SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Downloaden Sie, um offline zu lesen
COMPLEX NUMBERS

    1.00         The complex number system


   There is no real number x which satisfies the polynomial equation x2 1 0 . To permit solutions of this
   and similar equations, the set of complex numbers is introduced.

   We can consider a complex number as having the form a + bi where a and b are real number and i, which
   is called the imaginary unit, has the property that i 2       –1 . It is denoted by z i.e. z = a + ib. ‘a’ is called as
   real part of z which is denoted by (Re z) and ‘b’ is called as imaginary part of z which is denoted by (Im
   z).

   Any complex number is:

     (i)    Purely real, if b = 0              (b) Purely imaginary, if a = 0                 (c) Imaginary, if b    0

   Note :

     (a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the complete
            number system is N      W      I     Q    R    C.

     (b) Zero is purely real as well as purely imaginary but not imaginary.

     (c)    i     –1 is called the imaginary unit. Also i 2      –1; i3   –i; i 4    1 etc.

     (d)        a b    ab only if atleast one of a or b is non–negative.

     (e) is z = a + ib, then a – ib is called complex conjugate of z and written as z a – ib .


    1.01 Algebraic Operations
    111
   Fundamental operations with complex numbers
    1
   In performing operations with complex numbers we can proceed as in the algebra of real numbers,
   replacing i 2 by –1 when it occurs.

     (1)    Addition (a bi) (c di)         a bi c di           (a c) (b d )i

     (2)    Subtraction (a bi) – (c di)        a bi – c – di     (a – c) (b – d )i

     (3)    Multiplication (a bi) (c di)        ac adi bci bdi 2          (ac – bd ) (ad bc)i

Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866                   Page 1
a bi a bi c – bi                 ac – adi bci – bdi 2 ac bd (bc – ad )i ac bd bc – ad
     (4)   Division       =                                                =                 = 2   +        i.
                      c di c di c – di                       c2 – d 2i 2        c2 – d 2      c d 2 c2 d 2

   Inequalities in complex numbers are not defined. There is no validity if we say that complex number is
   positive or negative. e.g. z > 0, 4 + 2i < 2 + 4i are meaningless.

   In real numbers if a 2 b2             0 then a 0 b however in complex numbers, z12             2
                                                                                                 z2   0 does not imply z1   z2    0.


   Illustration 1 :    Find multiplicative inverse of 3 + 2i, then

   Solution:            Let z be the multiplicative inverse of 3 2i, then
                                z.(3 2i) 1
                                          1           3 – 2i
                                z
                                         3 2i       3 2i 3 – 2i
                                          3 2
                                z          – i
                                         13 13
                                     3 2
                                      – i            Ans.
                                    13 13




    1.02 Equality In Complex Number
    111
   Two complex numbers z1 a1 ib1 & z2 a2
    1                                                              ib2 are equal if and only if their real and imaginary parts are

   equal respectively. i.e. z1            z2            Re( z2 ) and I m ( z1 )   I m ( z2 ) .


   Illustration 2 :    Find the value of x and y for which (2 3i) x2 – (3 – 2i) y 2 x – 3 y 5i where x, y R.

   Solution:           ( z 3i ) x 2 – (3 – 2i ) y       2 x – 3 y 5i
                                2x – 3y
                                     2
                                                   2x – 3y
                                x2 – x         0
                             x       0, 1 and 3x 2       2y    5
                                                   5
                            if x         0, y        and if x 1, y 1
                                                   2
                                                5
                            x       0, y          and x 1, y 1
                                                2




Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866                               Page 2
Illustration 3 :   Find the value of expression x4 – 4x3 3x2 – 2x 1 when x 1 i is a factor of expression.

   Solution:          x 1 i
                              x –1 i                           ( x –1) 2         –1
                              x – 2x 2
                                  2
                                                         0 Now x – 4 x3 3 x 2 – 2 x 1
                                                                      4


                           ( x 2 – 2 x 2)( x 2 – 3 x – 3) – 4 x 7
                          when x 1 i i.e. x 2 – 2 x 2                                     0
                          x 4 – 4 x3 3 x 2 – 2 x 1 0 – 4(1 i) 7
                                      – 4 7 – 4i
                                      3 – 4i                 Ans




   Illustration 4 :   Solve for z if z 2 | z | 0 .

   Solution:          Let z           x iy

                              ( x iy ) 2                x2     y2     0


                              x2 – y 2                  x2     y2    0 and 2 xy               0
                              x       0 or y            0
                      when x           0– y       2
                                                         | y| 0
                              y        0, 1, –1                            z      0, i, –1
                      when y            0           x2 | x | 0                   x    0
                              z        0            Ans.                  z       0, z        i, z   –1


   Illustration 5 :   Find square root of 7 + 40i.

   Solution:          Let (x iy ) 2               9 40i
                              x –y2        2
                                                    9                          ........(i)
                      and xy           20                                  ..........(ii )
                      squing (i ) and adding with 4times the square of (ii )
                      we get x 4               y 4 – 2x2 y 2        4x2 y 2          81 1600
                              ( x2         y 2 )2       168
                                  2        2
                              x        y          4                            ........(iii)
                      from (i) (iii) we can see that x & y are of same sign
                           x iy                  (5 4i) or           (5 4i)
                           Sq. roots of a 40i                             (5 4i)
                                  (5 4i)                     Ans.



Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866        Page 3
1.03 Representation Of A Complex Number
     111
     1
   Illustration 6 : Express the complex number z –1                              2i in polar form.


   Solution:           z     –1 i 2
                                                     2
                       |z|       (–1) 2          2            1 2    3

                                                          2
                       Arg z           – tan –1                 – tan –1 2       ( say )
                                                         1
                             z         3(cos         i sin )             where             – tan –1 2




     1.04 Modulus Of A Complex Number
     111
     1
   Illustration 7 : If | z – 5 – 7i | 9 , then find the greatest and least values of |z – 2 – 3i.|


   Solution:           We have 9 = |z – (5 + 7i)| = distance between z and 5 + 7i. Thus locus of z is the circle
                       of radius 9 and centre at 5 + 7i. For such a z (on the circle), we have to find its greatest
                       `and least distance as from 2 + 3i, which obviously 14 and 4.


   Illustration 8 :    Find the minimum value of |1 + z| + |1 – z|.
                      |1 z | 1 – z              |1 z 1 – z | (triangle inequality)
   Solution:
                             1 z        1– z         2
                           minimum value of (|1 z | |1 – z |)                2
                      Geometrically | z 1| |1 – 2 | | z 1| | z –1| which represents sum of distances of z from 1 and –1
                      it can be seen easily that minimum ( PA PB )                    AB       2
                                   1        n
                             21/ 4 e    8
                                                         Ans.




Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866             Page 4
2
   Illustration 9 :         z–               1 then find the maximum and minimum value of |z|.
                                 z

                                 2                         2                2                    2
   Solution:                z–               1      z –                z–                z   –
                                 z                         z                2                    z
                                 Let z                 r
                                              2                    2
                                     r–                1   r
                                              r                    r
                                             2
                                 r             1                       r    R                    ..........(i )
                                             r
                                                       2                                          2
                                 and              r–           1                         –1 r –     1
                                                       r                                          r
                                     r       (1, 2)                    ..........(ii )
                                 from (i) and (ii) r                   (1, 2)
                                         r       (1, 2)        Ans.




     1.05 Argument Of A Complex Number
     111
     1
   Illustration 10: Solve for z, which satisfy
                                                                   2
   Arg ( z – 3 – 2i)        and Arg ( z – 3 – 4i)                     .
                       6                                            3


   Solution:               From the figure, it is clear that there is no z, which satisfy
                           both ray.




   Illustration 11: Sketch the region given by

                       (i)       Arg ( z –1– i)                        /3                         (ii)      z     5 & Arg ( z – i –1)   /3.



   Solution:               (i)                                                                   (ii)




Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866                                            Page 5
1.06       Conjugate Of A Complex Number
    111
    1
                           z –1
   Illustration 12:   If        is purely imaginary, then prove that z                     1.
                           z 1
                            z –1
   Solution:          Re                   0
                            z 1
                                 z –1          z –1                 z –1   z –1
                                                            0                   0
                                 z 1           z 1                  z 1    z 1
                                 z z – z z –1 z z – z z –1 0
                                                    2
                                 zz 1           z       1
                                 z     1       Hence Proved.




     1.07 Rotation Theorem
     111
     1                     z –1
   Illustration 13: If Arg                          then interrupter the locus.
                                     z 1       3

                            z –1
   Solution:          arg
                            z 1            3
                                  1– z
                           arg
                                  –1 – z        3



                                      1– z
                      Here arg                      represents the angle between lines
                                      –1– z
                      joining –1 and z and 1 + z. As this angle is constant, the locus of z will be a of a circle
                      segment.(angle in a segment is count). It can be seen that locus is not the complete side
                                                            1– z                           2
                      as in the major are arg                        will be equal to –       . Now try to geometrically find
                                                            –1– z                           3

                                                                                       1                  2
                      out radius and centre of this circle. centre                0,            Radius          Ans.
                                                                                       3                  3


   Illustration 14:   If A(z + 3i) and B(3 + 4i) are two vertices of a square ABCD (take in anticlock wise
                      order) then find C and D.




Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866                         Page 6
Let affix of C and D are z3                                      z4 respectively
   Solution:                                                               0
                      Considering                DAB                  90               AD           AB


                                 z4 – (2 3i) (3 4i) – 2 3i                                                          i
                      we get                                                                                    e
                                     AD            AB                                                                2
                              z4 – (2 3i ) (1 i )i
                              z4             2 3i i –1                             1 zi
                                        z3 – (3 4i ) ( z 3i ) – (3 – 4i)    i
                              and                                        e–
                                            CB               AB              2
                              z3         3 4i – (1 i )(–i )
                              z3         3 4i i –1 z 5i


     1.08 Cube Root Of Unity
     111
     1
   Illustration 15: Find the value of                            192           194
                                                                                        .

   Solution:            192            194


                        1          2
                                                 –               Ans.

                                         2
   Illustration 16:   If 1,     ,             are cube roots of unity prove.

                      (i )     (1 –              2
                                                     )(1               –       2
                                                                                   )        4
                      (ii )    (1 –              2 5
                                                     )           (1            –        2 5
                                                                                            )           32
                      (iii ) (1 – )(1 –                  2
                                                             )(1 –         4
                                                                               )(1 –            8
                                                                                                    )       9
                      (iv)     (1 –               2
                                                      )(1 –            2           4
                                                                                       )(1 –            4       8
                                                                                                                    )..........to 2n factors   22 n

   Solution:          (i )     (1 –              2
                                                     )(1               –       2
                                                                                   )
                               (–2 )(–2                  2
                                                             )
                               4




Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866                                                    Page 7
th
     1.09 n Roots Of Unity
     111
     1
   Illustration 17: Find the roots of the equation                                        z6           64 0 where real part is positive.


   Solution:          z6          –64
                          6
                      z           z 6 .e         i (2 n 1)
                                                                            x    z
                                                  i (2 n 1)
                                                              6
                              z            ze
                                                                                     5            7               3                11
                                                  i           i         i        i            i               i                i
                              z             2e 6 , 2e 2 , ze 2 , ze                   6
                                                                                          e        6
                                                                                                       , ze        2
                                                                                                                       , ze         2

                                                                                                  i               11
                                                                                                              i
                              roots with +ve real part are                                e6             e         6


                                           i –
                                                 6
                                  2e                                  Ans.




                                                                  6
                                                                                2 k       2 k
   Illustration 18:   Find the value                                    sin         – cos     .
                                                                  k 1            7         7

                       6                          6
   Solution:                               2 k           2 k
                              sin              –     cos
                      k 1                   7    k 1      7
                                  6
                                                  2 k 6    2 k
                                       sin           – cos     1
                              k 0                  7  k 0   7
                                  6
                                       (Sum of imaginary part of seven seventh roots of unity)
                              k 0
                                       6
                              –             (Sum of real part of seven seventh roots of unity) 1
                                      k 0

                              0–0 1 1
                              i                         Ans.




    1.10       Logarithm Of A Complex Quantity


   Illustration 19:   If cos                     cos               cos           0 and also sin                            sin          sin   0, then prove that
                      (i) cos2 +cos2 +cos2 = sin2 +sin2 +sin2 = 0
                      (ii) sin3 +sin3 +sin3 = 3sin(                                                                    )
                      (iii) cos3 +cos3 +cos3 = 3cos(                                                                       )



Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866                                                                 Page 8
Solution:         Let z1            cos           i sin , z2            cos       i sin ,
                        z3        cos            i sin .
                               z1       z2        z3        (cos           cos      cos ) i(sin               sin       sin )
                              0 i.0              0                                                                    (1)
                                            1
                     (i )     Also                   (cos           i sin ) –1        cos        – i sin
                                            z1
                              1                                      1
                                        cos          – i sin ,          – cos – sin
                              z1                                     z3
                             1         1          1
                                                            (cos           cos      cos ) – i(sin             sin       sin )                   (2)
                             z1        z2         z3
                             0 – i.0         0
                     Now z         2
                                   1     z   2
                                             2
                                                      2
                                                     z3      ( z1     z2     z3 ) 2 – 2( z1 z2     z 2 z3   z3 z1 )
                                                       1      1       1
                             0 – 2 z1 z2 z3
                                                       z3     z1      z2
                             0 – 2 z1 z2 z3 .0              0, u sin g (1)and (2)
                     or       (cos               i sin ) 2          (cos         i sin ) 2       (cos       i sin ) 2       0
                     or (cos 2                    i sin 2 ) 2         cos 2        i sin 2         cos 2      i sin 2           0 i.0
                     Equation real and imaginary parts on both sides, cos 2                                             cos 2       cos 2   0 and sin 2   sin 2    sin 2   0
                     (ii ) z13           3
                                        z2         3
                                                  z3        ( z1     z2 )3 – 3 z1 z2 ( z1    z 2 ) z3
                                                                                                    3


                                                       (– z3 )3 – 3z1 z2 (– z3 ) z3 , using (1)
                                                                                  3


                                                       3z1 z2 z3
                             (cos                i sin )3           (cos         i sin )3 (cos              i sin )3
                                   3(cos               i sin )(cos               i sin )(cos            i sin )




Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866                                                        Page 9
or cos 3                          i sin 3                     cos 3                 i sin 3             cos 3           i sin 3
                                   3{cos(                                           ) i sin(                                 )}
                      Equation imaginary parts on both sides, sin 3                                                                           sin 3         sin 3   3sin(       )
                      Alternative method
                      Let C              cos                    cos                  cos                  0
                      S      sin                 sin                    sin                   0
                                                            i               i             i
                              C iS                      e               e             e               0                            (1)
                             C – iS                 e–i                 e–i               e–i             0                             (2)
                                                         –i         2                –i           2           –i       2
                      From (1)                     (e           )               (e            )       (e           )        (e )(e ) (ei )(ei ) (ei )(ei )
                                                                                                                              i     i


                                ei 2               ei 2             ei 2                  ei ei ei (e –2                    e–i     ei )
                                ei (2        )
                                                        ei 2            ei 2                  0( from 2)
                      Comparing the real and imaginary parts we
                      cos 2              cos 2                      cos 2 – sin 2                                  sin 2          sin 2          0
                      Also from (1) (ei )3 (ei )3 (ei )3                                                                   3ei ei ei
                              ei 3               ei 3           ei 3                3ei (                 )


                      Comparing the real and imaginary parts we obtain the results.

   Illustration 20:   If z1 and z2 are two complex numbers and c > 0, then prove that
                                     2                                          2                                      2
                      z1 + z2                    (I C) z1                             (I C –1 ) z2 .


   Solution:          We have to prove that:
                                     2                                          2                                      2
                      z1     z2                  (1 C ) z1                            (1 C –1 ) z2
                                         3               2                                                                    2                         3
                      i.e.     z1                 z2                z1 z2             z2 z2               (1 C ) z1               (1 C –1 ) z2
                                                                         2                            2                                   2     1 2
                      orz1 z2            z2 z2               c z1                   C –1 z2                                  or c z1              z2 – z1 z2 – z2 z2        0
                                                                                                                                                c
                      (using Re ( z1 z2 )                               z1 z2 )
                                                                             2
                                                        1
                      or       c z1 –                           z2                    0 which is always true.
                                                         c




Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866                                                                                  Page 10
Illustration 21:   If ,        [ / 6,           / 3], i 1, 2, 3, 4, 5 and z 4 cos                1    z 3 cos   2   z 3 cos   3   z cos     4   cos   5


                                                                    3
                          2 3, then show that | z |                   .
                                                                    4

   Solution:          Given that
                      cos 1 .z 4      cos 2 .z 3 cos 3 .z 2                 cos 4 .z cos        5       2 3
                      or cos 1 .z 4        cos 2 .z 3 cos 3 .z 2                cos 4 .z cos         5    2 3

                      2 3         cos 1 .z 4        cos 2 .z 3            cos 3 .z 2     cos 4 .z        cos   5

                                i [ / 6, / 3]
                             1                       3
                                    cos    i
                             2                      2
                                    3                 3                3                3            3
                       2 3            | z |4            | z |3           | z |2           |z|
                                   2                 2                2                2            2
                           3 | z |4       | z |3     | z |2      |z|
                           3 | z | | z |2            | z |3      | z |4     | z |5 ..........
                                    |z|
                             3              3–e| z | | z |
                                   1– | z |
                                                                    3
                                 4| z| 3                  |z|
                                                                    4

   Illustration 21:   Two different non parallel lines cut the circle |z| = r in point a, b, c, d respectively.
                                                                                                                   a –1 b –1 – c –1 – d –1
                      Prove that these lines meet in the point z given by z =                                                              .
                                                                                                                      a –1b –1 – c –1d –1

   Solution:          Since point P, A, B are collinear




Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866                                                           Page 11
z z 1
                             a a 1      0     z a – b – z (a – b)   ab – ab       0(i )
                             b b 1
                     Similarlym, since points P, C, D are collinear
                             z a –b c –d – z c –d a –b               cd – cd a – b – ab – ab c – d (ii )
                                                                    k      k        k
                        zz      r2   k ( say )                a      ,b     ,c       etc.
                                                                    a      b        c
                     From equation (ii ) we get
                              k k             k k                     ck kd            ak bk
                         z     – (c – d ) – z  –  ( a – b)              –   ( a – b) –   –   (c – d )
                              a b             c d                     d   c            b   a
                               a –1 b –1 – c –1 – d –1
                         z
                                  a –1b –1 – c –1d –1




Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866         Page 12

Weitere ähnliche Inhalte

Was ist angesagt?

001 basic concepts
001 basic concepts001 basic concepts
001 basic conceptsphysics101
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grauWollker Colares
 
MODULE 5- Inequalities
MODULE 5- InequalitiesMODULE 5- Inequalities
MODULE 5- Inequalitiesguestcc333c
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Functionguestcc333c
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manualMahrukh Khalid
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometryphysics101
 
X2 T01 01 complex number definitions
X2 T01 01 complex number definitionsX2 T01 01 complex number definitions
X2 T01 01 complex number definitionsNigel Simmons
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006akabaka12
 
Integrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_AnsIntegrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_Ansken1470
 

Was ist angesagt? (20)

Real for student
Real for studentReal for student
Real for student
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic concepts
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau
 
MODULE 5- Inequalities
MODULE 5- InequalitiesMODULE 5- Inequalities
MODULE 5- Inequalities
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Stepenovanje
StepenovanjeStepenovanje
Stepenovanje
 
Em09 cn
Em09 cnEm09 cn
Em09 cn
 
P2 Graphs Function
P2  Graphs FunctionP2  Graphs Function
P2 Graphs Function
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
0307 ch 3 day 7
0307 ch 3 day 70307 ch 3 day 7
0307 ch 3 day 7
 
Graphing y = ax^2 + c
Graphing y = ax^2 + cGraphing y = ax^2 + c
Graphing y = ax^2 + c
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
X2 T01 01 complex number definitions
X2 T01 01 complex number definitionsX2 T01 01 complex number definitions
X2 T01 01 complex number definitions
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
 
Integrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_AnsIntegrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_Ans
 
Nts
NtsNts
Nts
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
Math integration-homework help
Math integration-homework helpMath integration-homework help
Math integration-homework help
 
Derivadas
DerivadasDerivadas
Derivadas
 
Derivadas
DerivadasDerivadas
Derivadas
 

Ähnlich wie STUDY MATERIAL FOR IIT-JEE on Complex number

Linear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otcLinear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otckjalili
 
1 complex numbers part 1 of 3
1 complex numbers part 1 of 31 complex numbers part 1 of 3
1 complex numbers part 1 of 3naveenkumar9211
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equationsriyadutta1996
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.pptOsama Tahir
 
Sulalgtrig7e Isg 1 3
Sulalgtrig7e Isg 1 3Sulalgtrig7e Isg 1 3
Sulalgtrig7e Isg 1 3Joseph Eulo
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Kuan-Lun Wang
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiationSporsho
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005akabaka12
 
Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamielittrpgaddict
 
VIT - Mathematics -2009 Unsolved Paper
VIT - Mathematics -2009 Unsolved PaperVIT - Mathematics -2009 Unsolved Paper
VIT - Mathematics -2009 Unsolved PaperVasista Vinuthan
 
Math20001 dec 2015
Math20001 dec 2015Math20001 dec 2015
Math20001 dec 2015Atef Alnazer
 

Ähnlich wie STUDY MATERIAL FOR IIT-JEE on Complex number (20)

Linear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otcLinear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otc
 
1 complex numbers part 1 of 3
1 complex numbers part 1 of 31 complex numbers part 1 of 3
1 complex numbers part 1 of 3
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equations
 
Jejemon
JejemonJejemon
Jejemon
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Tut 1
Tut 1Tut 1
Tut 1
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
Sulalgtrig7e Isg 1 3
Sulalgtrig7e Isg 1 3Sulalgtrig7e Isg 1 3
Sulalgtrig7e Isg 1 3
 
Cross product
Cross productCross product
Cross product
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Aieee maths-2003
Aieee maths-2003Aieee maths-2003
Aieee maths-2003
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiation
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
 
Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamie
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
VIT - Mathematics -2009 Unsolved Paper
VIT - Mathematics -2009 Unsolved PaperVIT - Mathematics -2009 Unsolved Paper
VIT - Mathematics -2009 Unsolved Paper
 
Aieee Maths 2004
Aieee Maths  2004Aieee Maths  2004
Aieee Maths 2004
 
Math20001 dec 2015
Math20001 dec 2015Math20001 dec 2015
Math20001 dec 2015
 

Mehr von APEX INSTITUTE

IIT- JEE Main 2016 Paper solution
IIT- JEE Main 2016 Paper solutionIIT- JEE Main 2016 Paper solution
IIT- JEE Main 2016 Paper solutionAPEX INSTITUTE
 
IIT - JEE Main 2016 Sample Paper -5
IIT - JEE Main 2016 Sample Paper -5IIT - JEE Main 2016 Sample Paper -5
IIT - JEE Main 2016 Sample Paper -5APEX INSTITUTE
 
IIT - JEE Main 2016 Sample Paper 3
IIT - JEE Main 2016 Sample Paper 3IIT - JEE Main 2016 Sample Paper 3
IIT - JEE Main 2016 Sample Paper 3APEX INSTITUTE
 
IIT - JEE Main 2016 Sample Paper -4
IIT - JEE Main 2016 Sample Paper -4IIT - JEE Main 2016 Sample Paper -4
IIT - JEE Main 2016 Sample Paper -4APEX INSTITUTE
 
IIT- JEE Main 2016 Sample Paper-2
IIT- JEE Main 2016 Sample Paper-2IIT- JEE Main 2016 Sample Paper-2
IIT- JEE Main 2016 Sample Paper-2APEX INSTITUTE
 
IIT- JEE Main 2016 Sample Paper-1
IIT- JEE Main 2016 Sample Paper-1IIT- JEE Main 2016 Sample Paper-1
IIT- JEE Main 2016 Sample Paper-1APEX INSTITUTE
 
Crash-Course for AIPMT & Other Medical Exams 2016(Essentials heart)
Crash-Course for AIPMT & Other Medical Exams 2016(Essentials heart)Crash-Course for AIPMT & Other Medical Exams 2016(Essentials heart)
Crash-Course for AIPMT & Other Medical Exams 2016(Essentials heart)APEX INSTITUTE
 
Crash-Course for AIPMT & Other Medical Exams 2016Target pmt (2)
Crash-Course for AIPMT & Other Medical Exams 2016Target pmt (2)Crash-Course for AIPMT & Other Medical Exams 2016Target pmt (2)
Crash-Course for AIPMT & Other Medical Exams 2016Target pmt (2)APEX INSTITUTE
 
Crash-Course for AIPMT & Other Medical Exams 2016 (Essentials cockroach)
Crash-Course for AIPMT & Other Medical Exams 2016 (Essentials cockroach)Crash-Course for AIPMT & Other Medical Exams 2016 (Essentials cockroach)
Crash-Course for AIPMT & Other Medical Exams 2016 (Essentials cockroach)APEX INSTITUTE
 
Class X SA-II MATHEMATICS SAMPLE PAPER 2016
Class X SA-II MATHEMATICS SAMPLE PAPER 2016Class X SA-II MATHEMATICS SAMPLE PAPER 2016
Class X SA-II MATHEMATICS SAMPLE PAPER 2016APEX INSTITUTE
 
Class X SA-II SCIENCE SAMPLE PAPER 2016
Class X SA-II SCIENCE SAMPLE PAPER 2016Class X SA-II SCIENCE SAMPLE PAPER 2016
Class X SA-II SCIENCE SAMPLE PAPER 2016APEX INSTITUTE
 
Class X SA-II SCIENCE SAMPLE PAPER 2016
Class X SA-II SCIENCE SAMPLE PAPER 2016Class X SA-II SCIENCE SAMPLE PAPER 2016
Class X SA-II SCIENCE SAMPLE PAPER 2016APEX INSTITUTE
 
I.S.C. Class XII MATHEMATICS Sample Papers 2016
I.S.C. Class XII MATHEMATICS Sample Papers 2016I.S.C. Class XII MATHEMATICS Sample Papers 2016
I.S.C. Class XII MATHEMATICS Sample Papers 2016APEX INSTITUTE
 
I.S.C. Class XII Sample Papers 2016
I.S.C. Class XII Sample Papers 2016I.S.C. Class XII Sample Papers 2016
I.S.C. Class XII Sample Papers 2016APEX INSTITUTE
 
I.S.C. Class XII Sample Papers 2016
I.S.C. Class XII Sample Papers 2016I.S.C. Class XII Sample Papers 2016
I.S.C. Class XII Sample Papers 2016APEX INSTITUTE
 
Crash Course For IIT-Main sample paper 2016
Crash Course For IIT-Main sample paper 2016Crash Course For IIT-Main sample paper 2016
Crash Course For IIT-Main sample paper 2016APEX INSTITUTE
 
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST APEX INSTITUTE
 
Prospectus FOR IIT-JEE, AIPMT, NTSE, OLYMPIAD
Prospectus FOR IIT-JEE, AIPMT, NTSE, OLYMPIADProspectus FOR IIT-JEE, AIPMT, NTSE, OLYMPIAD
Prospectus FOR IIT-JEE, AIPMT, NTSE, OLYMPIADAPEX INSTITUTE
 
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST APEX INSTITUTE
 
AIPMT-2016 SAMPLE TEST PAPER-14
AIPMT-2016 SAMPLE TEST PAPER-14AIPMT-2016 SAMPLE TEST PAPER-14
AIPMT-2016 SAMPLE TEST PAPER-14APEX INSTITUTE
 

Mehr von APEX INSTITUTE (20)

IIT- JEE Main 2016 Paper solution
IIT- JEE Main 2016 Paper solutionIIT- JEE Main 2016 Paper solution
IIT- JEE Main 2016 Paper solution
 
IIT - JEE Main 2016 Sample Paper -5
IIT - JEE Main 2016 Sample Paper -5IIT - JEE Main 2016 Sample Paper -5
IIT - JEE Main 2016 Sample Paper -5
 
IIT - JEE Main 2016 Sample Paper 3
IIT - JEE Main 2016 Sample Paper 3IIT - JEE Main 2016 Sample Paper 3
IIT - JEE Main 2016 Sample Paper 3
 
IIT - JEE Main 2016 Sample Paper -4
IIT - JEE Main 2016 Sample Paper -4IIT - JEE Main 2016 Sample Paper -4
IIT - JEE Main 2016 Sample Paper -4
 
IIT- JEE Main 2016 Sample Paper-2
IIT- JEE Main 2016 Sample Paper-2IIT- JEE Main 2016 Sample Paper-2
IIT- JEE Main 2016 Sample Paper-2
 
IIT- JEE Main 2016 Sample Paper-1
IIT- JEE Main 2016 Sample Paper-1IIT- JEE Main 2016 Sample Paper-1
IIT- JEE Main 2016 Sample Paper-1
 
Crash-Course for AIPMT & Other Medical Exams 2016(Essentials heart)
Crash-Course for AIPMT & Other Medical Exams 2016(Essentials heart)Crash-Course for AIPMT & Other Medical Exams 2016(Essentials heart)
Crash-Course for AIPMT & Other Medical Exams 2016(Essentials heart)
 
Crash-Course for AIPMT & Other Medical Exams 2016Target pmt (2)
Crash-Course for AIPMT & Other Medical Exams 2016Target pmt (2)Crash-Course for AIPMT & Other Medical Exams 2016Target pmt (2)
Crash-Course for AIPMT & Other Medical Exams 2016Target pmt (2)
 
Crash-Course for AIPMT & Other Medical Exams 2016 (Essentials cockroach)
Crash-Course for AIPMT & Other Medical Exams 2016 (Essentials cockroach)Crash-Course for AIPMT & Other Medical Exams 2016 (Essentials cockroach)
Crash-Course for AIPMT & Other Medical Exams 2016 (Essentials cockroach)
 
Class X SA-II MATHEMATICS SAMPLE PAPER 2016
Class X SA-II MATHEMATICS SAMPLE PAPER 2016Class X SA-II MATHEMATICS SAMPLE PAPER 2016
Class X SA-II MATHEMATICS SAMPLE PAPER 2016
 
Class X SA-II SCIENCE SAMPLE PAPER 2016
Class X SA-II SCIENCE SAMPLE PAPER 2016Class X SA-II SCIENCE SAMPLE PAPER 2016
Class X SA-II SCIENCE SAMPLE PAPER 2016
 
Class X SA-II SCIENCE SAMPLE PAPER 2016
Class X SA-II SCIENCE SAMPLE PAPER 2016Class X SA-II SCIENCE SAMPLE PAPER 2016
Class X SA-II SCIENCE SAMPLE PAPER 2016
 
I.S.C. Class XII MATHEMATICS Sample Papers 2016
I.S.C. Class XII MATHEMATICS Sample Papers 2016I.S.C. Class XII MATHEMATICS Sample Papers 2016
I.S.C. Class XII MATHEMATICS Sample Papers 2016
 
I.S.C. Class XII Sample Papers 2016
I.S.C. Class XII Sample Papers 2016I.S.C. Class XII Sample Papers 2016
I.S.C. Class XII Sample Papers 2016
 
I.S.C. Class XII Sample Papers 2016
I.S.C. Class XII Sample Papers 2016I.S.C. Class XII Sample Papers 2016
I.S.C. Class XII Sample Papers 2016
 
Crash Course For IIT-Main sample paper 2016
Crash Course For IIT-Main sample paper 2016Crash Course For IIT-Main sample paper 2016
Crash Course For IIT-Main sample paper 2016
 
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
 
Prospectus FOR IIT-JEE, AIPMT, NTSE, OLYMPIAD
Prospectus FOR IIT-JEE, AIPMT, NTSE, OLYMPIADProspectus FOR IIT-JEE, AIPMT, NTSE, OLYMPIAD
Prospectus FOR IIT-JEE, AIPMT, NTSE, OLYMPIAD
 
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
SUMMATIVE ASSESSMENT-II MATHS SAMPLE TEST
 
AIPMT-2016 SAMPLE TEST PAPER-14
AIPMT-2016 SAMPLE TEST PAPER-14AIPMT-2016 SAMPLE TEST PAPER-14
AIPMT-2016 SAMPLE TEST PAPER-14
 

Kürzlich hochgeladen

Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseCeline George
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesVijayaLaxmi84
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1GloryAnnCastre1
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxAnupam32727
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptxmary850239
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvRicaMaeCastro1
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...Nguyen Thanh Tu Collection
 

Kürzlich hochgeladen (20)

Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 Database
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their uses
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
 

STUDY MATERIAL FOR IIT-JEE on Complex number

  • 1. COMPLEX NUMBERS 1.00 The complex number system There is no real number x which satisfies the polynomial equation x2 1 0 . To permit solutions of this and similar equations, the set of complex numbers is introduced. We can consider a complex number as having the form a + bi where a and b are real number and i, which is called the imaginary unit, has the property that i 2 –1 . It is denoted by z i.e. z = a + ib. ‘a’ is called as real part of z which is denoted by (Re z) and ‘b’ is called as imaginary part of z which is denoted by (Im z). Any complex number is: (i) Purely real, if b = 0 (b) Purely imaginary, if a = 0 (c) Imaginary, if b 0 Note : (a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the complete number system is N W I Q R C. (b) Zero is purely real as well as purely imaginary but not imaginary. (c) i –1 is called the imaginary unit. Also i 2 –1; i3 –i; i 4 1 etc. (d) a b ab only if atleast one of a or b is non–negative. (e) is z = a + ib, then a – ib is called complex conjugate of z and written as z a – ib . 1.01 Algebraic Operations 111 Fundamental operations with complex numbers 1 In performing operations with complex numbers we can proceed as in the algebra of real numbers, replacing i 2 by –1 when it occurs. (1) Addition (a bi) (c di) a bi c di (a c) (b d )i (2) Subtraction (a bi) – (c di) a bi – c – di (a – c) (b – d )i (3) Multiplication (a bi) (c di) ac adi bci bdi 2 (ac – bd ) (ad bc)i Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 1
  • 2. a bi a bi c – bi ac – adi bci – bdi 2 ac bd (bc – ad )i ac bd bc – ad (4) Division = = = 2 + i. c di c di c – di c2 – d 2i 2 c2 – d 2 c d 2 c2 d 2 Inequalities in complex numbers are not defined. There is no validity if we say that complex number is positive or negative. e.g. z > 0, 4 + 2i < 2 + 4i are meaningless. In real numbers if a 2 b2 0 then a 0 b however in complex numbers, z12 2 z2 0 does not imply z1 z2 0. Illustration 1 : Find multiplicative inverse of 3 + 2i, then Solution: Let z be the multiplicative inverse of 3 2i, then z.(3 2i) 1 1 3 – 2i z 3 2i 3 2i 3 – 2i 3 2 z – i 13 13 3 2 – i Ans. 13 13 1.02 Equality In Complex Number 111 Two complex numbers z1 a1 ib1 & z2 a2 1 ib2 are equal if and only if their real and imaginary parts are equal respectively. i.e. z1 z2 Re( z2 ) and I m ( z1 ) I m ( z2 ) . Illustration 2 : Find the value of x and y for which (2 3i) x2 – (3 – 2i) y 2 x – 3 y 5i where x, y R. Solution: ( z 3i ) x 2 – (3 – 2i ) y 2 x – 3 y 5i 2x – 3y 2 2x – 3y x2 – x 0 x 0, 1 and 3x 2 2y 5 5 if x 0, y and if x 1, y 1 2 5 x 0, y and x 1, y 1 2 Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 2
  • 3. Illustration 3 : Find the value of expression x4 – 4x3 3x2 – 2x 1 when x 1 i is a factor of expression. Solution: x 1 i x –1 i ( x –1) 2 –1 x – 2x 2 2 0 Now x – 4 x3 3 x 2 – 2 x 1 4 ( x 2 – 2 x 2)( x 2 – 3 x – 3) – 4 x 7 when x 1 i i.e. x 2 – 2 x 2 0 x 4 – 4 x3 3 x 2 – 2 x 1 0 – 4(1 i) 7 – 4 7 – 4i 3 – 4i Ans Illustration 4 : Solve for z if z 2 | z | 0 . Solution: Let z x iy ( x iy ) 2 x2 y2 0 x2 – y 2 x2 y2 0 and 2 xy 0 x 0 or y 0 when x 0– y 2 | y| 0 y 0, 1, –1 z 0, i, –1 when y 0 x2 | x | 0 x 0 z 0 Ans. z 0, z i, z –1 Illustration 5 : Find square root of 7 + 40i. Solution: Let (x iy ) 2 9 40i x –y2 2 9 ........(i) and xy 20 ..........(ii ) squing (i ) and adding with 4times the square of (ii ) we get x 4 y 4 – 2x2 y 2 4x2 y 2 81 1600 ( x2 y 2 )2 168 2 2 x y 4 ........(iii) from (i) (iii) we can see that x & y are of same sign x iy (5 4i) or (5 4i) Sq. roots of a 40i (5 4i) (5 4i) Ans. Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 3
  • 4. 1.03 Representation Of A Complex Number 111 1 Illustration 6 : Express the complex number z –1 2i in polar form. Solution: z –1 i 2 2 |z| (–1) 2 2 1 2 3 2 Arg z – tan –1 – tan –1 2 ( say ) 1 z 3(cos i sin ) where – tan –1 2 1.04 Modulus Of A Complex Number 111 1 Illustration 7 : If | z – 5 – 7i | 9 , then find the greatest and least values of |z – 2 – 3i.| Solution: We have 9 = |z – (5 + 7i)| = distance between z and 5 + 7i. Thus locus of z is the circle of radius 9 and centre at 5 + 7i. For such a z (on the circle), we have to find its greatest `and least distance as from 2 + 3i, which obviously 14 and 4. Illustration 8 : Find the minimum value of |1 + z| + |1 – z|. |1 z | 1 – z |1 z 1 – z | (triangle inequality) Solution: 1 z 1– z 2 minimum value of (|1 z | |1 – z |) 2 Geometrically | z 1| |1 – 2 | | z 1| | z –1| which represents sum of distances of z from 1 and –1 it can be seen easily that minimum ( PA PB ) AB 2 1 n 21/ 4 e 8 Ans. Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 4
  • 5. 2 Illustration 9 : z– 1 then find the maximum and minimum value of |z|. z 2 2 2 2 Solution: z– 1 z – z– z – z z 2 z Let z r 2 2 r– 1 r r r 2 r 1 r R ..........(i ) r 2 2 and r– 1 –1 r – 1 r r r (1, 2) ..........(ii ) from (i) and (ii) r (1, 2) r (1, 2) Ans. 1.05 Argument Of A Complex Number 111 1 Illustration 10: Solve for z, which satisfy 2 Arg ( z – 3 – 2i) and Arg ( z – 3 – 4i) . 6 3 Solution: From the figure, it is clear that there is no z, which satisfy both ray. Illustration 11: Sketch the region given by (i) Arg ( z –1– i) /3 (ii) z 5 & Arg ( z – i –1) /3. Solution: (i) (ii) Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 5
  • 6. 1.06 Conjugate Of A Complex Number 111 1 z –1 Illustration 12: If is purely imaginary, then prove that z 1. z 1 z –1 Solution: Re 0 z 1 z –1 z –1 z –1 z –1 0 0 z 1 z 1 z 1 z 1 z z – z z –1 z z – z z –1 0 2 zz 1 z 1 z 1 Hence Proved. 1.07 Rotation Theorem 111 1 z –1 Illustration 13: If Arg then interrupter the locus. z 1 3 z –1 Solution: arg z 1 3 1– z arg –1 – z 3 1– z Here arg represents the angle between lines –1– z joining –1 and z and 1 + z. As this angle is constant, the locus of z will be a of a circle segment.(angle in a segment is count). It can be seen that locus is not the complete side 1– z 2 as in the major are arg will be equal to – . Now try to geometrically find –1– z 3 1 2 out radius and centre of this circle. centre 0, Radius Ans. 3 3 Illustration 14: If A(z + 3i) and B(3 + 4i) are two vertices of a square ABCD (take in anticlock wise order) then find C and D. Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 6
  • 7. Let affix of C and D are z3 z4 respectively Solution: 0 Considering DAB 90 AD AB z4 – (2 3i) (3 4i) – 2 3i i we get e AD AB 2 z4 – (2 3i ) (1 i )i z4 2 3i i –1 1 zi z3 – (3 4i ) ( z 3i ) – (3 – 4i) i and e– CB AB 2 z3 3 4i – (1 i )(–i ) z3 3 4i i –1 z 5i 1.08 Cube Root Of Unity 111 1 Illustration 15: Find the value of 192 194 . Solution: 192 194 1 2 – Ans. 2 Illustration 16: If 1, , are cube roots of unity prove. (i ) (1 – 2 )(1 – 2 ) 4 (ii ) (1 – 2 5 ) (1 – 2 5 ) 32 (iii ) (1 – )(1 – 2 )(1 – 4 )(1 – 8 ) 9 (iv) (1 – 2 )(1 – 2 4 )(1 – 4 8 )..........to 2n factors 22 n Solution: (i ) (1 – 2 )(1 – 2 ) (–2 )(–2 2 ) 4 Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 7
  • 8. th 1.09 n Roots Of Unity 111 1 Illustration 17: Find the roots of the equation z6 64 0 where real part is positive. Solution: z6 –64 6 z z 6 .e i (2 n 1) x z i (2 n 1) 6 z ze 5 7 3 11 i i i i i i i z 2e 6 , 2e 2 , ze 2 , ze 6 e 6 , ze 2 , ze 2 i 11 i roots with +ve real part are e6 e 6 i – 6 2e Ans. 6 2 k 2 k Illustration 18: Find the value sin – cos . k 1 7 7 6 6 Solution: 2 k 2 k sin – cos k 1 7 k 1 7 6 2 k 6 2 k sin – cos 1 k 0 7 k 0 7 6 (Sum of imaginary part of seven seventh roots of unity) k 0 6 – (Sum of real part of seven seventh roots of unity) 1 k 0 0–0 1 1 i Ans. 1.10 Logarithm Of A Complex Quantity Illustration 19: If cos cos cos 0 and also sin sin sin 0, then prove that (i) cos2 +cos2 +cos2 = sin2 +sin2 +sin2 = 0 (ii) sin3 +sin3 +sin3 = 3sin( ) (iii) cos3 +cos3 +cos3 = 3cos( ) Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 8
  • 9. Solution: Let z1 cos i sin , z2 cos i sin , z3 cos i sin . z1 z2 z3 (cos cos cos ) i(sin sin sin ) 0 i.0 0 (1) 1 (i ) Also (cos i sin ) –1 cos – i sin z1 1 1 cos – i sin , – cos – sin z1 z3 1 1 1 (cos cos cos ) – i(sin sin sin ) (2) z1 z2 z3 0 – i.0 0 Now z 2 1 z 2 2 2 z3 ( z1 z2 z3 ) 2 – 2( z1 z2 z 2 z3 z3 z1 ) 1 1 1 0 – 2 z1 z2 z3 z3 z1 z2 0 – 2 z1 z2 z3 .0 0, u sin g (1)and (2) or (cos i sin ) 2 (cos i sin ) 2 (cos i sin ) 2 0 or (cos 2 i sin 2 ) 2 cos 2 i sin 2 cos 2 i sin 2 0 i.0 Equation real and imaginary parts on both sides, cos 2 cos 2 cos 2 0 and sin 2 sin 2 sin 2 0 (ii ) z13 3 z2 3 z3 ( z1 z2 )3 – 3 z1 z2 ( z1 z 2 ) z3 3 (– z3 )3 – 3z1 z2 (– z3 ) z3 , using (1) 3 3z1 z2 z3 (cos i sin )3 (cos i sin )3 (cos i sin )3 3(cos i sin )(cos i sin )(cos i sin ) Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 9
  • 10. or cos 3 i sin 3 cos 3 i sin 3 cos 3 i sin 3 3{cos( ) i sin( )} Equation imaginary parts on both sides, sin 3 sin 3 sin 3 3sin( ) Alternative method Let C cos cos cos 0 S sin sin sin 0 i i i C iS e e e 0 (1) C – iS e–i e–i e–i 0 (2) –i 2 –i 2 –i 2 From (1) (e ) (e ) (e ) (e )(e ) (ei )(ei ) (ei )(ei ) i i ei 2 ei 2 ei 2 ei ei ei (e –2 e–i ei ) ei (2 ) ei 2 ei 2 0( from 2) Comparing the real and imaginary parts we cos 2 cos 2 cos 2 – sin 2 sin 2 sin 2 0 Also from (1) (ei )3 (ei )3 (ei )3 3ei ei ei ei 3 ei 3 ei 3 3ei ( ) Comparing the real and imaginary parts we obtain the results. Illustration 20: If z1 and z2 are two complex numbers and c > 0, then prove that 2 2 2 z1 + z2 (I C) z1 (I C –1 ) z2 . Solution: We have to prove that: 2 2 2 z1 z2 (1 C ) z1 (1 C –1 ) z2 3 2 2 3 i.e. z1 z2 z1 z2 z2 z2 (1 C ) z1 (1 C –1 ) z2 2 2 2 1 2 orz1 z2 z2 z2 c z1 C –1 z2 or c z1 z2 – z1 z2 – z2 z2 0 c (using Re ( z1 z2 ) z1 z2 ) 2 1 or c z1 – z2 0 which is always true. c Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 10
  • 11. Illustration 21: If , [ / 6, / 3], i 1, 2, 3, 4, 5 and z 4 cos 1 z 3 cos 2 z 3 cos 3 z cos 4 cos 5 3 2 3, then show that | z | . 4 Solution: Given that cos 1 .z 4 cos 2 .z 3 cos 3 .z 2 cos 4 .z cos 5 2 3 or cos 1 .z 4 cos 2 .z 3 cos 3 .z 2 cos 4 .z cos 5 2 3 2 3 cos 1 .z 4 cos 2 .z 3 cos 3 .z 2 cos 4 .z cos 5  i [ / 6, / 3] 1 3 cos i 2 2 3 3 3 3 3 2 3 | z |4 | z |3 | z |2 |z| 2 2 2 2 2 3 | z |4 | z |3 | z |2 |z| 3 | z | | z |2 | z |3 | z |4 | z |5 .......... |z| 3 3–e| z | | z | 1– | z | 3 4| z| 3 |z| 4 Illustration 21: Two different non parallel lines cut the circle |z| = r in point a, b, c, d respectively. a –1 b –1 – c –1 – d –1 Prove that these lines meet in the point z given by z = . a –1b –1 – c –1d –1 Solution: Since point P, A, B are collinear Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 11
  • 12. z z 1 a a 1 0 z a – b – z (a – b) ab – ab 0(i ) b b 1 Similarlym, since points P, C, D are collinear z a –b c –d – z c –d a –b cd – cd a – b – ab – ab c – d (ii ) k k k  zz r2 k ( say ) a ,b ,c etc. a b c From equation (ii ) we get k k k k ck kd ak bk z – (c – d ) – z – ( a – b) – ( a – b) – – (c – d ) a b c d d c b a a –1 b –1 – c –1 – d –1 z a –1b –1 – c –1d –1 Progression / APEX INSTITUTE FOR IIT-JEE / AIEEE / PMT, 0120-4901457, +919990495952, +919910817866 Page 12