SlideShare ist ein Scribd-Unternehmen logo
1 von 27
ÁRBOLES Y GRAFOS
ÁRBOLES
ÁRBOLES
Desde el punto de vista conceptual, un árbol es un objeto que comienza con una
raíz y se extiende en varias ramificaciones o líneas, cada una de las cuales puede
extenderse en ramificaciones hasta terminar, finalmente en una hoja.
Los árboles representan las estructuras no-lineales y dinámicas de datos más
importantes en computación. Dinámicas, puesto que a cada elemento del árbol
pueden seguirle varios elementos.
PROPIEDADES DE UN ÁRBOL
En la ciencia de la computación definimos un árbol como un conjunto de nodos y
líneas. Un nodo es un elemento de información que reside en el árbol. Una línea es un
par de nodos ordenados, y a la secuencia de líneas se le denomina ruta.
Además, los árboles tienen las siguientes propiedades:
 Tienen un nodo al que se le llama raíz del árbol.
 Todos los nodos, excepto la raíz, tienen una sola línea de entrada (el nodo raíz no
tiene ninguna).
 Existe una ruta única del nodo raíz a todos los demás nodos del árbol.
 Si hay una ruta <a,b>, entonces a „b‟ se le denomina “hijo” de “a” y es el nodo
raíz de un subárbol.
 Gráficamente puede representarse una estructura árbol de diferentes maneras y todas ellas
equivalentes;
CARACTERISTICAS DE UN ÁRBOL
1. NODO indica un elemento, o ítem, de información.
2. Todo árbol que no es vacío, tiene un único nodo raíz.
3. Un nodo X es descendiente directo de un nodo Y, si el nodo X es apuntado por el nodo Y. X es
hijo de Y.
4. Un nodo X es antecesor directo de un nodo Y, si el nodo X apunta al nodo Y. X es padre de Y.
5. Se dice que todos los nodos que son descendientes directos (hijos) de un mismo nodo (padre),
son hermanos.
6. Todo nodo que no tiene ramificaciones (hijos), se conoce con el nombre de terminal u hoja.
7. Todo nodo que no es raíz, ni terminal u hoja se conoce con el nombre de interior.
8. Grado es el número de descendientes directos de un determinado nodo. Grado del árbol es el
máximo grado de todos los nodos del árbol.
9. Nivel es el número de arcos que deben ser recorridos para llegar a un determinado nodo. Por
definición, la raíz tiene nivel 1.
10.Altura del árbol es el máximo número de niveles de todos los nodos del árbol.
EJEMPLO DE UN ÁRBOL
 A es la raíz del árbol.
 B es hijo de A.
 A es padre de B.
 B y C son hermanos.
 I,E,J,K,G,L son hojas.
 B, D, F, C, H son nodos
interiores.
 El grado de nodo A es 2.
 Nivel del nodo A es 1.
 Nivel B es 2.
 Altura del árbol 4.
A
ED
CB
F G H
I J K L
ÁRBOL BINARIO
Un árbol ordenado es aquel en el cual la distribución de las ramas sigue cierto
orden. Los árboles ordenados de grado 2 son de especial interés puesto que
representan una de las estructuras de datos más importante en computación,
conocida como árboles binarios.
En un árbol binario cada nodo puede tener como máximo dos subárboles; y
siempre es necesario distinguir entre el subárbol izquierdo y el subárbol derecho.
APLICACIONES DE ÁRBOLES BINARIOS
 Árboles binarios de búsqueda.
 Representación de una expresión
algebraica.
 Árbol Genealógico.
ÁRBOLES BINARIOS DISTINTOS
Dos árboles binarios son distintos cuando sus estructuras son diferentes. Ejemplo:
A
A
B
B
A
B
A
D
B
D
C
C
ÁRBOLES BINARIOS SIMILARES
Dos árboles binarios son similares cuando sus estructuras son idénticas, pero la
información que contienen sus nodos difiere entre sí.
A
E
B
C
A
F
P
S
R
J
K
T
ÁRBOLES BINARIOS EQUIVALENTES
Los árboles binarios equivalentes se definen como aquellos que son similares y
además los nodos contienen la misma información.
E
F
J
K
E
F
J
K
ÁRBOLES BINARIOS COMPLETOS
Se define un árbol binario completo como un árbol en el que todos sus nodos,
excepto los de último nivel, tienen dos hijos; el subárbol izquierdo y el subárbol
derecho.
A
B
D
C
F GE
RECORRIDOS EN ÁRBOLES BINARIOS
Una de las operaciones más importantes a realizar en un árbol binario es el
recorrido de los mismos. Recorrer significa visitar los nodos del árbol en forma
sistemática; de tal manera que todos los nodos del
mismo sean visitados una sola vez.
Existen tres formas diferentes de efectuar el recorrido y todas ellas de
naturaleza recursiva, éstas son:
RECORRIDOS
Recorrido en preorden:
 Visitar la raíz
 Recorrer el subárbol izquierdo
 Recorrer el subárbol derecho
Recorrido en inorden:
 Recorrer el subárbol izquierdo
 Visitar la raíz
 Recorrer el subárbol derecho
Recorrido en postorden:
 Recorrer el subárbol izquierdo
 Recorrer el subárbol derecho
 Visitar la raíz
ÁRBOL BINARIO DE BÚSQUEDA
El árbol binario de búsqueda es una estructura sobre la cual se pueden realizar
eficientemente las operaciones de búsqueda, inserción y eliminación.
Formalmente se define un árbol binario de búsqueda de la siguiente manera:
“Para todo nodo T del árbol debe cumplirse que todos los valores de los nodos del
subárbol izquierdo de T deben ser menores o iguales al valor del nodo T. De
forma similar, todos los valores de los nodos el subárbol derecho de T deben ser
mayores o iguales al valor del nodo T”.
EJEMPLO ÁRBOL BINARIO DE BÚSQUEDA
GRAFOS
GRAFO
Un grafo G = (V, E) consiste en un conjunto finito V cuyos miembros se llaman
vértices y una familia finita de pares no ordenados de vértices a cuyos elementos
llamaremos aristas o arcos.
El número de vértices, es decir la cardinalidad del conjunto V se denomina orden
del grafo y se denota por |V |. Por lo general se utiliza n para denotar el orden
de G. El número de aristas, es decir la cardinalidad de E, se denomina tamaño
del grafo y se denota por |E |. Por lo general se utiliza m para denotar el tamaño
de G.
CARACTERISTICAS DE UN GRAFO
a)Se llama bucle o lazo a toda arista de la forma (v, v)
b) Se llaman aristas múltiples a las aristas que aparecen repetidas en E
c) Se dice que dos vértices son adyacentes si están unidos por una arista
d) Se dice que dos aristas son adyacentes si tienen un vértice en común,
e) Se dice que una arista y un vértice son incidentes si el vértice es extremo de
la arista,
f) Se dice que un vértice es aislado si no es adyacente a ningún otro vértice.
g) Se dice que un grafo es simple si no tiene bucles ni aristas múltiples
EJEMPLO DE UN GRAFO
En el grafo anterior u, v son vértices adyacentes, (u, v) y (v, w) son aristas adyacentes, z es un
vértice aislado.
TIPOS DE GRAFOS
 Un grafo regular de grado n si todos sus vértices tienen grado n.
 Un grafo completo si cada par de vértices está unido por una arista. Se denota por Kn al grafo
completo de n vértices
 Un digrafo o grafo dirigido es un par D = (V, E) consistente en un conjunto finito no
vacíoV cuyos miembros se llaman vértices y una familia finita E de pares ordenados de vértices
a cuyos elementos llamaremos aristas o arcos.
REPRESENTACION DE GRAFOS
 La matriz de adyacencia de un grafo es simétrica. Si un vértice es aislado entonces la correspondiente
fila (columna) esta compuesta sólo por ceros. Si el grafo es simple entonces la matriz de adyacencia
contiene solo ceros y unos (matriz binaria) y la diagonal esta compuesta sólo por ceros.
 La matriz de incidencia sólo contiene ceros y unos (matriz binaria). Como cada arista incide
exactamente en dos vértices, cada columna tiene exactamente dos unos. El número de unos que
aparece en cada fila es igual al grado del vértice correspondiente. Una fila compuesta sólo por
ceros corresponde a un vértice aislado.
 La matriz de adyacencia de un dígrafo no es simétrica. Es una matriz binaria. El número de unos
que aparecen en una fila es igual al grado de salida del correspondiente vértice y el número de
unos que aparecen en una determinada columna es igual al grado de entrada del
correspondiente vértice.

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Unidad 6
Unidad 6Unidad 6
Unidad 6
 
Presentacion arbol-binario
Presentacion arbol-binarioPresentacion arbol-binario
Presentacion arbol-binario
 
Grafos
GrafosGrafos
Grafos
 
ARBOLES BINARIOS
ARBOLES BINARIOSARBOLES BINARIOS
ARBOLES BINARIOS
 
Conjunto ortonormal
Conjunto ortonormal Conjunto ortonormal
Conjunto ortonormal
 
Teoria de Conjuntos
Teoria de ConjuntosTeoria de Conjuntos
Teoria de Conjuntos
 
5. Ejercicios normalización
5. Ejercicios normalización5. Ejercicios normalización
5. Ejercicios normalización
 
Árboles Multicamino, B y B+
Árboles Multicamino, B y B+Árboles Multicamino, B y B+
Árboles Multicamino, B y B+
 
Teoria de grafos
Teoria de grafosTeoria de grafos
Teoria de grafos
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 
Arbol rojo y negro
Arbol rojo y negroArbol rojo y negro
Arbol rojo y negro
 
Guía de ejercicios de normalizacion
Guía de ejercicios de normalizacionGuía de ejercicios de normalizacion
Guía de ejercicios de normalizacion
 
ESTRUCTURAS ANIDADAS
ESTRUCTURAS ANIDADASESTRUCTURAS ANIDADAS
ESTRUCTURAS ANIDADAS
 
Recursividad
RecursividadRecursividad
Recursividad
 
Arreglos c++
Arreglos c++Arreglos c++
Arreglos c++
 
Arreglos Bidimensionales - Java - NetBeans
Arreglos Bidimensionales - Java - NetBeansArreglos Bidimensionales - Java - NetBeans
Arreglos Bidimensionales - Java - NetBeans
 
Estructura de Datos - Unidad 4 Estructuras no lineales
Estructura de Datos - Unidad 4 Estructuras no linealesEstructura de Datos - Unidad 4 Estructuras no lineales
Estructura de Datos - Unidad 4 Estructuras no lineales
 
Arreglos en PSeInt
Arreglos en PSeIntArreglos en PSeInt
Arreglos en PSeInt
 
Arboles v2
Arboles v2Arboles v2
Arboles v2
 
Estructura datos pilas y colas
Estructura datos pilas y colasEstructura datos pilas y colas
Estructura datos pilas y colas
 

Ähnlich wie Arboles y grafos

Ähnlich wie Arboles y grafos (20)

Arboles
ArbolesArboles
Arboles
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Unidad 4 Grafos
Unidad 4 GrafosUnidad 4 Grafos
Unidad 4 Grafos
 
Árboles Binarios
Árboles BinariosÁrboles Binarios
Árboles Binarios
 
Unidad IV
Unidad IVUnidad IV
Unidad IV
 
Ascii
AsciiAscii
Ascii
 

Kürzlich hochgeladen

TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdfvictoralejandroayala2
 
PPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfPPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfalexquispenieto2
 
Clase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptxClase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptxChristopherOlave2
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASPersonalJesusGranPod
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASfranzEmersonMAMANIOC
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdfevin1703e
 
hitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxhitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxMarcelaArancibiaRojo
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023RonaldoPaucarMontes
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)ssuser563c56
 
presentacion medidas de seguridad riesgo eléctrico
presentacion medidas de seguridad riesgo eléctricopresentacion medidas de seguridad riesgo eléctrico
presentacion medidas de seguridad riesgo eléctricoalexcala5
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónXimenaFallaLecca1
 
Presentación electricidad y magnetismo.pptx
Presentación electricidad y magnetismo.pptxPresentación electricidad y magnetismo.pptx
Presentación electricidad y magnetismo.pptxYajairaMartinez30
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptMarianoSanchez70
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfMikkaelNicolae
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptCRISTOFERSERGIOCANAL
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 

Kürzlich hochgeladen (20)

TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdf
 
PPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfPPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdf
 
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdfVALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
 
Clase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptxClase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptx
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdf
 
hitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxhitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docx
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
 
presentacion medidas de seguridad riesgo eléctrico
presentacion medidas de seguridad riesgo eléctricopresentacion medidas de seguridad riesgo eléctrico
presentacion medidas de seguridad riesgo eléctrico
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcción
 
Presentación electricidad y magnetismo.pptx
Presentación electricidad y magnetismo.pptxPresentación electricidad y magnetismo.pptx
Presentación electricidad y magnetismo.pptx
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 

Arboles y grafos

  • 3. ÁRBOLES Desde el punto de vista conceptual, un árbol es un objeto que comienza con una raíz y se extiende en varias ramificaciones o líneas, cada una de las cuales puede extenderse en ramificaciones hasta terminar, finalmente en una hoja. Los árboles representan las estructuras no-lineales y dinámicas de datos más importantes en computación. Dinámicas, puesto que a cada elemento del árbol pueden seguirle varios elementos.
  • 4. PROPIEDADES DE UN ÁRBOL En la ciencia de la computación definimos un árbol como un conjunto de nodos y líneas. Un nodo es un elemento de información que reside en el árbol. Una línea es un par de nodos ordenados, y a la secuencia de líneas se le denomina ruta. Además, los árboles tienen las siguientes propiedades:  Tienen un nodo al que se le llama raíz del árbol.  Todos los nodos, excepto la raíz, tienen una sola línea de entrada (el nodo raíz no tiene ninguna).  Existe una ruta única del nodo raíz a todos los demás nodos del árbol.  Si hay una ruta <a,b>, entonces a „b‟ se le denomina “hijo” de “a” y es el nodo raíz de un subárbol.
  • 5.  Gráficamente puede representarse una estructura árbol de diferentes maneras y todas ellas equivalentes;
  • 6. CARACTERISTICAS DE UN ÁRBOL 1. NODO indica un elemento, o ítem, de información. 2. Todo árbol que no es vacío, tiene un único nodo raíz. 3. Un nodo X es descendiente directo de un nodo Y, si el nodo X es apuntado por el nodo Y. X es hijo de Y. 4. Un nodo X es antecesor directo de un nodo Y, si el nodo X apunta al nodo Y. X es padre de Y. 5. Se dice que todos los nodos que son descendientes directos (hijos) de un mismo nodo (padre), son hermanos. 6. Todo nodo que no tiene ramificaciones (hijos), se conoce con el nombre de terminal u hoja. 7. Todo nodo que no es raíz, ni terminal u hoja se conoce con el nombre de interior. 8. Grado es el número de descendientes directos de un determinado nodo. Grado del árbol es el máximo grado de todos los nodos del árbol. 9. Nivel es el número de arcos que deben ser recorridos para llegar a un determinado nodo. Por definición, la raíz tiene nivel 1. 10.Altura del árbol es el máximo número de niveles de todos los nodos del árbol.
  • 7. EJEMPLO DE UN ÁRBOL  A es la raíz del árbol.  B es hijo de A.  A es padre de B.  B y C son hermanos.  I,E,J,K,G,L son hojas.  B, D, F, C, H son nodos interiores.  El grado de nodo A es 2.  Nivel del nodo A es 1.  Nivel B es 2.  Altura del árbol 4. A ED CB F G H I J K L
  • 8. ÁRBOL BINARIO Un árbol ordenado es aquel en el cual la distribución de las ramas sigue cierto orden. Los árboles ordenados de grado 2 son de especial interés puesto que representan una de las estructuras de datos más importante en computación, conocida como árboles binarios. En un árbol binario cada nodo puede tener como máximo dos subárboles; y siempre es necesario distinguir entre el subárbol izquierdo y el subárbol derecho.
  • 9. APLICACIONES DE ÁRBOLES BINARIOS  Árboles binarios de búsqueda.  Representación de una expresión algebraica.  Árbol Genealógico.
  • 10. ÁRBOLES BINARIOS DISTINTOS Dos árboles binarios son distintos cuando sus estructuras son diferentes. Ejemplo: A A B B A B A D B D C C
  • 11. ÁRBOLES BINARIOS SIMILARES Dos árboles binarios son similares cuando sus estructuras son idénticas, pero la información que contienen sus nodos difiere entre sí. A E B C A F P S R J K T
  • 12. ÁRBOLES BINARIOS EQUIVALENTES Los árboles binarios equivalentes se definen como aquellos que son similares y además los nodos contienen la misma información. E F J K E F J K
  • 13. ÁRBOLES BINARIOS COMPLETOS Se define un árbol binario completo como un árbol en el que todos sus nodos, excepto los de último nivel, tienen dos hijos; el subárbol izquierdo y el subárbol derecho. A B D C F GE
  • 14. RECORRIDOS EN ÁRBOLES BINARIOS Una de las operaciones más importantes a realizar en un árbol binario es el recorrido de los mismos. Recorrer significa visitar los nodos del árbol en forma sistemática; de tal manera que todos los nodos del mismo sean visitados una sola vez. Existen tres formas diferentes de efectuar el recorrido y todas ellas de naturaleza recursiva, éstas son:
  • 15. RECORRIDOS Recorrido en preorden:  Visitar la raíz  Recorrer el subárbol izquierdo  Recorrer el subárbol derecho Recorrido en inorden:  Recorrer el subárbol izquierdo  Visitar la raíz  Recorrer el subárbol derecho Recorrido en postorden:  Recorrer el subárbol izquierdo  Recorrer el subárbol derecho  Visitar la raíz
  • 16. ÁRBOL BINARIO DE BÚSQUEDA El árbol binario de búsqueda es una estructura sobre la cual se pueden realizar eficientemente las operaciones de búsqueda, inserción y eliminación. Formalmente se define un árbol binario de búsqueda de la siguiente manera: “Para todo nodo T del árbol debe cumplirse que todos los valores de los nodos del subárbol izquierdo de T deben ser menores o iguales al valor del nodo T. De forma similar, todos los valores de los nodos el subárbol derecho de T deben ser mayores o iguales al valor del nodo T”.
  • 17. EJEMPLO ÁRBOL BINARIO DE BÚSQUEDA
  • 19. GRAFO Un grafo G = (V, E) consiste en un conjunto finito V cuyos miembros se llaman vértices y una familia finita de pares no ordenados de vértices a cuyos elementos llamaremos aristas o arcos. El número de vértices, es decir la cardinalidad del conjunto V se denomina orden del grafo y se denota por |V |. Por lo general se utiliza n para denotar el orden de G. El número de aristas, es decir la cardinalidad de E, se denomina tamaño del grafo y se denota por |E |. Por lo general se utiliza m para denotar el tamaño de G.
  • 20. CARACTERISTICAS DE UN GRAFO a)Se llama bucle o lazo a toda arista de la forma (v, v) b) Se llaman aristas múltiples a las aristas que aparecen repetidas en E c) Se dice que dos vértices son adyacentes si están unidos por una arista d) Se dice que dos aristas son adyacentes si tienen un vértice en común, e) Se dice que una arista y un vértice son incidentes si el vértice es extremo de la arista, f) Se dice que un vértice es aislado si no es adyacente a ningún otro vértice. g) Se dice que un grafo es simple si no tiene bucles ni aristas múltiples
  • 21. EJEMPLO DE UN GRAFO En el grafo anterior u, v son vértices adyacentes, (u, v) y (v, w) son aristas adyacentes, z es un vértice aislado.
  • 22. TIPOS DE GRAFOS  Un grafo regular de grado n si todos sus vértices tienen grado n.
  • 23.  Un grafo completo si cada par de vértices está unido por una arista. Se denota por Kn al grafo completo de n vértices
  • 24.  Un digrafo o grafo dirigido es un par D = (V, E) consistente en un conjunto finito no vacíoV cuyos miembros se llaman vértices y una familia finita E de pares ordenados de vértices a cuyos elementos llamaremos aristas o arcos.
  • 25. REPRESENTACION DE GRAFOS  La matriz de adyacencia de un grafo es simétrica. Si un vértice es aislado entonces la correspondiente fila (columna) esta compuesta sólo por ceros. Si el grafo es simple entonces la matriz de adyacencia contiene solo ceros y unos (matriz binaria) y la diagonal esta compuesta sólo por ceros.
  • 26.  La matriz de incidencia sólo contiene ceros y unos (matriz binaria). Como cada arista incide exactamente en dos vértices, cada columna tiene exactamente dos unos. El número de unos que aparece en cada fila es igual al grado del vértice correspondiente. Una fila compuesta sólo por ceros corresponde a un vértice aislado.
  • 27.  La matriz de adyacencia de un dígrafo no es simétrica. Es una matriz binaria. El número de unos que aparecen en una fila es igual al grado de salida del correspondiente vértice y el número de unos que aparecen en una determinada columna es igual al grado de entrada del correspondiente vértice.