SlideShare ist ein Scribd-Unternehmen logo
1 von 39
Números Complexos
Ao final dessa aula você
                         saberá:
    O que é um número complexo e sua
    representação algébrica
    O que é um número imaginário puro e
    igualdade dos complexos
    O que é conjugado
    As potências de i
    A representação trigonométrica de um número
    complexo
    As operações matemática na forma algébrica e
    na forma trigonométrica
O que é um número
                    complexo?
      É todo número z escrito na forma a + bi,
    sendo “a” a parte real e “bi” a parte
    imaginária. Também é chamado de número
    imaginário.
                      Formalmente,
                   escrevemos a parte
Exemplos:          real assim: Re(z) =
                            a.
 z = 3 + 5i       E a parte imaginária
                     assim: Im(z) = b
 z = 7i

 z = ½ + 4i
O que é o “i”?

    É a unidade imaginária, sendo i2 = - 1.
Dessa forma podemos calcular o valor da
raiz de números negativos com índice par.

Exemplo:

  − 36 = (−1)(36) = 36i = 6i2
O que é um número
               imaginário puro?
 É um número complexo z = a + bi, cuja
parte real é igual a zero, ou seja, a = 0.

                Repare que um número
Exemplos:          real é um número
                 complexo, com a parte
 z = 3i        imaginária igual a zero.
z=i               Exemplo: 2+0i = 2

 z = -10i
Logo, temos que o conjuntos dos
    Números Reais é um subconjunto
        dos Números Complexos.
                     C


R
             Q      I
         Z
     N
Como sabemos se dois
                números complexos são
                       iguais?
 Sendo dois números complexos:
 z1 = a + bi e z2 = c + di, se a = c e b = d, então
 z1 = z2. Ou seja, dois complexos são iguais
 se as partes reais e imaginárias são iguais.
Exemplo:
Calcular o valor de x e y na equação:
3x + 7yi = 12 – 21i
           3x = 12  x = 4
           7y = -21  y = -3
Tente fazer sozinho!



Determine m e n reais de modo que
          m + (n-1)i = 3i
Solução


m + (n-1)i = 3i

m=0en–1=3 n=4
Como representamos o
                    conjugado de um número
                          complexo?
     Sendo o número complexo z = a + bi, seu
conjugado é representado por: z = a − bi

Exemplos:

                   z = 5 − 3i
   z = 5 + 3i 

   z = - 8i 
                 z = 8i
Como calculamos as
                      potências de i?
Usando as regras de potência já conhecidas.

 i0 =1                      Note que a partir do
                                expoente 4, os
i =i
   1
                             resultados começam
                                   a repetir.
 i2 = - 1

 i3 = i2 . i = (- 1) . i = - i

 i4 = i2 . i2 = (- 1) . (- 1) = 1

 i5 = i3 . i2 = (- i) . (- 1) = i
Exemplo:
(PUC-MG) O número complexo (1 + i) 10 é
igual a:
a) 32 b) -32 c) 32i d) -32i e) 32(1+i)

[(1 + i)2]5 = [1 + 2i + i2]5 = [1 + 2i - 1]5 =

[2i]5 = 32.i5 = 32i  letra C
Tente fazer sozinho!

(Vunesp) Se a, b, c são números inteiros
positivos tais que c = (a + bi)2 – 14i, em
que i2 = -1, o valor de c é:

a) 48 b) 36 c) 24 d) 14 e) 7
Solução
c = (a + bi)2 – 14i
c = a2 + 2abi + b2i2 – 14i = a2 + 2abi – b2 – 14i
c + 0i = (a2 – b2) + (2ab – 14)i
2ab – 14 = 0  ab = 7
Logo, a = 7 e b = 1 ou a = 1 e b = 7
Como c é positivo, temos que:
c = 72 – 12 = 49 – 1 = 48
Resposta: letra A.
Como somamos ou
                  subtraímos números
                      complexos?
  Basta somar (ou subtrair)as partes reais e as
partes imaginárias.

Exemplos:

   (3 + 4i) + (-13 + 7i) = -10 + 11 i

   (7 – 25i) – (- 5 – 5i) = 12 – 15i
Como multiplicamos
              números complexos?

Basta aplicar a propriedade distributiva.

Exemplo:

(5 + 2i) (2 + 3i) = 10 + 15i + 4i – 6 = 4 + 19i
Como dividimos
                 números complexos?
Basta multiplicar o numerador e o denominador
pelo conjugado do denominador.

Exemplo:
2 + 3i ( 2 + 3i )( 5 + 2i ) 10 + 4i + 15i − 6
       =                    =                 =
5 − 2i ( 5 − 2i )( 5 + 2i )      25 + 4
  4 + 19i 4 19
=        =      + i
     29     29 29
Tente fazer sozinho!
                                           x −1
                                           2
(Cefet-MG) O valor da expressão                   quando
                                           x −1
                                            3


x = i (unidade imaginária) é :

a) (i + 1) b) – (i – 1) c)      ( i + 1)
                                   2
d)   ( i − 1)   e)
                   − ( i − 1)
        2               2
Solução
x −1 i −1 −1 −1
 2         2
                  −2    2
    = 3  =      =     =
x −1 i −1 − i −1 −1− i 1+ i
 3




  2(1 − i )     2 − 2i 2(1 − i )
              =       =          = 1− i
1 + i (1 − i ) 1 + 1      2

Logo, a resposta é B, pois
– (i - 1) = -i +1 = 1-i
Como representamos um
                   número complexo no
                         gráfico?
  Basta representar a parte real no eixo x
e a parte imaginária no eixo y.
Exemplos: z1 = - 1 + 2i e z2 = 3i
                      y
                  P2      3

            P1            2

                          1

                               x
                 -1
O que é o módulo de
              um número complexo?
  É a distância entre a origem e o ponto que
corresponde a esse número.
  Sendo z = a + bi, temos: z = ρ
          y



         b

                ρ      P (a,b)



                                 x
                        a
Como calculamos o
                 módulo de um número
                     complexo?
Usando a fórmula z = ρ = a + b .
                                 2   2




Exemplo:       z = 1 + 3i


 z = 1 +   2
                ( 3)   2
                           = 1+ 3 = 4 = 2
Tente fazer sozinho!
(UFRRJ) Sendo a = 2 + 4i e b = 1 – 3i, o valor

     a
de     é:
     b


a) 3     b) 2    c) 5

d) 2 2      e) 1+ 2
Solução

  a a    2 +4    2   2
   = =              =
  b b  1 + ( − 3)
        2         2


   4 + 16   20   20
          =    =    = 2
   1+ 9     10   10
Resposta: letra B.
O que é argumento de um
             número complexo?
  É o ângulo que o módulo do número
faz com o eixo x.
   y                          b
                      senθ =
                              ρ
  b                           a
        ρ     P (a,b) cos θ =
                              ρ
      θ            x
             a
Tente fazer sozinho!

(URRN) Se z =
                (1 + i )   2
                               , então o argumento de z é:
                 1− i

a) – 135º b) – 45º c) 45º d) 90º e) 135º
Solução

z=
   (1 + i )=
               2
             1 + 2i − 1 2i
                       =
      1− i      1− i     1− i

    2i (1 + i )     2i − 2 2i − 2
=                 =       =       = −1 + i
  (1 − i )(1 + i ) 1 + 1     2

       b                            a
senθ =                  e   cos θ =
       ρ                            ρ
ρ=    ( − 1)   2
                   +1 = 1+1 = 2
                    2
( 2) =
                                  sen
       1               2
senθ =
        2    ( 2)     2
                           135º         45º




cos θ =
        −1   ( 2) = − 2                   cos


         2   ( 2) 2

Logo, o argumento é 135º.
Resposta: letra E.
Como escrevemos a forma
                  trigonométrica de um número
                          complexo?
                z = ρ ( cos θ + i senθ )
 Exemplo:   z = 2 3 + 2i
 ρ = a +b =
       2    2
                  (2 3 )   2
                               + 2 = 12 + 4 = 16 = 4
                                 2


        a 2 3    3
 cos θ = =    =   
        ρ  4    2 
                   ⇒ θ = 30º
        b 2 1     
 senθ = = =
        ρ 4 2     
                  
Logo, z = 4(cos 30º + i sen 30º)
Tente fazer sozinho!
(Cefet-PR) A forma algébrica do complexo
           7π        7π 
 z =3cos   +isen    :
                     é
         6       6 
          3 3 3
 a ) z =− −          i
          2     2
        3 3 3
 b) z = −         i
        2     2
          3 3     3
 c ) z =−      − i
            2     2
           3 3     3
 d ) z =−       + i
            2      2
        3 3     3
 e) z =       − i
          2     2
Solução
          7π        7π 
z = 3 cos    + isen    
           6         6 
                                     7π
z = ρ ( cos θ + isenθ ) ⇒ ρ = 3, θ =    = 210º
                                      6
                            3
cos 210º = − cos 30º = −
                           2
                         1
sen210º = − sen30º = −
                         2
a               b
  cos θ =          senθ =
          ρ               ρ
     3 a             1 b
  −   =            − =
    2    3           2 3
      3 3               3
  a=−              b=−
        2               2

                            3 3 3
Logo, a forma algébrica é −    − i
                             2  2
Resposta: letra C.
Como multiplicamos
                      complexos na forma
                         trigonométrica?
   z1.z 2 = ρ1.ρ 2 .[ cos(θ1 + θ 2 ) + isen(θ1 + θ 2 ) ]
Exemplo:
            π     π             π      π
 z1 = 2 cos + isen  e z2 = 3 cos + isen 
            3     3             2      2
              π π          π π 
 z1.z 2 = 2.3cos +  + isen + 
              3 2          3 2 
                5π       5π 
 z1.z 2 = 6 cos    + isen 
                 6        6 
Como dividimos
                     complexos na forma
                       trigonométrica?
        z1 ρ1
           =   [ cos(θ1 − θ 2 ) + isen(θ1 − θ 2 ) ]
        z2 ρ 2
Exemplo:
           π        π                 π          π
 z1 = 6 cos + isen  e z 2 = 3 cos + isen 
            2       2                  3         3
    z1 6   π π                  π π 
      = cos −  + isen − 
   z2 3   2 3                   2 3 
    z1        π      π
       = 2 cos + isen 
    z2        6      6
Como calculamos uma
                      potência complexos na
                       forma trigonométrica?
          z n = ρ n .[ cos( nθ ) + isen( nθ ) ]
Exemplo:
          π      π
 z = 2 cos + isen 
          3      3
          π            π 
 z = 2 cos 2.  + isen 2. 
  2   2

          3            3 
           2π        2π 
 z = 4 cos
  2
               + isen    
            3         3 
Tente fazer sozinho!
                                       6 + 6i
(UPF-RS) Quanto ao número complexo z =        ,
                                       1− i
a alternativa incorreta é:
a) Escrito na forma algébrica é z = 6i
b) O módulo de z é 6.
                      π
c) O argumento de z é   rad.
                      2
d) Escrito na forma trigonométrica tem-se:
         z = 6( cos π + i senπ )

e) z2 é um número real.
Solução
a) Escrito na forma algébrica é z = 6i
   6 + 6i ( 6 + 6i )(1 + i ) 6 + 6i + 6i − 6 12i
z=       =                   =              =    = 6i
   1− i     (1 − i )(1 + i )      1+1         2

b) O módulo de z é 6.


 z = 0 +6 = 6 =6
         2     2        2
6 + 6i
            z=
               1− i
                      π
c) O argumento de z é   rad.
                      2
       a 0   
cos θ = = = 0
       ρ 6                π
              ⇒ θ = 90º =
       b 6                 2
senθ = = = 1 
       ρ 6   
             
d) Escrito na forma trigonométrica
                            tem-se:
                  z = 6( cos π + i senπ )

z = ρ ( cos θ + isenθ ) = 6( cos 90º +isen90º )
e) z2 é um número real.
z n = ρ n [ cos( nθ ) + isen( nθ ) ] =
z 2 = 6 2 [ cos( 2.90º ) + isen( 2.90º ) ] =
z 2 = 36[ cos(180º ) + isen(180º ) ] =
z = 36[ − 1 + i.0] = −36
 2

Resposta: letra D.

Weitere ähnliche Inhalte

Was ist angesagt?

2006 _ap___m04___comp_pol_equa
2006  _ap___m04___comp_pol_equa2006  _ap___m04___comp_pol_equa
2006 _ap___m04___comp_pol_equaEmilson Moreira
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08GuiVogt
 
www.AulasEnsinoMedio.com.br - Matemática - Números Complexos
www.AulasEnsinoMedio.com.br - Matemática -  Números Complexoswww.AulasEnsinoMedio.com.br - Matemática -  Números Complexos
www.AulasEnsinoMedio.com.br - Matemática - Números ComplexosAulasEnsinoMedio
 
Aula.número.complexo
Aula.número.complexoAula.número.complexo
Aula.número.complexovcbarros
 
Números Complexos Daniel Mascarenhas
Números Complexos   Daniel MascarenhasNúmeros Complexos   Daniel Mascarenhas
Números Complexos Daniel Mascarenhasammfiles
 
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos Numéricos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos NuméricosBeatriz Góes
 
Números complexos
Números complexosNúmeros complexos
Números complexosDaniel Muniz
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexosgomesloiola
 
Números complexos
Números complexos Números complexos
Números complexos Jorge Barros
 
Números Complexos - Representação Geométrica
Números Complexos - Representação GeométricaNúmeros Complexos - Representação Geométrica
Números Complexos - Representação GeométricaRaphael Silveira
 

Was ist angesagt? (14)

Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
2006 _ap___m04___comp_pol_equa
2006  _ap___m04___comp_pol_equa2006  _ap___m04___comp_pol_equa
2006 _ap___m04___comp_pol_equa
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
 
www.AulasEnsinoMedio.com.br - Matemática - Números Complexos
www.AulasEnsinoMedio.com.br - Matemática -  Números Complexoswww.AulasEnsinoMedio.com.br - Matemática -  Números Complexos
www.AulasEnsinoMedio.com.br - Matemática - Números Complexos
 
Aula.número.complexo
Aula.número.complexoAula.número.complexo
Aula.número.complexo
 
Números Complexos Daniel Mascarenhas
Números Complexos   Daniel MascarenhasNúmeros Complexos   Daniel Mascarenhas
Números Complexos Daniel Mascarenhas
 
NÚMEROS COMPLEXOS - PARTE 01
NÚMEROS COMPLEXOS - PARTE 01NÚMEROS COMPLEXOS - PARTE 01
NÚMEROS COMPLEXOS - PARTE 01
 
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos Numéricos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos Numéricos
 
NUMEROS COMPLEXOS
NUMEROS COMPLEXOSNUMEROS COMPLEXOS
NUMEROS COMPLEXOS
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Números complexos
Números complexos Números complexos
Números complexos
 
Números Complexos - Representação Geométrica
Números Complexos - Representação GeométricaNúmeros Complexos - Representação Geométrica
Números Complexos - Representação Geométrica
 

Andere mochten auch

Find publisher and songwriter
Find publisher and songwriterFind publisher and songwriter
Find publisher and songwriterdigitaldatabase
 
Sinalyzer PROJECT_presentación en español
Sinalyzer PROJECT_presentación en españolSinalyzer PROJECT_presentación en español
Sinalyzer PROJECT_presentación en españolEnertria,S.L.
 
ใบงานที่ 10 คิด
ใบงานที่ 10 คิดใบงานที่ 10 คิด
ใบงานที่ 10 คิดLynnie1177
 
Claudio e. ,claudiom a. pps.
Claudio e. ,claudiom a. pps.Claudio e. ,claudiom a. pps.
Claudio e. ,claudiom a. pps.Miguel Artiles
 
Arrowhead SNF - Interior 2 new.jpg
Arrowhead SNF - Interior 2 new.jpgArrowhead SNF - Interior 2 new.jpg
Arrowhead SNF - Interior 2 new.jpgCurtis Hendershott
 
Lsm tiered assignment
Lsm tiered assignmentLsm tiered assignment
Lsm tiered assignmentDanny Norwood
 
Acelere - e melhore! - o feedback com testes automatizados rápidos
Acelere - e melhore! - o feedback com testes automatizados rápidosAcelere - e melhore! - o feedback com testes automatizados rápidos
Acelere - e melhore! - o feedback com testes automatizados rápidosIgor Abade
 
簡報資料
簡報資料簡報資料
簡報資料mancomss
 
Pense nas nuvens. É lá que as possibilidades são infinitas
Pense nas nuvens. É lá que as possibilidades são infinitasPense nas nuvens. É lá que as possibilidades são infinitas
Pense nas nuvens. É lá que as possibilidades são infinitasRicardo Serradas
 

Andere mochten auch (17)

Leadership Quiz
Leadership QuizLeadership Quiz
Leadership Quiz
 
Find publisher and songwriter
Find publisher and songwriterFind publisher and songwriter
Find publisher and songwriter
 
El club del documental
El club del documentalEl club del documental
El club del documental
 
Meeting Planning
Meeting PlanningMeeting Planning
Meeting Planning
 
Globalism.wakabayashi
Globalism.wakabayashiGlobalism.wakabayashi
Globalism.wakabayashi
 
Sinalyzer PROJECT_presentación en español
Sinalyzer PROJECT_presentación en españolSinalyzer PROJECT_presentación en español
Sinalyzer PROJECT_presentación en español
 
bomberos
bomberosbomberos
bomberos
 
ใบงานที่ 10 คิด
ใบงานที่ 10 คิดใบงานที่ 10 คิด
ใบงานที่ 10 คิด
 
Claudio e. ,claudiom a. pps.
Claudio e. ,claudiom a. pps.Claudio e. ,claudiom a. pps.
Claudio e. ,claudiom a. pps.
 
Grifo Teka ARK 999
Grifo Teka ARK 999Grifo Teka ARK 999
Grifo Teka ARK 999
 
Arrowhead SNF - Interior 2 new.jpg
Arrowhead SNF - Interior 2 new.jpgArrowhead SNF - Interior 2 new.jpg
Arrowhead SNF - Interior 2 new.jpg
 
Lsm tiered assignment
Lsm tiered assignmentLsm tiered assignment
Lsm tiered assignment
 
Acelere - e melhore! - o feedback com testes automatizados rápidos
Acelere - e melhore! - o feedback com testes automatizados rápidosAcelere - e melhore! - o feedback com testes automatizados rápidos
Acelere - e melhore! - o feedback com testes automatizados rápidos
 
PL receptek
PL receptekPL receptek
PL receptek
 
簡報資料
簡報資料簡報資料
簡報資料
 
Global Economics Update - May 2016
Global Economics Update - May 2016Global Economics Update - May 2016
Global Economics Update - May 2016
 
Pense nas nuvens. É lá que as possibilidades são infinitas
Pense nas nuvens. É lá que as possibilidades são infinitasPense nas nuvens. É lá que as possibilidades são infinitas
Pense nas nuvens. É lá que as possibilidades são infinitas
 

Ähnlich wie www.AulaParticularApoio.Com.Br - Matemática - Números Complexos

Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14comentada
 
Numeros complexos aula
Numeros complexos aulaNumeros complexos aula
Numeros complexos aulacon_seguir
 
Números Complexos_IME ITA
Números Complexos_IME ITANúmeros Complexos_IME ITA
Números Complexos_IME ITAJARDEL LEITE
 
Exercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexosExercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexosDiego Oliveira
 
Operações envolvendo números complexos.pptx
Operações envolvendo números complexos.pptxOperações envolvendo números complexos.pptx
Operações envolvendo números complexos.pptxOSIELDEOLIVEIRAANDRA
 
Lista de exerc_revisão_complexos_2012_pdf
Lista de exerc_revisão_complexos_2012_pdfLista de exerc_revisão_complexos_2012_pdf
Lista de exerc_revisão_complexos_2012_pdfcristianomatematico
 

Ähnlich wie www.AulaParticularApoio.Com.Br - Matemática - Números Complexos (20)

Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14
 
Numeros complexos aula
Numeros complexos aulaNumeros complexos aula
Numeros complexos aula
 
NúMeros Complexos Bom
NúMeros Complexos BomNúMeros Complexos Bom
NúMeros Complexos Bom
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Números Complexos_IME ITA
Números Complexos_IME ITANúmeros Complexos_IME ITA
Números Complexos_IME ITA
 
Números complexos bom
Números complexos bomNúmeros complexos bom
Números complexos bom
 
Exercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexosExercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Salva vidas WGS
Salva vidas WGSSalva vidas WGS
Salva vidas WGS
 
Operações envolvendo números complexos.pptx
Operações envolvendo números complexos.pptxOperações envolvendo números complexos.pptx
Operações envolvendo números complexos.pptx
 
Números complexos 2008
Números complexos 2008Números complexos 2008
Números complexos 2008
 
Lista de exerc_revisão_complexos_2012_pdf
Lista de exerc_revisão_complexos_2012_pdfLista de exerc_revisão_complexos_2012_pdf
Lista de exerc_revisão_complexos_2012_pdf
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 

Mehr von ApoioAulaParticular

www.AulaParticularApoio.Com.Br - Física - Trabalho e Energia Mecânica
www.AulaParticularApoio.Com.Br - Física -  Trabalho e Energia Mecânicawww.AulaParticularApoio.Com.Br - Física -  Trabalho e Energia Mecânica
www.AulaParticularApoio.Com.Br - Física - Trabalho e Energia MecânicaApoioAulaParticular
 
www.AulaParticularApoio.Com.Br - Física - Óptica
www.AulaParticularApoio.Com.Br - Física -  Ópticawww.AulaParticularApoio.Com.Br - Física -  Óptica
www.AulaParticularApoio.Com.Br - Física - ÓpticaApoioAulaParticular
 
www.AulaParticularApoio.Com.Br - Química - Ligações Químicas
www.AulaParticularApoio.Com.Br -  Química -  Ligações Químicaswww.AulaParticularApoio.Com.Br -  Química -  Ligações Químicas
www.AulaParticularApoio.Com.Br - Química - Ligações QuímicasApoioAulaParticular
 
www.AulaParticularApoio.Com.Br - Biologia – Origem da Vida
www.AulaParticularApoio.Com.Br - Biologia – Origem da Vidawww.AulaParticularApoio.Com.Br - Biologia – Origem da Vida
www.AulaParticularApoio.Com.Br - Biologia – Origem da VidaApoioAulaParticular
 
www.AulaParticularApoio.Com.Br - Matemática - Conjunto de Números Inteiros
www.AulaParticularApoio.Com.Br - Matemática -  Conjunto de Números Inteiroswww.AulaParticularApoio.Com.Br - Matemática -  Conjunto de Números Inteiros
www.AulaParticularApoio.Com.Br - Matemática - Conjunto de Números InteirosApoioAulaParticular
 
www.AulaParticularApoio.Com.Br -Geografia – Clima
www.AulaParticularApoio.Com.Br -Geografia – Climawww.AulaParticularApoio.Com.Br -Geografia – Clima
www.AulaParticularApoio.Com.Br -Geografia – ClimaApoioAulaParticular
 
www.AulaParticularApoio.Com.Br -História - Independência dos EUA
www.AulaParticularApoio.Com.Br -História -  Independência dos EUAwww.AulaParticularApoio.Com.Br -História -  Independência dos EUA
www.AulaParticularApoio.Com.Br -História - Independência dos EUAApoioAulaParticular
 
www.AulaParticularApoio.Com.Br - Matemática - Equação Exponêncial
www.AulaParticularApoio.Com.Br - Matemática -  Equação Exponêncialwww.AulaParticularApoio.Com.Br - Matemática -  Equação Exponêncial
www.AulaParticularApoio.Com.Br - Matemática - Equação ExponêncialApoioAulaParticular
 
www.AulaParticularApoio.Com.Br -Geografia - Energia
www.AulaParticularApoio.Com.Br -Geografia -  Energiawww.AulaParticularApoio.Com.Br -Geografia -  Energia
www.AulaParticularApoio.Com.Br -Geografia - EnergiaApoioAulaParticular
 
www.AulaParticularApoio.Com.Br -História - Cruzadas
www.AulaParticularApoio.Com.Br -História -  Cruzadaswww.AulaParticularApoio.Com.Br -História -  Cruzadas
www.AulaParticularApoio.Com.Br -História - CruzadasApoioAulaParticular
 
www.AulaParticularApoio.Com.Br - Português - Concordância Nominal
www.AulaParticularApoio.Com.Br - Português -  Concordância Nominalwww.AulaParticularApoio.Com.Br - Português -  Concordância Nominal
www.AulaParticularApoio.Com.Br - Português - Concordância NominalApoioAulaParticular
 
www.AulaParticularApoio.Com.Br -Biologia - Genética
www.AulaParticularApoio.Com.Br -Biologia - Genéticawww.AulaParticularApoio.Com.Br -Biologia - Genética
www.AulaParticularApoio.Com.Br -Biologia - GenéticaApoioAulaParticular
 

Mehr von ApoioAulaParticular (12)

www.AulaParticularApoio.Com.Br - Física - Trabalho e Energia Mecânica
www.AulaParticularApoio.Com.Br - Física -  Trabalho e Energia Mecânicawww.AulaParticularApoio.Com.Br - Física -  Trabalho e Energia Mecânica
www.AulaParticularApoio.Com.Br - Física - Trabalho e Energia Mecânica
 
www.AulaParticularApoio.Com.Br - Física - Óptica
www.AulaParticularApoio.Com.Br - Física -  Ópticawww.AulaParticularApoio.Com.Br - Física -  Óptica
www.AulaParticularApoio.Com.Br - Física - Óptica
 
www.AulaParticularApoio.Com.Br - Química - Ligações Químicas
www.AulaParticularApoio.Com.Br -  Química -  Ligações Químicaswww.AulaParticularApoio.Com.Br -  Química -  Ligações Químicas
www.AulaParticularApoio.Com.Br - Química - Ligações Químicas
 
www.AulaParticularApoio.Com.Br - Biologia – Origem da Vida
www.AulaParticularApoio.Com.Br - Biologia – Origem da Vidawww.AulaParticularApoio.Com.Br - Biologia – Origem da Vida
www.AulaParticularApoio.Com.Br - Biologia – Origem da Vida
 
www.AulaParticularApoio.Com.Br - Matemática - Conjunto de Números Inteiros
www.AulaParticularApoio.Com.Br - Matemática -  Conjunto de Números Inteiroswww.AulaParticularApoio.Com.Br - Matemática -  Conjunto de Números Inteiros
www.AulaParticularApoio.Com.Br - Matemática - Conjunto de Números Inteiros
 
www.AulaParticularApoio.Com.Br -Geografia – Clima
www.AulaParticularApoio.Com.Br -Geografia – Climawww.AulaParticularApoio.Com.Br -Geografia – Clima
www.AulaParticularApoio.Com.Br -Geografia – Clima
 
www.AulaParticularApoio.Com.Br -História - Independência dos EUA
www.AulaParticularApoio.Com.Br -História -  Independência dos EUAwww.AulaParticularApoio.Com.Br -História -  Independência dos EUA
www.AulaParticularApoio.Com.Br -História - Independência dos EUA
 
www.AulaParticularApoio.Com.Br - Matemática - Equação Exponêncial
www.AulaParticularApoio.Com.Br - Matemática -  Equação Exponêncialwww.AulaParticularApoio.Com.Br - Matemática -  Equação Exponêncial
www.AulaParticularApoio.Com.Br - Matemática - Equação Exponêncial
 
www.AulaParticularApoio.Com.Br -Geografia - Energia
www.AulaParticularApoio.Com.Br -Geografia -  Energiawww.AulaParticularApoio.Com.Br -Geografia -  Energia
www.AulaParticularApoio.Com.Br -Geografia - Energia
 
www.AulaParticularApoio.Com.Br -História - Cruzadas
www.AulaParticularApoio.Com.Br -História -  Cruzadaswww.AulaParticularApoio.Com.Br -História -  Cruzadas
www.AulaParticularApoio.Com.Br -História - Cruzadas
 
www.AulaParticularApoio.Com.Br - Português - Concordância Nominal
www.AulaParticularApoio.Com.Br - Português -  Concordância Nominalwww.AulaParticularApoio.Com.Br - Português -  Concordância Nominal
www.AulaParticularApoio.Com.Br - Português - Concordância Nominal
 
www.AulaParticularApoio.Com.Br -Biologia - Genética
www.AulaParticularApoio.Com.Br -Biologia - Genéticawww.AulaParticularApoio.Com.Br -Biologia - Genética
www.AulaParticularApoio.Com.Br -Biologia - Genética
 

www.AulaParticularApoio.Com.Br - Matemática - Números Complexos

  • 2. Ao final dessa aula você saberá:  O que é um número complexo e sua representação algébrica  O que é um número imaginário puro e igualdade dos complexos  O que é conjugado  As potências de i  A representação trigonométrica de um número complexo  As operações matemática na forma algébrica e na forma trigonométrica
  • 3. O que é um número complexo? É todo número z escrito na forma a + bi, sendo “a” a parte real e “bi” a parte imaginária. Também é chamado de número imaginário. Formalmente, escrevemos a parte Exemplos: real assim: Re(z) = a.  z = 3 + 5i E a parte imaginária assim: Im(z) = b  z = 7i  z = ½ + 4i
  • 4. O que é o “i”? É a unidade imaginária, sendo i2 = - 1. Dessa forma podemos calcular o valor da raiz de números negativos com índice par. Exemplo: − 36 = (−1)(36) = 36i = 6i2
  • 5. O que é um número imaginário puro? É um número complexo z = a + bi, cuja parte real é igual a zero, ou seja, a = 0. Repare que um número Exemplos: real é um número complexo, com a parte  z = 3i imaginária igual a zero. z=i Exemplo: 2+0i = 2  z = -10i
  • 6. Logo, temos que o conjuntos dos Números Reais é um subconjunto dos Números Complexos. C R Q I Z N
  • 7. Como sabemos se dois números complexos são iguais? Sendo dois números complexos: z1 = a + bi e z2 = c + di, se a = c e b = d, então z1 = z2. Ou seja, dois complexos são iguais se as partes reais e imaginárias são iguais. Exemplo: Calcular o valor de x e y na equação: 3x + 7yi = 12 – 21i 3x = 12  x = 4 7y = -21  y = -3
  • 8. Tente fazer sozinho! Determine m e n reais de modo que m + (n-1)i = 3i
  • 9. Solução m + (n-1)i = 3i m=0en–1=3 n=4
  • 10. Como representamos o conjugado de um número complexo? Sendo o número complexo z = a + bi, seu conjugado é representado por: z = a − bi Exemplos: z = 5 − 3i  z = 5 + 3i   z = - 8i  z = 8i
  • 11. Como calculamos as potências de i? Usando as regras de potência já conhecidas.  i0 =1 Note que a partir do expoente 4, os i =i 1 resultados começam a repetir.  i2 = - 1  i3 = i2 . i = (- 1) . i = - i  i4 = i2 . i2 = (- 1) . (- 1) = 1  i5 = i3 . i2 = (- i) . (- 1) = i
  • 12. Exemplo: (PUC-MG) O número complexo (1 + i) 10 é igual a: a) 32 b) -32 c) 32i d) -32i e) 32(1+i) [(1 + i)2]5 = [1 + 2i + i2]5 = [1 + 2i - 1]5 = [2i]5 = 32.i5 = 32i  letra C
  • 13. Tente fazer sozinho! (Vunesp) Se a, b, c são números inteiros positivos tais que c = (a + bi)2 – 14i, em que i2 = -1, o valor de c é: a) 48 b) 36 c) 24 d) 14 e) 7
  • 14. Solução c = (a + bi)2 – 14i c = a2 + 2abi + b2i2 – 14i = a2 + 2abi – b2 – 14i c + 0i = (a2 – b2) + (2ab – 14)i 2ab – 14 = 0  ab = 7 Logo, a = 7 e b = 1 ou a = 1 e b = 7 Como c é positivo, temos que: c = 72 – 12 = 49 – 1 = 48 Resposta: letra A.
  • 15. Como somamos ou subtraímos números complexos? Basta somar (ou subtrair)as partes reais e as partes imaginárias. Exemplos:  (3 + 4i) + (-13 + 7i) = -10 + 11 i  (7 – 25i) – (- 5 – 5i) = 12 – 15i
  • 16. Como multiplicamos números complexos? Basta aplicar a propriedade distributiva. Exemplo: (5 + 2i) (2 + 3i) = 10 + 15i + 4i – 6 = 4 + 19i
  • 17. Como dividimos números complexos? Basta multiplicar o numerador e o denominador pelo conjugado do denominador. Exemplo: 2 + 3i ( 2 + 3i )( 5 + 2i ) 10 + 4i + 15i − 6 = = = 5 − 2i ( 5 − 2i )( 5 + 2i ) 25 + 4 4 + 19i 4 19 = = + i 29 29 29
  • 18. Tente fazer sozinho! x −1 2 (Cefet-MG) O valor da expressão quando x −1 3 x = i (unidade imaginária) é : a) (i + 1) b) – (i – 1) c) ( i + 1) 2 d) ( i − 1) e) − ( i − 1) 2 2
  • 19. Solução x −1 i −1 −1 −1 2 2 −2 2 = 3 = = = x −1 i −1 − i −1 −1− i 1+ i 3 2(1 − i ) 2 − 2i 2(1 − i ) = = = 1− i 1 + i (1 − i ) 1 + 1 2 Logo, a resposta é B, pois – (i - 1) = -i +1 = 1-i
  • 20. Como representamos um número complexo no gráfico? Basta representar a parte real no eixo x e a parte imaginária no eixo y. Exemplos: z1 = - 1 + 2i e z2 = 3i y P2 3 P1 2 1 x -1
  • 21. O que é o módulo de um número complexo? É a distância entre a origem e o ponto que corresponde a esse número. Sendo z = a + bi, temos: z = ρ y b ρ P (a,b) x a
  • 22. Como calculamos o módulo de um número complexo? Usando a fórmula z = ρ = a + b . 2 2 Exemplo: z = 1 + 3i z = 1 + 2 ( 3) 2 = 1+ 3 = 4 = 2
  • 23. Tente fazer sozinho! (UFRRJ) Sendo a = 2 + 4i e b = 1 – 3i, o valor a de é: b a) 3 b) 2 c) 5 d) 2 2 e) 1+ 2
  • 24. Solução a a 2 +4 2 2 = = = b b 1 + ( − 3) 2 2 4 + 16 20 20 = = = 2 1+ 9 10 10 Resposta: letra B.
  • 25. O que é argumento de um número complexo? É o ângulo que o módulo do número faz com o eixo x. y b senθ = ρ b a ρ P (a,b) cos θ = ρ θ x a
  • 26. Tente fazer sozinho! (URRN) Se z = (1 + i ) 2 , então o argumento de z é: 1− i a) – 135º b) – 45º c) 45º d) 90º e) 135º
  • 27. Solução z= (1 + i )= 2 1 + 2i − 1 2i = 1− i 1− i 1− i 2i (1 + i ) 2i − 2 2i − 2 = = = = −1 + i (1 − i )(1 + i ) 1 + 1 2 b a senθ = e cos θ = ρ ρ ρ= ( − 1) 2 +1 = 1+1 = 2 2
  • 28. ( 2) = sen 1 2 senθ = 2 ( 2) 2 135º 45º cos θ = −1 ( 2) = − 2 cos 2 ( 2) 2 Logo, o argumento é 135º. Resposta: letra E.
  • 29. Como escrevemos a forma trigonométrica de um número complexo? z = ρ ( cos θ + i senθ ) Exemplo: z = 2 3 + 2i ρ = a +b = 2 2 (2 3 ) 2 + 2 = 12 + 4 = 16 = 4 2 a 2 3 3 cos θ = = =  ρ 4 2   ⇒ θ = 30º b 2 1  senθ = = = ρ 4 2   Logo, z = 4(cos 30º + i sen 30º)
  • 30. Tente fazer sozinho! (Cefet-PR) A forma algébrica do complexo  7π 7π  z =3cos +isen  : é  6 6  3 3 3 a ) z =− − i 2 2 3 3 3 b) z = − i 2 2 3 3 3 c ) z =− − i 2 2 3 3 3 d ) z =− + i 2 2 3 3 3 e) z = − i 2 2
  • 31. Solução  7π 7π  z = 3 cos + isen   6 6  7π z = ρ ( cos θ + isenθ ) ⇒ ρ = 3, θ = = 210º 6 3 cos 210º = − cos 30º = − 2 1 sen210º = − sen30º = − 2
  • 32. a b cos θ = senθ = ρ ρ 3 a 1 b − = − = 2 3 2 3 3 3 3 a=− b=− 2 2 3 3 3 Logo, a forma algébrica é − − i 2 2 Resposta: letra C.
  • 33. Como multiplicamos complexos na forma trigonométrica? z1.z 2 = ρ1.ρ 2 .[ cos(θ1 + θ 2 ) + isen(θ1 + θ 2 ) ] Exemplo:  π π  π π z1 = 2 cos + isen  e z2 = 3 cos + isen   3 3  2 2  π π   π π  z1.z 2 = 2.3cos +  + isen +   3 2  3 2   5π 5π  z1.z 2 = 6 cos + isen   6 6 
  • 34. Como dividimos complexos na forma trigonométrica? z1 ρ1 = [ cos(θ1 − θ 2 ) + isen(θ1 − θ 2 ) ] z2 ρ 2 Exemplo:  π π  π π z1 = 6 cos + isen  e z 2 = 3 cos + isen   2 2  3 3 z1 6   π π   π π  = cos −  + isen −  z2 3   2 3   2 3  z1  π π = 2 cos + isen  z2  6 6
  • 35. Como calculamos uma potência complexos na forma trigonométrica? z n = ρ n .[ cos( nθ ) + isen( nθ ) ] Exemplo:  π π z = 2 cos + isen   3 3   π  π  z = 2 cos 2.  + isen 2.  2 2   3  3   2π 2π  z = 4 cos 2 + isen   3 3 
  • 36. Tente fazer sozinho! 6 + 6i (UPF-RS) Quanto ao número complexo z = , 1− i a alternativa incorreta é: a) Escrito na forma algébrica é z = 6i b) O módulo de z é 6. π c) O argumento de z é rad. 2 d) Escrito na forma trigonométrica tem-se: z = 6( cos π + i senπ ) e) z2 é um número real.
  • 37. Solução a) Escrito na forma algébrica é z = 6i 6 + 6i ( 6 + 6i )(1 + i ) 6 + 6i + 6i − 6 12i z= = = = = 6i 1− i (1 − i )(1 + i ) 1+1 2 b) O módulo de z é 6. z = 0 +6 = 6 =6 2 2 2
  • 38. 6 + 6i z= 1− i π c) O argumento de z é rad. 2 a 0  cos θ = = = 0 ρ 6  π  ⇒ θ = 90º = b 6 2 senθ = = = 1  ρ 6  
  • 39. d) Escrito na forma trigonométrica tem-se: z = 6( cos π + i senπ ) z = ρ ( cos θ + isenθ ) = 6( cos 90º +isen90º ) e) z2 é um número real. z n = ρ n [ cos( nθ ) + isen( nθ ) ] = z 2 = 6 2 [ cos( 2.90º ) + isen( 2.90º ) ] = z 2 = 36[ cos(180º ) + isen(180º ) ] = z = 36[ − 1 + i.0] = −36 2 Resposta: letra D.