋅ q / 3.
3) q ≥ 6. Then,
(a1 + q − 2, a1 + q - 5, …, 4 + a1, 1 + a1, a1 + q − 3, a1 + q – 4, a1 + q - 6, a1 + q − 7, …,
a1 + 3, a1 + 2, X) always represent a tree code on “2⋅ q-2” edges.
THEOREM 6
Suppose X= (a1, a2, …, aq) be a given α - valuable tree code on “q” edges,
such that,
1. q = even.
2. a1 = even.
3. a1 ≤ q / 2 and q ≥ 4. Then,
(a1 + q − 1, a1 + q − 3, …, 3 + a1, 1 + a1, a1 + q − 2, a1 + q − 4, …, a1 + 4, a1 + 2, X)
always represent a tree code on “2⋅ q − 1” edges.
6
Tree Codes
1. (1
n
, n + 2, …, n + r + 1, 1
n
, 0
2n + r
) represents a tree code on “4⋅ n + 2⋅ r” edges for
any positive integer n, r.
2. (1, 3, 4, …, n + 2, 1, 0
n + 2
) always represent a tree code on “2⋅ n + 4” edges.
3. (1, σ (3), σ (4), …, σ (n + 2), 1, 0
n + 2
) always represent a tree code on “2⋅ n + 4”
edges for any σ Є Sn= Symmetric group on n symbols.
4. (1, 2, …, 2n, 2n + 1, 1, 2, …, 2n, 0
4n + 1
) represent a tree code on “8⋅ n+2” edges
for any n ≥ 1.
5. (1, 3, 1, 5, 1, 7, 1, …, 1, 2n + 1, 1, 0
2n + 1
) represent a tree code on “4⋅ n + 2”
edges.
6. (1, σ (3), 1, …, 1, σ (2n + 1), 1, 0
2n + 1
) represent a tree code on “4⋅ n + 2” edges
for any σ Є Sn = group of permutations on n= {3, 5, …, 2n+1} symbols.
THEOREM 7
Suppose (a1, a2, …, aq − 1, aq) represents code of a graceful tree on “q” edges. Then
X = (aq + q, aq – 1 + q −1, …, 2 + a2, 1 + a1, x, a1, a2, a3, …, aq − 1, aq), [0 ≤ x ≤ q]
represent a α–valuable tree code on “2q + 1” edges.
Define,
U (X) = (q + 1 + (aq, aq − 1, …, a2, a1), x + q + 1, q + 1 + (a1 + 1, a2 + 2, …, aq + q ))
U (X) R
= (q + 1 + (aq + q, aq − 1 + q – 1, …, a2 + 2 , a1 + 1) , x + q + 1, q + 1 + (a1, a2, …,
aq − 1, aq))
Then,
(U (X) R
+ (k – 2) q, U (X) R
+ (k – 3) q, …, U (X) R
+ q, U (X) R
, X) always represent a
α–valuable tree code on “2⋅ k⋅ q + k” edges. (k ≥ 3) +== +
THEOREM 8
Let X1 = (q, a2
(1)
, a3
(1)
, …, a2q
(1)
, a2q + 1
(1)
)
X2 = (q, a2
(2)
, a3
(2)
, …, a2q
(2)
, a2q + 1
(2)
)
……………………………………
Xi = (q, a2
(i)
, a3
(i)
, …, a2q
(i)
, a2q + 1
(i)
)
……………………………………
Xk = (q, a2
(k)
, a3
(k)
, …, a2q
(k)
, a2q + 1
(k)
)
represent “k” α–valuable tree codes on “2q + 1” edges of trees T1, T2, …, Ti, …, Tk
respectively (k ≥ 3)
Define,
U (Xi) = (q + 1, 2 + a2
(i)
, 3 + a3
(i)
, …, 2q + a2q
(i)
, 2q + 1 + a2q + 1
(i)
)
U (Xi) R
= (2q + 1 + a2q + 1
(i)
, 2q + a2q
(i)
, …, 3 + a3
(i)
, 2 + a2
(i)
, q + 1), for 1 ≤ i ≤ k.
7
Then,
(U (X1) R
+ (k – 2) q, U (X2) R
+ (k – 3) q, …, U (Xk - 2) R
+ q, U (Xk - 1) R
, Xk)
represent α–valuable tree code of a tree “T” on “2⋅ k⋅ q + k” edges such that
E (T) = E (T1) U E (T2) U … U E (Tk)
Also,
(U (X1) R
+ (k – 2) q, U (X2) R
+ (k – 3) q, …, U(Xk - 2) R
+ q, U (Xk - 1) R
, 0, Xk) represent
a α–valuable tree code of a tree “S” on “2⋅ k⋅ q + k+ 1” edges.
THEOREM 9
Suppose (a1, a2, …, aq − 1, aq) represent a α- valuable tree code of a graceful tree on “q”
edges. Then,
X = (aq + q, aq − 1+ q − 1, …, 2 + a2, 1 + a1, a1, a2, a3, …, aq − 1, aq), represent a
α–valuable tree code on “2q” edges.
Define, Y = (2q – 1, 2q – 2, …, q + 1, q, q – 1, q – 2, …, 1, 0) – X.
= (q – 1, q – 1 – aq − 1, …, q – 1 – a2, q – 1 – a1, q – 1 – a1, q – 2 – a2, …,
1 – aq − 1, 0)
U (Y) = (q, q + 1 − aq − 1, …, 2q – 2 – a2, 2q – 1 – a1, 2q – a1, 2q – a2, …, 2q – aq − 1, 2q).
U (Y)R
= (2q, 2q – aq − 1, …, 2q – a2, 2q – a1, 2q – 1 – a1, 2q – 2 – a2, …, q + 1 – aq − 1, q).
Then,
(U (Y) R
+ (k – 2) q, U (Y) R
+ (k – 3) q, …, U (Y) R
+ q, U(Y)R
, Y) always represent a
α–valuable tree code on “2⋅ k⋅ q ” edges (k ≥ 3).==
=
Section 3
Generation of all Tree codes on a given number of edges
Before we present an algorithm to generate all tree codes on a given number of edges, we
summarize the following concepts involved in formulating the algorithm.
Cantor Representation
Every non-negative integer less than q! has a unique Cantor representation,
a1⋅(q – 1)! + a2⋅(q – 2)! + …+ aq − 2 ⋅2! + aq – 1 ⋅1!
where ai is a nonnegative integer not exceeding q - i, for i = 1, 2, …, q − 1. The integers
a1, a2, …, aq − 1 are called the Cantor coefficients of this integer.
Therefore a unique code can be obtained for every nonnegative integer less than q! of the
form,
(a1, a2, a3, …, aq − 1, 0)
where 0 ≤ ai ≤ q − i, for 1 ≤ i ≤ q.
This representation is called graceful code representation of this integer.
8
Now we have the following method to convert any non-negative integer less than
q! to a graceful code,
1. Divide the given nonnegative integer (x < q!) by (q – i)!, for i = 1, 2, …, q.
2. Place at the ith
position, c = x / (q − i)!.
3. Subtract c⋅(q – i)! from x. i.e., x = x – c⋅(q – i)!.
4. Repeat steps 1 to 3 till i = q, when at the end of the qth
iteration x becomes zero.
5. The string finally obtained is the graceful code representation of the nonnegative
integer x.
Example.
The graceful code (a1, a2, a3, a4, a5) that correspond to the integer 89 is (3, 2, 2, 1, 0)
Here x = 89, n = 5, 1 ≤ i ≤ 5. Begin by dividing 89 by 4!. From step 2, we obtain c = 3.
Therefore, a1 = 3. Next, subtract 72 from 89(By step 3). x reduces to 17. Now, 17 is
divided by 3!, clearly a2 = 2, since 17/ 3! = 2. Now subtract 12 from 17. Proceeding in a
similar way we get, a3 = 2, a4 = 1 and a5 = 0. Therefore the graceful code representation
of 89 is (3, 2, 2, 1, 0).
Algorithm 1 converts any nonnegative integer less than q! to its corresponding
unique graceful code. Therefore we can also generate all graceful codes on given q.
Algorithm 1: Conversion of any nonnegative integer to Code of length q.
NUMBER_TO_CODE (q, x: integers with q ≥ 1 and 0 ≤ x ≤ q! − 1)
create array a[1 . . q]
a[q] ← 0
fact ← FACTORIAL (q −−−− 1) /* returns (q – 1)!
for k ← 1 to q − 1
a[k] ← x / fact
x ← x − (a[k] * fact)
fact ← fact / FACTORIAL(q −−−− k)
/* a[] contains the code corresponding to integer x.
Now, we are able to generate all graceful codes on a given number of edges.
These codes are tested for tree property using prüfer tree checking algorithm ([3], [38]).
Every graceful code generated is tested for tree property before next code is generated.
As a result, all tree codes are isolated on a given number of edges.
Prüfer tree checking algorithm
Let the “q+1” vertices of a graceful tree T be labeled 0, 1, 2, …, q. The pendant
vertex (and the edge incident on it) having the smallest label, which is, say a1 is removed.
Suppose that b1 was the vertex adjacent to a1. Among the remaining “q” vertices let a2 be
9
the pendant vertex with the smallest label and b2 be the vertex adjacent to a2. The edge
(a2, b2) is removed. This operation is continued on the remaining “q−1” vertices, and then
on “q−2” vertices, and so on. This process is terminated after “q−1” steps, when only two
vertices are left. Now the graceful tree T defines the following prüfer sequence,
(b1, b2, …, bq−−−−1)
uniquely.
When we work with graceful codes, we are performing the operation as described
above by eliminating the least pendant vertex and the edge incident on it. If all the edges
can be exhausted after “q−1” steps, the given code represent a graceful tree T. If we
could not exhaust all the edges, then the given code represent a disconnected graph which
contains a cycle.
Algorithm to decide whether the code of a graceful graph represents a tree or not
Algorithm 2: To check the code of a graceful graph represents a tree or not.
Input. Number of edges q and graceful code a[]
Output. Either a[] represents a tree or not.
PRUFER_TREECHECKING (q: Number of edges, a[]: Code of the graceful graph)
q1← q
for i ← 0 to q − 1
if (a[i] < 0 or a[i]> q − i − 1)
/* not a graceful code
exit
for i ←1 to q
do b[i −1] ← i + a[i −1]
/* upper code stored in array b[]
for key ← 0 to q1
element ← 0
j ← 0
while (j < q)
if (key = a[j] or key = b[j])
element ← element +1
j ← j + 1
else
j ← j + 1
if (element = 0)
/*code does not represent tree
10
exit
key ← 0
while (key ≤ q1)
element ← 0
j ← 0
while (j < q)
if (key = a[j] or key = b[j])
element ← element + 1
j ← j + 1
else
j ← j + 1
key ← key + 1
if (element = 1)
SEARCH (key −1)
if (z < 2*q1)
/*code does not represent tree
SEARCH (temp)
for n ← 0 to q − 1
if (a[n] = temp or b[n] = temp) /*returns position of pendant vertex in the code
TREEVERT (n)
VERDELETE (n, q)
key ← 0
VERDELETE (n, k)
for x ← n to k − 2
a[x] ← a[x + 1] /* vertices deleted from lower and upper code
b[x] ← b[x + 1]
k ← k − 1
q ← k
TREEVERT (d)
tree [z] ← a[d]
z ← z + 1
tree [z] ← b[d]
11
z ← z + 1
if (z = 2*q1) /* all edges are exhausted
/* code represents a tree
Generation of all Tree Codes on a given number of Edges
Using the algorithms discussed earlier, we now construct an algorithm, which
generates all possible graceful tree codes on a given number of edges.
Algorithm 3: Generation of all Tree Codes
Input. Number of edges “q”
Output. All tree codes on “q” edges.
TREECODE_GENERATION (q)
1. q ← q1 ← n
2. create arrays a[1 . . n] and b[1 . . n] to store lower and upper code respectively
3. a[n] ← 0, b[n] ← n
4. fact1 ← FACTORIAL (n)
5. fact ← facts ← fact1 / n
6. for inc ← 0 to fact1/ 2 /* Restricted to Complimentary Labeling
6.1. inc1 ← inc
6.2. fact ← facts
6.3. for k ← 1 to n − 1
6.3.1. a[k] ← inc / fact
6.3.2. b[k] ← k + a[k]
6.3.3. inc1 ← inc1 − (a[k] * fact)
6.3.4. fact ← fact / (n − k)
6.4. sp ← 0
6.5. element ← INITIAL_TREECHECKING (a, b, n) /*Check whether all numbers from 0 to q
appear or not
6.6. key ← 0
6.7. while key ≤ q1
6.7.1. element ← 0
6.7.2. for j ← 1 to q
6.7.3. begin
6.7.3.1. if key = a[j] or key = b[j] /*To select least pendant vertex
12
6.7.3.1.1. element ← element + 1
6.7.3.1.2. j ← j + 1
6.7.3.2. else
6.7.3.2.1. j ← j + 1
6.7.4. end
6.7.5. if element = 1
6.7.5.1. temp1[sp] ← key /* exhausted vertex stored here
6.7.5.2. sp ← sp + 1
6.7.5.3. SEARCH (key)
6.7.5.4. exit while
6.7.6. else
6.7.6.1. key ← key + 1
6.8. while key ≤ q1
6.8.1. flag = ELIMINATE_VERTEX ( key, sp) /*Remove pendant vertex
6.8.2. if flag = 1
6.8.2.1. key ← key + 1
6.8.3. else
6.8.3.1. element ← 0
6.8.4. for j ← 1 to q
6.8.5. begin
6.8.5.1. if key = a[j] or key = b[j]
6.8.5.1.1. element ← element + 1
6.8.5.1.2. j ← j + 1
6.8.5.2. else
6.8.5.2.1. j ← j + 1
6.8.6. end
6.8.7. if element = 1
6.8.7.1. temp1[sp] ← key
6.8.7.2. sp ← sp + 1
6.8.7.3. SEARCH (key)
6.8.8. else
6.8.8.1. key ← key + 1
6.9. end while
7. if z = q1
7.1. q ← n
7.2. count ← count + 1
13
7.3. z ← 0
7.4. /* Display a[] as tree code
8. else /* all edges are not exhausted
8.1. z ← 0
8.2. q ← n
8.3. inc ← inc + 1 /* Get next code
8.4. /* Display number of tree codes, count
SEARCH (temp)
for i ← 1 to q /*returns the position of pendant vertex
if a[i] = temp or b[i] = temp
z ← z + 1
VERDELETE (i, q)
end if
key ← 0
INITIAL_TREECHECK (x[], y[], n)
1. for key ← 1 to q − 1
1.1. element ← 0
1.2. for j ← 1 to d − 1
1.2.1. if key = x[j] or key = b[j]
1.2.1.1. element ← element + 1
1.2.1.2. key ← key + 1
1.2.2. else
1.2.2.1. key ← key + 1
1.3. if element = 0
1.3.1. key ← key +1
2. return element
VERDELETE (s, k)
for x ← s to k − 1
a[x] ← a[x + 1]
b[x] ← b[x + 1]
k ← k − 1
q ← k
14
FACTORIAL (f)
fac ← 1
if f = 0 or f = 1
return 1
else
for i ← 1 to f
fac ← fac * I
return fac
ELIMINATE_VERTEX (temp, spc)
flag1 ← 0
for i ← 1 to spc
if temp = temp1[i] /* temp1[] stores exhausted vertices
flag1 ← 1
return flag1
else
i ← i + 1
15
The following table shows the number of all possible tree codes (restricted to
complimentary labeling) up to 13 edges
No. of Edges ‘q’ No. of Tree Codes
Tn
1 1
2 1
3 2
4 6
5 20
6 82
7 376
8 2010
9 11788
10 77816
11 556016
12 4366814
13 36773666
16
Reference:
1. R. E. Aldred, J. Siran and M. Siran, “A note on number of Graceful Labellings of Paths”, Discrete
Math., 261, 27−30, 2003.
2. Mousa Alfalayleh, Ljiljana Brankovic, Helen Giggins and Md. Zahidul Islam, “Towards the
Graceful Tree Conjecture: A Survey”
3. S. Arun, “A Project Report on Graceful Labellings” Nov 2006, Dept. of Computer Science &
Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya (Deemed University),
Kanchipuram.
4. V. Bhat Nayak and U. Deshmukh, “New Families of Graceful Banana Trees”, Proc. Indian Acad.
Sci. Math. Sci., 106, 187-190, 1996.
5. C. P. Bonnington and J. Siran, “Bipartite Labelling of Trees with Maximum Degree Three”,
Journal of Graph Theory, 31, 37-56, 1999.
6. L. Brankovic, A. Rosa and J. Siran, “Labelling of Trees with Maximum Degree Three - And
Improved Bound”, preprint.
7. H. J. Broersma and C. Hoede. “Another Equivalent of Graceful Tree Conjecture” Ars
Combinatoria, 51, 183-192, 1999.
8. M. Burzio and G. Ferrarese, “The Subdivision Graph of a Graceful Tree is a Graceful Tree”,
Discrete Mathematics, 181,275-281, 1998.
9. F. Van Bussel, “Relaxed Graceful Labellings of Trees”, The Electronic Journal of Combinatorics,
9(1), #R4, 2002.
10. S. M. Hegde and S. Shetty, “On Graceful Trees”, Applied Mathematics E-Notes, 2, 192-197,
2002.
11. P. Hrnčiar and A. Haviar, “All Trees of Diameter Five are Graceful”, Discrete Mathematics, 233,
133-150, 2001.
12. C. Huang, A. Kotzig and A. Rosa, “Further Results on Tree Labellings”, Util. Math., 21C, 31-48,
1982.
13. C. Huang and A. Rosa, “Decomposition of Complete Graphs into trees”, Ars Combinatoria, 4
(1978), 23-63.
14. J. A. Gallian, “A Dynamic Survey of Graph Labelling”, Electronic Journal of Combinatorics, DS6
(October 2003).
15. K. M. Koh, D. G. Rogers and T. Tan, “A Graceful Arboretum: A Survey of Graceful Trees”, Proc.
of Franco-Southeast Asian Conference, Singapore, May 2, 279-292, 1979.
16. A. Kotzig, “On Certain Vertex-Valuations of Finite Graphs”, Utilitas Math., 4, 261-290, 1973.
17. H. K. Ng, “Gracefulness of a Class of Lobsters”, Notices AMS, 7, 825-2924, 1986.
17
18. Pawan Kumar, Graceful Graph: Code Operator, Software Project Thesis- Nov 2005, Dept. Of
Computer Science & Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya
(Deemed University), Kanchipuram.
19. A. Rosa, “On Certain Valuations of the Vertices of a Graph”, Theory of graphs (Proc. Internat.
Symposium, Rome, 1966), Gordon and Breach, N. Y. and Dunod Paris, 349-355, 1967.
20. A. Rosa, “Labelling Snakes”, ARS Combinatoria, 3, 67-74, 1977.
21. A. Rosa and J. Sira, “Bipartite Labellings of Tree and the Gracesize”, Journal of Graph Theory,
19, 201-215, 1995.
22. R. Stanton and C. Zarnke, Labelling of Balanced Trees”, Proc. 4th
Southeast Conference of Comb.,
Graph Theory, Computing, 479-495, 1973.
23. S. Zhao, “All Trees of Diameter Four Are Graceful” Annals New York Academy of Sciences,
700-706, 1986.
24. R. E. Aldred and B. D. McKay, “Graceful and Harmonious labellings of Trees ”, Bull. Inst.
Combin. Appl., 23, 69-72, 1998.
25. J. C. Bermond, “Graceful Graphs, Radio Antennae and French Windmills”, Graph Theory and
Combinatorics, Pitman, London, 13-37, 1979.
26. J. C. Bermond and D. Sotteau, “Graph Decompositions and G-design”, Proc. 5th
British
Combinatorics Conference, 1975, 52-72 (Second Series), 12, 25-28, 1989.
27. W. C. Chen, H. I. Lü and Y. N. Yeh, “Operations of Interlaced Trees and Graceful Trees”, South
East Asian Bulletin of Mathematics, 21, 337-348, 1997.
28. P. Erdos, P. Hell and P. Winkler, “Bandwidth versus Bandsize”, Annals of Discrete Mathematics,
41, 117-130, 1989.
29. S. W. Golomb, “How to Number a Graph”, Graph Theory and Computing, R. C. Read, Academic
Press, New York, 23-37, 1972.
30. B. Mohar, “The laplacian spectrum of graphs”, Graph Theory, Combinatorics, and Applications,
2, 279-292, 1979.
31. D. Morgan, “Gracefully Labelled Trees from Skolem sequences”, Proc. of Thirty-first South
Eastern Internat. Conf on Combin., Graph Theory, and Computing (Boca Raton, Fl, 2000),
Congressus Numerantium, 142, 41-48, 2000.
32. D. Morgan and R. Rees, “Using Skolem sequences and Hooked-skolem sequences to generate
Graceful Trees”, Journal of Combinatorial Mathematics and Combinatorial Computing, 44, 47-63,
2003.
33. A. M. Pastel and H. Raynaud. “Les Oliviers sont gracieux” Colloq. Grenoble, Publications
Université de Grenoble, 1978.
34. G. Ringel, “Problem 25”, Theory of Graphs and its Applications (Proc. Sympos. Smolenice 1963,
Nakl. CSAV, Praha 1964), 1978.
18
35. D. A. Sheppard, “The factorial Representation of Balanced Graceful Graphs”, Discrete Math., 15,
379-388, 1976.
36. J. G. Wang, D. J. Jin, X. G. Lu and D. Zhang, “The gracefulness of a class of Lobster Trees”,
Mathematical Computer Modeling, 20, 105-110, 1994.
37. K. Balasubramanian, N. Chandramowliswaran, N. Ramachandran, Pawan Kumar, “Generation of
graceful trees through graceful codes”, Internat. Conf. on Number Theory and Combinatorics,
SASTRA University, December 2006.
38. K. Balasubramanian, S. Arun, N. Chandramowliswaran, “Algorithm for a given code of a graceful
graph represents a tree”, Internat. Conf. on Number Theory and Combinatorics, SASTRA
University, December 2006.
39. K. Balasubramanian, N. Chandramowliswaran, “Tree Generation Theorems”, Kyoto Interat. Conf.
on Computational Geometry and Graph Theory- in honor of Jin Akiyama and Vasek Chvatal on
their 60th
birthdays, June 11-15, 2007,Kyoto, Japan.
40. K. Balasubramanian, N. Chandramowliswaran, N. Ramachandran, S. Arun, Pawan Kumar,
“Arithmetical properties of Tree Generation codes and algorithm to generate all tree codes for a
given number of edges”, Kyoto Interat. Conf. on Computational Geometry and Graph Theory- in
honor of Jin Akiyama and Vasek Chvatal on their 60th
birthdays, June 11-15, 2007,Kyoto, Japan.
41. J. A. Bondy and U. S. R. Murty, “Graph Theory with Applications”, MacMillan Press Ltd, First
Edition 1976.
42. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, MIT Press,
Cambridge, 2001.

Weitere ähnliche Inhalte

Was ist angesagt?

Quaternion algebra
Quaternion algebraQuaternion algebra
Quaternion algebravikash0001
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)KarunaGupta1982
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theoremWathna
 
Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5Ayu Nitasari
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programmingShakil Ahmed
 
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesIIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesSOURAV DAS
 
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesSOURAV DAS
 
11.a focus on a common fixed point theorem using weakly compatible mappings
11.a focus on a common fixed point theorem using weakly compatible mappings11.a focus on a common fixed point theorem using weakly compatible mappings
11.a focus on a common fixed point theorem using weakly compatible mappingsAlexander Decker
 
A focus on a common fixed point theorem using weakly compatible mappings
A focus on a common fixed point theorem using weakly compatible mappingsA focus on a common fixed point theorem using weakly compatible mappings
A focus on a common fixed point theorem using weakly compatible mappingsAlexander Decker
 
IIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2021 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2021 Question Paper | Sourav Sir's ClassesSOURAV DAS
 
ゲーム理論BASIC 第42回 -仁に関する定理の証明3-
ゲーム理論BASIC 第42回 -仁に関する定理の証明3-ゲーム理論BASIC 第42回 -仁に関する定理の証明3-
ゲーム理論BASIC 第42回 -仁に関する定理の証明3-ssusere0a682
 
Magic graphs
Magic graphsMagic graphs
Magic graphsSpringer
 
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...Facultad de Informática UCM
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553Destiny Nooppynuchy
 

Was ist angesagt? (20)

Quaternion algebra
Quaternion algebraQuaternion algebra
Quaternion algebra
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)
 
Unit II B - Game Theory
Unit II B - Game TheoryUnit II B - Game Theory
Unit II B - Game Theory
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5Analisis Rill Tugas 3.5
Analisis Rill Tugas 3.5
 
Split block domination in graphs
Split block domination in graphsSplit block domination in graphs
Split block domination in graphs
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
7 chap
7 chap7 chap
7 chap
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programming
 
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesIIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
 
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
 
11.a focus on a common fixed point theorem using weakly compatible mappings
11.a focus on a common fixed point theorem using weakly compatible mappings11.a focus on a common fixed point theorem using weakly compatible mappings
11.a focus on a common fixed point theorem using weakly compatible mappings
 
A focus on a common fixed point theorem using weakly compatible mappings
A focus on a common fixed point theorem using weakly compatible mappingsA focus on a common fixed point theorem using weakly compatible mappings
A focus on a common fixed point theorem using weakly compatible mappings
 
Maths04
Maths04Maths04
Maths04
 
IIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2021 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
 
ゲーム理論BASIC 第42回 -仁に関する定理の証明3-
ゲーム理論BASIC 第42回 -仁に関する定理の証明3-ゲーム理論BASIC 第42回 -仁に関する定理の証明3-
ゲーム理論BASIC 第42回 -仁に関する定理の証明3-
 
Magic graphs
Magic graphsMagic graphs
Magic graphs
 
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
Mtc ssample05
Mtc ssample05Mtc ssample05
Mtc ssample05
 

Ähnlich wie ArproTree_journal

Estimating structured vector autoregressive models
Estimating structured vector autoregressive modelsEstimating structured vector autoregressive models
Estimating structured vector autoregressive modelsAkira Tanimoto
 
Class XII Mathematics long assignment
Class XII Mathematics long assignmentClass XII Mathematics long assignment
Class XII Mathematics long assignmentnitishguptamaps
 
The Probability that a Matrix of Integers Is Diagonalizable
The Probability that a Matrix of Integers Is DiagonalizableThe Probability that a Matrix of Integers Is Diagonalizable
The Probability that a Matrix of Integers Is DiagonalizableJay Liew
 
Proof of Kraft Mc-Millan theorem - nguyen vu hung
Proof of Kraft Mc-Millan theorem - nguyen vu hungProof of Kraft Mc-Millan theorem - nguyen vu hung
Proof of Kraft Mc-Millan theorem - nguyen vu hungVu Hung Nguyen
 
Aieee maths-quick review
Aieee maths-quick reviewAieee maths-quick review
Aieee maths-quick reviewSharath Kumar
 
Csr2011 june15 11_00_sima
Csr2011 june15 11_00_simaCsr2011 june15 11_00_sima
Csr2011 june15 11_00_simaCSR2011
 
Multivriada ppt ms
Multivriada   ppt msMultivriada   ppt ms
Multivriada ppt msFaeco Bot
 
SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS IAEME Publication
 
Efficient Analysis of high-dimensional data in tensor formats
Efficient Analysis of high-dimensional data in tensor formatsEfficient Analysis of high-dimensional data in tensor formats
Efficient Analysis of high-dimensional data in tensor formatsAlexander Litvinenko
 
Solution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodSolution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodDr. Mehar Chand
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Markettomoyukiichiba
 

Ähnlich wie ArproTree_journal (20)

graceful Trees through Graceful codes (1)
graceful Trees through Graceful codes (1)graceful Trees through Graceful codes (1)
graceful Trees through Graceful codes (1)
 
graceful Trees through Graceful codes (1)
graceful Trees through Graceful codes (1)graceful Trees through Graceful codes (1)
graceful Trees through Graceful codes (1)
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
Estimating structured vector autoregressive models
Estimating structured vector autoregressive modelsEstimating structured vector autoregressive models
Estimating structured vector autoregressive models
 
Eigenvalues
EigenvaluesEigenvalues
Eigenvalues
 
kactl.pdf
kactl.pdfkactl.pdf
kactl.pdf
 
Final
Final Final
Final
 
Class XII Mathematics long assignment
Class XII Mathematics long assignmentClass XII Mathematics long assignment
Class XII Mathematics long assignment
 
The Probability that a Matrix of Integers Is Diagonalizable
The Probability that a Matrix of Integers Is DiagonalizableThe Probability that a Matrix of Integers Is Diagonalizable
The Probability that a Matrix of Integers Is Diagonalizable
 
Proof of Kraft Mc-Millan theorem - nguyen vu hung
Proof of Kraft Mc-Millan theorem - nguyen vu hungProof of Kraft Mc-Millan theorem - nguyen vu hung
Proof of Kraft Mc-Millan theorem - nguyen vu hung
 
Aieee maths-quick review
Aieee maths-quick reviewAieee maths-quick review
Aieee maths-quick review
 
eigenvalue
eigenvalueeigenvalue
eigenvalue
 
Lecture_note2.pdf
Lecture_note2.pdfLecture_note2.pdf
Lecture_note2.pdf
 
Csr2011 june15 11_00_sima
Csr2011 june15 11_00_simaCsr2011 june15 11_00_sima
Csr2011 june15 11_00_sima
 
Multivriada ppt ms
Multivriada   ppt msMultivriada   ppt ms
Multivriada ppt ms
 
SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS
 
Bc0039
Bc0039Bc0039
Bc0039
 
Efficient Analysis of high-dimensional data in tensor formats
Efficient Analysis of high-dimensional data in tensor formatsEfficient Analysis of high-dimensional data in tensor formats
Efficient Analysis of high-dimensional data in tensor formats
 
Solution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius MethodSolution of Differential Equations in Power Series by Employing Frobenius Method
Solution of Differential Equations in Power Series by Employing Frobenius Method
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
 

Mehr von Chandramowliswaran NARAYANASWAMY (20)

M.tech.quiz (1)
M.tech.quiz (1)M.tech.quiz (1)
M.tech.quiz (1)
 
number theory chandramowliswaran theorem
number theory chandramowliswaran theoremnumber theory chandramowliswaran theorem
number theory chandramowliswaran theorem
 
invited-seminar-libre(1)
invited-seminar-libre(1)invited-seminar-libre(1)
invited-seminar-libre(1)
 
testimonial_iit_3_(3)
testimonial_iit_3_(3)testimonial_iit_3_(3)
testimonial_iit_3_(3)
 
Passman
PassmanPassman
Passman
 
recom
recomrecom
recom
 
higman
higmanhigman
higman
 
balakrishnan2004
balakrishnan2004balakrishnan2004
balakrishnan2004
 
April2012ART_01(1)
April2012ART_01(1)April2012ART_01(1)
April2012ART_01(1)
 
DDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDD
 
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
 
PETERSON BERGE
PETERSON BERGEPETERSON BERGE
PETERSON BERGE
 
FDP SumCourse Schedule July 2009 (1)
FDP SumCourse Schedule July  2009 (1)FDP SumCourse Schedule July  2009 (1)
FDP SumCourse Schedule July 2009 (1)
 
kyoto-seminar
kyoto-seminarkyoto-seminar
kyoto-seminar
 
japan-invite
japan-invitejapan-invite
japan-invite
 
R.S.A Encryption
R.S.A EncryptionR.S.A Encryption
R.S.A Encryption
 
scsvmv-testimonial
scsvmv-testimonialscsvmv-testimonial
scsvmv-testimonial
 
feedback_IIM_Indore
feedback_IIM_Indorefeedback_IIM_Indore
feedback_IIM_Indore
 
testimonial-iit_1 (4)
testimonial-iit_1 (4)testimonial-iit_1 (4)
testimonial-iit_1 (4)
 

ArproTree_journal

  • 1. 1 Arithmetical properties of tree generation codes and algorithm to generate all tree codes for a given number of edges K. Balasubramaniana , S. Arunb , N. Chandramowliswaranc , a Department of Statistics , Indian Statistical Institute, New Delhi, India. b Department of Computer Science & Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya, Kanchipuram, Kanchipuram-631 561, India. c Department of Mathematics, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya, Kanchipuram-631 561, India. c E Mail: ncmowli@hotmail.com Abstract: Graceful Code is a way to represent graceful graph in terms of sequence of non-negative integers. Given a graceful graph G on “q” edges, we can generate its graceful code in the form of (a1, a2, a3, …, aq−1, aq) to represent the graph. Similarly, we can easily draw the graph from the given graceful code. In this paper, we present an algorithm to generate all possible tree codes on a given number of edges. Moreover, we also present the arithmetic properties of tree generating codes and an algorithm to check whether the code of a given graceful graph represents a tree or not. This algorithm uses prüfer code techniques on graceful codes to perform tree checking. The prüfer technique of removing the lowest labeled leaf easily determines the code to be a tree or not. Keywords: Graceful graphs, Graceful codes, α-valuable codes. Introduction: Definition 1: A Graceful labeling of a simple graph G with “q” edges is an injection “f ” from the vertices of G to the set {0, 1, 2, 3, …, q} such that the induced function g: E→{1, 2, …, q}, g(e) = | f(u) −−−− f(v) | for every edge e ={u, v}, is a bijective function A graph, which has a graceful labeling, is called a Graceful graph. This labeling was originally introduced in 1967 by Rosa who has also showed that the existence of a graceful labeling of a given graph G with “q” edges is a sufficient condition for the existence of a cyclic decomposition of a complete graph of order “2q+1” into sub-graphs isomorphic to G. [See References]. The famous Graceful Tree Conjecture says that all trees have a graceful labeling. Section 1 of this paper describes definitions and notations of graceful codes. Section 2 discusses Arithmetical Properties of Tree Generation Codes. Section 3 describes algorithm to generate all tree codes for a given number of edges.
  • 2. 2 Section 1 Code of a Graceful Graph: Let G be any graceful graph on “q” edges then (a1, a2, a3, …, aq− 1, aq) is called a graceful code of G, if 0 ≤ ai ≤ q−−−− i, 1 ≤ i ≤ q. Here ai is the lower end vertex of the edge label “i”. It is important to note that aq is always zero. Example: Code= (4, 3, 1, 2, 1, 0) Figure 1 shows a graceful graph on 6 edges. The code of this graceful graph is = (4, 3, 1, 2, 1, 0), where a1= 4= lower end vertex of the edge label “1”. a2= 3= lower end vertex of the edge label “2”. a3= 1= lower end vertex of the edge label “3”. a4= 2= lower end vertex of the edge label “4”. a5= 1= lower end vertex of the edge label “5”. a6= 0= lower end vertex of the edge label “6”. For every graceful graph G we can write its corresponding graceful code. Conversely, for every given graceful code we can draw the corresponding graceful graph as follows. Join edges: {(a1, 1 + a1), (a2, 2 + a2), …, (aq −−−− 1, q −−−− 1 + aq −−−− 1), (aq, q + aq)} Definition 2: α-valuable Code: Let G be a graceful graph on “q” edges. Then the code (a1, a2, a3,…, aq) is called α-valuable code of G if Here a1 is called the separator or critical value of the α-valuable code. a1 ≥ ai ; for all i Max {ai | 0 ≤ i ≤ q} < Min {i + ai | 0 ≤ i ≤ q}
  • 3. 3 The following Proposition gives the criteria for the graceful code to be an α-valuable code, Proposition (a1, a2, a3, …, aq) represents an α-valuable code if and only if 0 ≤ (a1 – aq − i + 1 / q – i) ≤ 1 for all i, 1 ≤ i ≤ q −1 Equivalently, (a1, a2, a3, ..., aq − 1, aq) represents an α-valuable code if and only if (a1 – aq, a1 – aq −−−−1, …, a1 – a3, a1 – a2, 0) represents a code of a graceful graph. Notation: If X= (a1, a2, …, aq) is a given α-valuable code of a graph G, then {a1, a2,…, aq}are lower vertices of G, and {1 + a1, 2 + a2, …,q + aq} are upper vertices of G. In this paper, we identify vertices as labels. Section 2 Arithmetic properties of Tree Generation codes THEOREM 1 Let X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges. Let p ≤ q − a1. Then, (σ (a1 + 1), σ (a1 + 2), …, σ (a1 + p), X) always represent a tree code on “q + p” edges for any σ Є Sp= Symmetric group on “p” symbols. Proof: Let the code (σ (a1 + 1), σ (a1 + 2), …, σ (a1 + p), X) represent the graph H and the code X represent a tree T, a subgraph of H such that the upper vertices of T in H are {1 + a1 + p, 2 + a1+ p,…, q + p}. Consider the induced subgraph G of H on vertices {1 + a1, 2 + a1,…, q}. This subgraph G has components G1, G2, …, Gk (Some of the components contain only one vertex) with the following properties: 1. 1 + a1= t1 + a1∈ G1, …, ti + a1 ∈ Gi, (1≤ i ≤ k), 1≤ ti ≤ p 2. t1+ a1 < t2+ a1 < …< tk+ a1. 3. ti+ a1 is the least labeled pendant vertex in Gi, such that any x< ti+ a1, i ≥ 2 ⇒ x∈ V(G1)∪…∪V(Gi –1) 4. Let Mi ∈ V(Gi) be the maximum label. Now there is a unique edge ei = {Mi, Ci}, Ci ∈{1 + a1 + p, 2 + a1+ p,…, q + p}. Here it is easy to see that each Gi is a caterpillar(removal of pendant vertices leads to a path), hence the given graph H represent a tree.
  • 4. 4 ……………… COROLLARY 1 Consider the following caterpillar, ( )11 2 ,( 1) ,...,1 ,0N N N N + − α αα α . Let “p” be any positive integer ≤ 1 1 N i i Nα + = −∑ Then ( )11 2 ( 1), ( 2),..., ( ), ,( 1) ,...,1 ,0N N N N N p N Nσ σ σ + + + + − α αα α always represent a tree code on 1 1 N i i pα + = +∑ edges for any σ Є Sp= Symmetric group on “p” symbols. COROLLARY 2 ( )(1), (2),..., ( ),0q qσ σ σ always represent a tree code on “2q” edges for any σ Є Sp= Symmetric group on “p” symbols. COROLLARY 3 Let Ψ be any permutation on {2q+1, 2q+2, …, 4q}. Then (Ψ(2q+1),Ψ(2q+2), …, Ψ(4q), X) represents atree code on 6q edges. Where X= (2q, 2q – 1, …, q + 1, q + σ(q), q – 1+ σ(q – 1), …, 2 + σ(2), 1 + σ(1), σ(1), …, σ(q), 0q ), σ Є Sq= Symmetric group on “q” symbols. Proof: It is straight forward to verify X= (2q, 2q – 1, …, q + 1, q + σ(q), q – 1+ σ(q – 1), …, 2 + σ(2), 1 + σ(1), σ(1), …, σ(q), 0q ) represent a α- valuable tree code on “4q” edges and then applying Theorem 1, we have the corollary –3. THEOREM 2 Let X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges, such that q − a1= odd integer. Then for any m ≥ 2, ( )1 1( 1, 2,..., ) ,m a a q X+ + always represent a tree code on “m(q − a1) + q” edges. COROLLARY 1 For any odd positive integer q and m ≥ 2, ( )1 ( 1, 2,...,2 ) , , 1, 2,...,2,1,0m q q q q q q q q+ + + − − represent a tree code on “(m + 3)⋅ q” edges. T ek e2 e1 GkG2G1 C1 C2 Ck 1+a1 M1 t2 + a1 M2 tk + a1 Mk
  • 5. 5 THEOREM 3 Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges. Assume q - a1= even integer. Then for any positive integer m ≥ 2, ( )1 1 1 1 1 1( 1, 2,..., , ) , 1, 2,..., 1, ,m a a q a a a q q X− + + + + − represents a tree code on “(m + 1)q − a1⋅ m + m −1” edges. THEOREM 4 Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges such that, i. q is odd. ii. a1 is even. Then, (1 + a1, σ (a1 + 3), 1 + a1, σ (a1 + 5), 1 + a1, …, 1 + a1, σ (q), 1 + a1, X) represents a tree code on “2q − a1” edges. Here σ is any permutation on “(q − a1 − 1)/ 2” symbols= {a1+3, a1+5, …, q}. Here 1 + a1 is repeated “(q − a1 + 1)/ 2” times. THEOREM 5 Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges. Assume, 1) 3│q and 3│a1. 2) a1 ≤ 2⋅ q / 3. 3) q ≥ 6. Then, (a1 + q − 2, a1 + q - 5, …, 4 + a1, 1 + a1, a1 + q − 3, a1 + q – 4, a1 + q - 6, a1 + q − 7, …, a1 + 3, a1 + 2, X) always represent a tree code on “2⋅ q-2” edges. THEOREM 6 Suppose X= (a1, a2, …, aq) be a given α - valuable tree code on “q” edges, such that, 1. q = even. 2. a1 = even. 3. a1 ≤ q / 2 and q ≥ 4. Then, (a1 + q − 1, a1 + q − 3, …, 3 + a1, 1 + a1, a1 + q − 2, a1 + q − 4, …, a1 + 4, a1 + 2, X) always represent a tree code on “2⋅ q − 1” edges.
  • 6. 6 Tree Codes 1. (1 n , n + 2, …, n + r + 1, 1 n , 0 2n + r ) represents a tree code on “4⋅ n + 2⋅ r” edges for any positive integer n, r. 2. (1, 3, 4, …, n + 2, 1, 0 n + 2 ) always represent a tree code on “2⋅ n + 4” edges. 3. (1, σ (3), σ (4), …, σ (n + 2), 1, 0 n + 2 ) always represent a tree code on “2⋅ n + 4” edges for any σ Є Sn= Symmetric group on n symbols. 4. (1, 2, …, 2n, 2n + 1, 1, 2, …, 2n, 0 4n + 1 ) represent a tree code on “8⋅ n+2” edges for any n ≥ 1. 5. (1, 3, 1, 5, 1, 7, 1, …, 1, 2n + 1, 1, 0 2n + 1 ) represent a tree code on “4⋅ n + 2” edges. 6. (1, σ (3), 1, …, 1, σ (2n + 1), 1, 0 2n + 1 ) represent a tree code on “4⋅ n + 2” edges for any σ Є Sn = group of permutations on n= {3, 5, …, 2n+1} symbols. THEOREM 7 Suppose (a1, a2, …, aq − 1, aq) represents code of a graceful tree on “q” edges. Then X = (aq + q, aq – 1 + q −1, …, 2 + a2, 1 + a1, x, a1, a2, a3, …, aq − 1, aq), [0 ≤ x ≤ q] represent a α–valuable tree code on “2q + 1” edges. Define, U (X) = (q + 1 + (aq, aq − 1, …, a2, a1), x + q + 1, q + 1 + (a1 + 1, a2 + 2, …, aq + q )) U (X) R = (q + 1 + (aq + q, aq − 1 + q – 1, …, a2 + 2 , a1 + 1) , x + q + 1, q + 1 + (a1, a2, …, aq − 1, aq)) Then, (U (X) R + (k – 2) q, U (X) R + (k – 3) q, …, U (X) R + q, U (X) R , X) always represent a α–valuable tree code on “2⋅ k⋅ q + k” edges. (k ≥ 3) +== + THEOREM 8 Let X1 = (q, a2 (1) , a3 (1) , …, a2q (1) , a2q + 1 (1) ) X2 = (q, a2 (2) , a3 (2) , …, a2q (2) , a2q + 1 (2) ) …………………………………… Xi = (q, a2 (i) , a3 (i) , …, a2q (i) , a2q + 1 (i) ) …………………………………… Xk = (q, a2 (k) , a3 (k) , …, a2q (k) , a2q + 1 (k) ) represent “k” α–valuable tree codes on “2q + 1” edges of trees T1, T2, …, Ti, …, Tk respectively (k ≥ 3) Define, U (Xi) = (q + 1, 2 + a2 (i) , 3 + a3 (i) , …, 2q + a2q (i) , 2q + 1 + a2q + 1 (i) ) U (Xi) R = (2q + 1 + a2q + 1 (i) , 2q + a2q (i) , …, 3 + a3 (i) , 2 + a2 (i) , q + 1), for 1 ≤ i ≤ k.
  • 7. 7 Then, (U (X1) R + (k – 2) q, U (X2) R + (k – 3) q, …, U (Xk - 2) R + q, U (Xk - 1) R , Xk) represent α–valuable tree code of a tree “T” on “2⋅ k⋅ q + k” edges such that E (T) = E (T1) U E (T2) U … U E (Tk) Also, (U (X1) R + (k – 2) q, U (X2) R + (k – 3) q, …, U(Xk - 2) R + q, U (Xk - 1) R , 0, Xk) represent a α–valuable tree code of a tree “S” on “2⋅ k⋅ q + k+ 1” edges. THEOREM 9 Suppose (a1, a2, …, aq − 1, aq) represent a α- valuable tree code of a graceful tree on “q” edges. Then, X = (aq + q, aq − 1+ q − 1, …, 2 + a2, 1 + a1, a1, a2, a3, …, aq − 1, aq), represent a α–valuable tree code on “2q” edges. Define, Y = (2q – 1, 2q – 2, …, q + 1, q, q – 1, q – 2, …, 1, 0) – X. = (q – 1, q – 1 – aq − 1, …, q – 1 – a2, q – 1 – a1, q – 1 – a1, q – 2 – a2, …, 1 – aq − 1, 0) U (Y) = (q, q + 1 − aq − 1, …, 2q – 2 – a2, 2q – 1 – a1, 2q – a1, 2q – a2, …, 2q – aq − 1, 2q). U (Y)R = (2q, 2q – aq − 1, …, 2q – a2, 2q – a1, 2q – 1 – a1, 2q – 2 – a2, …, q + 1 – aq − 1, q). Then, (U (Y) R + (k – 2) q, U (Y) R + (k – 3) q, …, U (Y) R + q, U(Y)R , Y) always represent a α–valuable tree code on “2⋅ k⋅ q ” edges (k ≥ 3).== = Section 3 Generation of all Tree codes on a given number of edges Before we present an algorithm to generate all tree codes on a given number of edges, we summarize the following concepts involved in formulating the algorithm. Cantor Representation Every non-negative integer less than q! has a unique Cantor representation, a1⋅(q – 1)! + a2⋅(q – 2)! + …+ aq − 2 ⋅2! + aq – 1 ⋅1! where ai is a nonnegative integer not exceeding q - i, for i = 1, 2, …, q − 1. The integers a1, a2, …, aq − 1 are called the Cantor coefficients of this integer. Therefore a unique code can be obtained for every nonnegative integer less than q! of the form, (a1, a2, a3, …, aq − 1, 0) where 0 ≤ ai ≤ q − i, for 1 ≤ i ≤ q. This representation is called graceful code representation of this integer.
  • 8. 8 Now we have the following method to convert any non-negative integer less than q! to a graceful code, 1. Divide the given nonnegative integer (x < q!) by (q – i)!, for i = 1, 2, …, q. 2. Place at the ith position, c = x / (q − i)!. 3. Subtract c⋅(q – i)! from x. i.e., x = x – c⋅(q – i)!. 4. Repeat steps 1 to 3 till i = q, when at the end of the qth iteration x becomes zero. 5. The string finally obtained is the graceful code representation of the nonnegative integer x. Example. The graceful code (a1, a2, a3, a4, a5) that correspond to the integer 89 is (3, 2, 2, 1, 0) Here x = 89, n = 5, 1 ≤ i ≤ 5. Begin by dividing 89 by 4!. From step 2, we obtain c = 3. Therefore, a1 = 3. Next, subtract 72 from 89(By step 3). x reduces to 17. Now, 17 is divided by 3!, clearly a2 = 2, since 17/ 3! = 2. Now subtract 12 from 17. Proceeding in a similar way we get, a3 = 2, a4 = 1 and a5 = 0. Therefore the graceful code representation of 89 is (3, 2, 2, 1, 0). Algorithm 1 converts any nonnegative integer less than q! to its corresponding unique graceful code. Therefore we can also generate all graceful codes on given q. Algorithm 1: Conversion of any nonnegative integer to Code of length q. NUMBER_TO_CODE (q, x: integers with q ≥ 1 and 0 ≤ x ≤ q! − 1) create array a[1 . . q] a[q] ← 0 fact ← FACTORIAL (q −−−− 1) /* returns (q – 1)! for k ← 1 to q − 1 a[k] ← x / fact x ← x − (a[k] * fact) fact ← fact / FACTORIAL(q −−−− k) /* a[] contains the code corresponding to integer x. Now, we are able to generate all graceful codes on a given number of edges. These codes are tested for tree property using prüfer tree checking algorithm ([3], [38]). Every graceful code generated is tested for tree property before next code is generated. As a result, all tree codes are isolated on a given number of edges. Prüfer tree checking algorithm Let the “q+1” vertices of a graceful tree T be labeled 0, 1, 2, …, q. The pendant vertex (and the edge incident on it) having the smallest label, which is, say a1 is removed. Suppose that b1 was the vertex adjacent to a1. Among the remaining “q” vertices let a2 be
  • 9. 9 the pendant vertex with the smallest label and b2 be the vertex adjacent to a2. The edge (a2, b2) is removed. This operation is continued on the remaining “q−1” vertices, and then on “q−2” vertices, and so on. This process is terminated after “q−1” steps, when only two vertices are left. Now the graceful tree T defines the following prüfer sequence, (b1, b2, …, bq−−−−1) uniquely. When we work with graceful codes, we are performing the operation as described above by eliminating the least pendant vertex and the edge incident on it. If all the edges can be exhausted after “q−1” steps, the given code represent a graceful tree T. If we could not exhaust all the edges, then the given code represent a disconnected graph which contains a cycle. Algorithm to decide whether the code of a graceful graph represents a tree or not Algorithm 2: To check the code of a graceful graph represents a tree or not. Input. Number of edges q and graceful code a[] Output. Either a[] represents a tree or not. PRUFER_TREECHECKING (q: Number of edges, a[]: Code of the graceful graph) q1← q for i ← 0 to q − 1 if (a[i] < 0 or a[i]> q − i − 1) /* not a graceful code exit for i ←1 to q do b[i −1] ← i + a[i −1] /* upper code stored in array b[] for key ← 0 to q1 element ← 0 j ← 0 while (j < q) if (key = a[j] or key = b[j]) element ← element +1 j ← j + 1 else j ← j + 1 if (element = 0) /*code does not represent tree
  • 10. 10 exit key ← 0 while (key ≤ q1) element ← 0 j ← 0 while (j < q) if (key = a[j] or key = b[j]) element ← element + 1 j ← j + 1 else j ← j + 1 key ← key + 1 if (element = 1) SEARCH (key −1) if (z < 2*q1) /*code does not represent tree SEARCH (temp) for n ← 0 to q − 1 if (a[n] = temp or b[n] = temp) /*returns position of pendant vertex in the code TREEVERT (n) VERDELETE (n, q) key ← 0 VERDELETE (n, k) for x ← n to k − 2 a[x] ← a[x + 1] /* vertices deleted from lower and upper code b[x] ← b[x + 1] k ← k − 1 q ← k TREEVERT (d) tree [z] ← a[d] z ← z + 1 tree [z] ← b[d]
  • 11. 11 z ← z + 1 if (z = 2*q1) /* all edges are exhausted /* code represents a tree Generation of all Tree Codes on a given number of Edges Using the algorithms discussed earlier, we now construct an algorithm, which generates all possible graceful tree codes on a given number of edges. Algorithm 3: Generation of all Tree Codes Input. Number of edges “q” Output. All tree codes on “q” edges. TREECODE_GENERATION (q) 1. q ← q1 ← n 2. create arrays a[1 . . n] and b[1 . . n] to store lower and upper code respectively 3. a[n] ← 0, b[n] ← n 4. fact1 ← FACTORIAL (n) 5. fact ← facts ← fact1 / n 6. for inc ← 0 to fact1/ 2 /* Restricted to Complimentary Labeling 6.1. inc1 ← inc 6.2. fact ← facts 6.3. for k ← 1 to n − 1 6.3.1. a[k] ← inc / fact 6.3.2. b[k] ← k + a[k] 6.3.3. inc1 ← inc1 − (a[k] * fact) 6.3.4. fact ← fact / (n − k) 6.4. sp ← 0 6.5. element ← INITIAL_TREECHECKING (a, b, n) /*Check whether all numbers from 0 to q appear or not 6.6. key ← 0 6.7. while key ≤ q1 6.7.1. element ← 0 6.7.2. for j ← 1 to q 6.7.3. begin 6.7.3.1. if key = a[j] or key = b[j] /*To select least pendant vertex
  • 12. 12 6.7.3.1.1. element ← element + 1 6.7.3.1.2. j ← j + 1 6.7.3.2. else 6.7.3.2.1. j ← j + 1 6.7.4. end 6.7.5. if element = 1 6.7.5.1. temp1[sp] ← key /* exhausted vertex stored here 6.7.5.2. sp ← sp + 1 6.7.5.3. SEARCH (key) 6.7.5.4. exit while 6.7.6. else 6.7.6.1. key ← key + 1 6.8. while key ≤ q1 6.8.1. flag = ELIMINATE_VERTEX ( key, sp) /*Remove pendant vertex 6.8.2. if flag = 1 6.8.2.1. key ← key + 1 6.8.3. else 6.8.3.1. element ← 0 6.8.4. for j ← 1 to q 6.8.5. begin 6.8.5.1. if key = a[j] or key = b[j] 6.8.5.1.1. element ← element + 1 6.8.5.1.2. j ← j + 1 6.8.5.2. else 6.8.5.2.1. j ← j + 1 6.8.6. end 6.8.7. if element = 1 6.8.7.1. temp1[sp] ← key 6.8.7.2. sp ← sp + 1 6.8.7.3. SEARCH (key) 6.8.8. else 6.8.8.1. key ← key + 1 6.9. end while 7. if z = q1 7.1. q ← n 7.2. count ← count + 1
  • 13. 13 7.3. z ← 0 7.4. /* Display a[] as tree code 8. else /* all edges are not exhausted 8.1. z ← 0 8.2. q ← n 8.3. inc ← inc + 1 /* Get next code 8.4. /* Display number of tree codes, count SEARCH (temp) for i ← 1 to q /*returns the position of pendant vertex if a[i] = temp or b[i] = temp z ← z + 1 VERDELETE (i, q) end if key ← 0 INITIAL_TREECHECK (x[], y[], n) 1. for key ← 1 to q − 1 1.1. element ← 0 1.2. for j ← 1 to d − 1 1.2.1. if key = x[j] or key = b[j] 1.2.1.1. element ← element + 1 1.2.1.2. key ← key + 1 1.2.2. else 1.2.2.1. key ← key + 1 1.3. if element = 0 1.3.1. key ← key +1 2. return element VERDELETE (s, k) for x ← s to k − 1 a[x] ← a[x + 1] b[x] ← b[x + 1] k ← k − 1 q ← k
  • 14. 14 FACTORIAL (f) fac ← 1 if f = 0 or f = 1 return 1 else for i ← 1 to f fac ← fac * I return fac ELIMINATE_VERTEX (temp, spc) flag1 ← 0 for i ← 1 to spc if temp = temp1[i] /* temp1[] stores exhausted vertices flag1 ← 1 return flag1 else i ← i + 1
  • 15. 15 The following table shows the number of all possible tree codes (restricted to complimentary labeling) up to 13 edges No. of Edges ‘q’ No. of Tree Codes Tn 1 1 2 1 3 2 4 6 5 20 6 82 7 376 8 2010 9 11788 10 77816 11 556016 12 4366814 13 36773666
  • 16. 16 Reference: 1. R. E. Aldred, J. Siran and M. Siran, “A note on number of Graceful Labellings of Paths”, Discrete Math., 261, 27−30, 2003. 2. Mousa Alfalayleh, Ljiljana Brankovic, Helen Giggins and Md. Zahidul Islam, “Towards the Graceful Tree Conjecture: A Survey” 3. S. Arun, “A Project Report on Graceful Labellings” Nov 2006, Dept. of Computer Science & Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya (Deemed University), Kanchipuram. 4. V. Bhat Nayak and U. Deshmukh, “New Families of Graceful Banana Trees”, Proc. Indian Acad. Sci. Math. Sci., 106, 187-190, 1996. 5. C. P. Bonnington and J. Siran, “Bipartite Labelling of Trees with Maximum Degree Three”, Journal of Graph Theory, 31, 37-56, 1999. 6. L. Brankovic, A. Rosa and J. Siran, “Labelling of Trees with Maximum Degree Three - And Improved Bound”, preprint. 7. H. J. Broersma and C. Hoede. “Another Equivalent of Graceful Tree Conjecture” Ars Combinatoria, 51, 183-192, 1999. 8. M. Burzio and G. Ferrarese, “The Subdivision Graph of a Graceful Tree is a Graceful Tree”, Discrete Mathematics, 181,275-281, 1998. 9. F. Van Bussel, “Relaxed Graceful Labellings of Trees”, The Electronic Journal of Combinatorics, 9(1), #R4, 2002. 10. S. M. Hegde and S. Shetty, “On Graceful Trees”, Applied Mathematics E-Notes, 2, 192-197, 2002. 11. P. Hrnčiar and A. Haviar, “All Trees of Diameter Five are Graceful”, Discrete Mathematics, 233, 133-150, 2001. 12. C. Huang, A. Kotzig and A. Rosa, “Further Results on Tree Labellings”, Util. Math., 21C, 31-48, 1982. 13. C. Huang and A. Rosa, “Decomposition of Complete Graphs into trees”, Ars Combinatoria, 4 (1978), 23-63. 14. J. A. Gallian, “A Dynamic Survey of Graph Labelling”, Electronic Journal of Combinatorics, DS6 (October 2003). 15. K. M. Koh, D. G. Rogers and T. Tan, “A Graceful Arboretum: A Survey of Graceful Trees”, Proc. of Franco-Southeast Asian Conference, Singapore, May 2, 279-292, 1979. 16. A. Kotzig, “On Certain Vertex-Valuations of Finite Graphs”, Utilitas Math., 4, 261-290, 1973. 17. H. K. Ng, “Gracefulness of a Class of Lobsters”, Notices AMS, 7, 825-2924, 1986.
  • 17. 17 18. Pawan Kumar, Graceful Graph: Code Operator, Software Project Thesis- Nov 2005, Dept. Of Computer Science & Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya (Deemed University), Kanchipuram. 19. A. Rosa, “On Certain Valuations of the Vertices of a Graph”, Theory of graphs (Proc. Internat. Symposium, Rome, 1966), Gordon and Breach, N. Y. and Dunod Paris, 349-355, 1967. 20. A. Rosa, “Labelling Snakes”, ARS Combinatoria, 3, 67-74, 1977. 21. A. Rosa and J. Sira, “Bipartite Labellings of Tree and the Gracesize”, Journal of Graph Theory, 19, 201-215, 1995. 22. R. Stanton and C. Zarnke, Labelling of Balanced Trees”, Proc. 4th Southeast Conference of Comb., Graph Theory, Computing, 479-495, 1973. 23. S. Zhao, “All Trees of Diameter Four Are Graceful” Annals New York Academy of Sciences, 700-706, 1986. 24. R. E. Aldred and B. D. McKay, “Graceful and Harmonious labellings of Trees ”, Bull. Inst. Combin. Appl., 23, 69-72, 1998. 25. J. C. Bermond, “Graceful Graphs, Radio Antennae and French Windmills”, Graph Theory and Combinatorics, Pitman, London, 13-37, 1979. 26. J. C. Bermond and D. Sotteau, “Graph Decompositions and G-design”, Proc. 5th British Combinatorics Conference, 1975, 52-72 (Second Series), 12, 25-28, 1989. 27. W. C. Chen, H. I. Lü and Y. N. Yeh, “Operations of Interlaced Trees and Graceful Trees”, South East Asian Bulletin of Mathematics, 21, 337-348, 1997. 28. P. Erdos, P. Hell and P. Winkler, “Bandwidth versus Bandsize”, Annals of Discrete Mathematics, 41, 117-130, 1989. 29. S. W. Golomb, “How to Number a Graph”, Graph Theory and Computing, R. C. Read, Academic Press, New York, 23-37, 1972. 30. B. Mohar, “The laplacian spectrum of graphs”, Graph Theory, Combinatorics, and Applications, 2, 279-292, 1979. 31. D. Morgan, “Gracefully Labelled Trees from Skolem sequences”, Proc. of Thirty-first South Eastern Internat. Conf on Combin., Graph Theory, and Computing (Boca Raton, Fl, 2000), Congressus Numerantium, 142, 41-48, 2000. 32. D. Morgan and R. Rees, “Using Skolem sequences and Hooked-skolem sequences to generate Graceful Trees”, Journal of Combinatorial Mathematics and Combinatorial Computing, 44, 47-63, 2003. 33. A. M. Pastel and H. Raynaud. “Les Oliviers sont gracieux” Colloq. Grenoble, Publications Université de Grenoble, 1978. 34. G. Ringel, “Problem 25”, Theory of Graphs and its Applications (Proc. Sympos. Smolenice 1963, Nakl. CSAV, Praha 1964), 1978.
  • 18. 18 35. D. A. Sheppard, “The factorial Representation of Balanced Graceful Graphs”, Discrete Math., 15, 379-388, 1976. 36. J. G. Wang, D. J. Jin, X. G. Lu and D. Zhang, “The gracefulness of a class of Lobster Trees”, Mathematical Computer Modeling, 20, 105-110, 1994. 37. K. Balasubramanian, N. Chandramowliswaran, N. Ramachandran, Pawan Kumar, “Generation of graceful trees through graceful codes”, Internat. Conf. on Number Theory and Combinatorics, SASTRA University, December 2006. 38. K. Balasubramanian, S. Arun, N. Chandramowliswaran, “Algorithm for a given code of a graceful graph represents a tree”, Internat. Conf. on Number Theory and Combinatorics, SASTRA University, December 2006. 39. K. Balasubramanian, N. Chandramowliswaran, “Tree Generation Theorems”, Kyoto Interat. Conf. on Computational Geometry and Graph Theory- in honor of Jin Akiyama and Vasek Chvatal on their 60th birthdays, June 11-15, 2007,Kyoto, Japan. 40. K. Balasubramanian, N. Chandramowliswaran, N. Ramachandran, S. Arun, Pawan Kumar, “Arithmetical properties of Tree Generation codes and algorithm to generate all tree codes for a given number of edges”, Kyoto Interat. Conf. on Computational Geometry and Graph Theory- in honor of Jin Akiyama and Vasek Chvatal on their 60th birthdays, June 11-15, 2007,Kyoto, Japan. 41. J. A. Bondy and U. S. R. Murty, “Graph Theory with Applications”, MacMillan Press Ltd, First Edition 1976. 42. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, 2001.