SlideShare ist ein Scribd-Unternehmen logo
1 von 7
Downloaden Sie, um offline zu lesen
A Historical Note on Schwartz Space and
Test or Bump Functions
Alejandro Domínguez
December 2013
Some preliminary definitions
The definition of rapidly decreasing functions is as follows.
1

Definition (Rapidly Decreasing Functions)
A function  :



is said to be a rapidly decreasing function


A.   C   ,
B. xi

d j  x 
dx j

 (infinitely differentiable);
 M ij , for all integers i, j  0 .

Notice that property B in the Definition 1 gives the name to these functions. In fact, this property means
that the function and all of its derivatives decrease faster than any polynomial. Also notice that the set of
rapidly decreasing functions forms a linear space, called the Schwartz space, denoted by S  ,
other words: S  ,



 . In

is the linear space of all complex valued infinitely differentiable functions having

all their derivatives decreasing faster than any polynomial.
An example of a function belonging to S  ,

Figure 1. Graph of   x   x e
i

x

2

 is (see Figure 1)   x   xi e x

2

, for all i  0 .

for i  0,1, 2, 3, 4 (in black, red, green, pale green, and blue respectively).

1
Of course, any complex valued infinitely differentiable function  having a compact support [i.e.,

  C0  ,

 ] belongs to S 

a maximum in

,

 . This is so since any derivative of 

is continuous and x i j  x  has

. Particularly, these last functions are called test functions or bump functions. The

linear space of test functions is denoted as D  ,

 . Of course this last space is a subspace of S 

,

.

A function of this type is (see Figure 2).
 1 2
 1 x
  x   e ,
0,


x  1;
x  1.

Figure 2. Example of a test or bump function.

This is probably one of the simplest examples of a test function; however, it has an awful property. In fact,
following an argument similar to that given on p. 16 of (Griffel, 2002), since support of  is the interval

 1,1 , then   x   0
about

for x  1 and x  1 , so all derivatives vanish at 1 . Hence the Taylor series of 

1 is identically zero. But   x   0 for 1  x  1 , so  does not equal its Taylor series. Test

functions are thus peculiar functions; they are smooth, yet Taylor expansions are not valid. The above
example clearly shows singular behavior at x  1 .
Notice that in the theory of distributions, it is not necessary to use explicit formulas for rapidly decreasing
functions or test functions: They are used for theoretical purposes only.
Another related set of functions are the so-called functions of slow growth.
2

Definition (Functions of Slow Growth)

f:



is said to be a function of slow growth


A.

f C  ,

;

B. There exists a B  0 such that

d j f  x
dx

j

  as

O x

2

B

x .
The set of functions of slow growth is denoted as N  ,
polynomial is an element of N  ,

 . Moreover, if

 . From this definition it is obvious that any
f  N  ,  and   S  ,  , then f   S  ,  .

It should also be observed that (Lighthill, 1958, p. 15) calls the elements of S  ,
while the elements of N  ,



good functions,

 fairly good functions.

The historical note
The Schwartz space is called so after the French mathematician Laurent Moise
Schwartz (March 5, 1915 – July 4, 2002). This space was actually defined by
Schwartz in his paper (Schwartz, 1947-1948). In fact, on p. 10 of this paper it
can be read the definition of the Schwartz apace and its relation to the space of
test functions:

Main Scientists on
Schwartz Space and
Test or Bump
Functions

Soit  S  l’espace des fonctions   x1 , x2 , xn  indéfiniment
dérivables (au sens usuel), et tendant vers 0 à l’infini plus vite que
2
2
toute puissance de 1 r ( r 2  x12  x2   xn ) ainsi que chacune
de leurs dérivées.
On peut encore dire que, si   S  , tout produit d’un polynôme
par une dérivée de  (ou toute dérivée du produit de  par un
polynôme) est une fonction bornée, et réciproquement ; nous
dirons pour abréger que  est «à décroissance rapide à l’  ainsi
que ses dérivées». L’espace  S  admet évidemment, comme
sous-espace particulier, l’espace  D  , des fonctions 
indéfiniment dérivables à support compact.
Nous introduirons dans  S

Portrait 1. Laurent Moise
Schwartz (March 5, 1915 –
July 4, 2002) (http://wwwhistory.mcs.standrews.ac.uk/Biographies/
Schwartz.html).

 une notion de convergence. Des

 j   S  convergeront vers o si le produit par tout polynôme de
toute dérivées des  j (ou toute dérivée du produit des  j par tout
polynôme) converge uniformément vers o dans tout l’espace. On
voit que des  j   D  , convergeant vers o dans  D  , convergent
aussi vers o dans  S  , mais la réciproque est inexacte. On montre
aisément que  D  , considéré comme sous-espace vectoriel de

 S  , avec la topologie induite par celle de  S  , est dense dans
S  .
The method of multiplication of a suitable function by a test function and then
integrate the result (as it is the case of the Theory of Distributions) is as old as
the beginning of mathematical analysis. On years 1759-1760, the Italian born
mathematician Joseph-Louis Lagrange (January 26, 1736 – April 10, 1813)
published a paper where this method is used in relation to the integration of the
sound wave equation (Lagrange, 1759-1760). On §6 Lagrange established the
next problem and a method for finding its solutions:
6. Problème I.  Étant donné un système d’un nombre infini de
points mobiles, dont chacun dans l’état d’équilibre soit déterminé

3

Portrait 2. Joseph-Louis
Lagrange (January 26, 1736
– April 10, 1813)
(http://www-history.mcs.standrews.ac.uk/Biographies/
Lagrange.html).
par la variable x , et dont le premier et le dernier, qui répondent á
x  0 et à x  a soient supposés fixes, trouver les mouvements de
tous les points intermédiaires, dont la loi est contenue dans la
d2z
d 2z
formule 2  c 2 , z étant l’espace décrit par chacun d’eux
dt
dx
durant un temps quelconque t .
Qu’on multiplie cette équation par Mdx , M étant une fonction
quelconque de x , et qu’on l’intègre en ne faisant varier que x ; il
est clair que si dans cette intégrale, prise en sorte qu’elle
évanouisse lorsque x  0 , on fait x  a , on aura la somme de
toutes les valeurs particulières de la formule
d2z
d 2z
Mdx  c 2 Mdx , qui répondent à chaque point mobile du
2
dt
dx
système donné. Cette somme sera donc

Portrait 3. Norbert Wiener
(November 26, 1894 –
March 18, 1964)
(http://www-history.mcs.standrews.ac.uk/Biographies/
Wiener_Norbert.html).

d 2z
d 2z
Mdx  c  2 Mdx .
 dt 2
dx

This method was also used by Norbert Wiener on 1926 for solving linear
partial differential equations of second order (Wiener, 1926). On pp. 582
Wiener wrote:
8. Operational Solution of Partial Differential Equations.
Before we enter in this topic in detail, it is important to consider
the nature of the solution of a partial differential equation. Let us
consider the linear equation
A

 2u
 2u
 2u
u
u
B
C 2  D  E
 Fu  0 ,
x 2
xy
y
x
y

Portrait 4. Kurt Otto
Friedrichs (September 28,
1901 – December 31, 1982)
(http://www-history.mcs.standrews.ac.uk/Biographies/
Friedrichs.html).

where for simplicity’s sake, we shall suppose that the coefficients
have as many derivatives as we shall need in the work which
follows. If u satisfies this equation, it must manifestly possess the
various derivatives indicated in the equation. As is familiar,
however, in the case of the equation of the vibrating string, there
are cases where u must be regarded as a solution of our
differential equation in a general sense without possessing all the
orders of derivatives indicated in the equation, and indeed without
being differentiable at all. It is a matter of some interest, therefore,
to render precise the manner in which a nondifferentiable function
may satisfy in a generalized sense a differential equation.
Let G  x, y  be a function positive and infinitely differentiable
within a certain bounded polygonal region R on the XY plane,
vanishing with its derivatives of all orders on the periphery of R .
Then there is a function G1  x, y  such that

4

Portrait 5. Jean Leray
(November 7, 1906 –
November 10, 1998)
(http://www-history.mcs.standrews.ac.uk/Biographies/
Leray.html).
  Au

xx

 Bu xy  Cu yy  Du x  Eu y  Fu  G  x, y  dxdy

R

  u  x, y  G1  x, y  dxdy
R

for all u with bounded summable derivatives of the first two
orders, as we may show by integration by parts. Thus the
necessary and sufficient condition for u to satisfy our differential
equation almost everywhere is that

 u  x, y  G  x, y  dxdy  0
1

R

For every possible G (as the G s for a complete set over any
region), and that u possesses the requisite derivatives.

Portrait 6. Sergei Lvovich
Sobolev (October 6, 1908 –
January 3, 1989)
(http://www-history.mcs.standrews.ac.uk/Biographies/
Sobolev.html).

Other famous mathematicians have also used the method of multiplication of a
suitable function by a test function and then integrate the result; e.g., (Leray,
1934), (Sobolev, 1936), (Courant & Hilbert, 1937), (Friedrichs, 1939), (Weyl,
1940), (Schwartz, 1945), (Bochner & Martin, 1948).
The test or bump functions   D  ,
properties have an interesting history:



holding the following two additional



   x  dx  1 ;



lim  x;    lim
 0

1

 x

      x
 0 
 
n

Until the year 1944 these functions does not have a specific name. It was in
this year when, in the study of differential operators, the German born and
American mathematician Kurt Otto Friedrichs (September 28, 1901 –
December 31, 1982) proposed the name “mollifier” (Friedrichs, 1944, pp. 136139).

Portrait 7. Richard Courant
(January 8, 1888 – January
27, 1972) (http://wwwhistory.mcs.standrews.ac.uk/Biographies/
Courant.html).

According to Wikipedia in its entry “Mollifier”, the paper by Friedrichs
(http://en.wikipedia.org/wiki/Mollifier - cite_note-Laxref-0)
[…] is a watershed in the modern theory of partial differential
equations. The name of the concept had a curious genesis: at that
time Friedrichs was a colleague of the mathematician Donald
Alexander Flanders, and since he liked to consult colleagues about
English usage, he asked Flanders how to name the smoothing
operator he was about to introduce. Flanders was a puritan so his
friends nicknamed him Moll after Moll Flanders in recognition of
his moral qualities, and he suggested to call the new mathematical
concept a “mollifier” as a pun incorporating both Flanders’
nickname and the verb ‘to mollify’, meaning ‘to smooth over’ in a
figurative sense.
[The Soviet mathematician ] Sergei [Lvovich] Sobolev [October
6, 1908 – January 3, 1989] had previously used mollifiers in his
epoch making 1938 paper containing the proof of the Sobolev

5

Portrait 8. David Hilbert
(January 23, 1862 –
February 14, 1943)
(http://www-history.mcs.standrews.ac.uk/Biographies/
Hilbert.html).
embedding theorem [Sobolev, S. L. (1938). Sur un théorème
d’analyse fonctionnelle. (in Russian, with French abstract),
Recueil Mathématique (Matematicheskii Sbornik), 4(46)(3), 471–
497], as Friedrichs himself later acknowledged [Friedrichs, K. O.
(1953). On the differentiability of the solutions of linear elliptic
differential equations. Communications on Pure and Applied
Mathematics VI (3), 299–326].
There is a little misunderstanding in the concept of mollifier:
Friedrichs defined as “mollifier” the integral operator whose
kernel is one of the functions nowadays called mollifiers.
However, since the properties of an integral operator are
completely determined by its kernel, the name mollifier was
inherited by the kernel itself as a result of common usage.

Portrait 9. Hermann Klaus
Hugo Weyl (November 9,
1885 – December 9, 1955)
(http://www-history.mcs.standrews.ac.uk/Biographies/
Weyl.html).

Portrait 10. Salomon
Bochner (August 20, 1899 –
May 2, 1982) (http://wwwhistory.mcs.standrews.ac.uk/Biographies/
Bochner.html).

References
Bochner, S. & Martin, W. T. (1948). Several complex variables. Princeton, USA: Princeton University
Press
Courant R. & Hilbert, D. (1937). Methoden der Mathematischen Physik, II. Berlin, Deutschland: Verlag
von Julius Springer (see pp. 469-470).
Griffel, D. H. (2002). Applied functional analysis. New York, USA: Dover.
Friedrichs, K. O. (1939). On differential operators in Hilbert spaces. American Journal of Mathematics,
61, 523-544.
Friedrichs, K. O. (1944). The identity of weak and strong extensions of differential operators.
Transactions of the American Mathematical Society, 55, 132–151.
Lagrange, J. L. (1759-1760). Nouvelles recherches sur la nature et la propagation du son. Miscellanea
Taurinensia, II (Œuvres de Lagrange, Tome Premier (1867), 150-316, Gauthier-Villars, France:
Paris.

6
Leray, J. (1934). Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathematica, 61,
193-248.
Lighthill, M. J. (1958). Introduction to Fourier analysis and generalised functions. Cambridge, United
Kingdom: Cambridge University Press.
Schwartz, L. (1945). Généralisation de la notion de fonction, de dérivation, de transformation de Fourier,
et applications mathématiques et physiques. Annales de l’université de Grenoble, 21, 57-74.
Schwartz, L. M. (1947-1948). Théorie des distributions et transformation de Fourier. Annales de
l’université e Grenoble, 23, 7-24.
Sobolev, S. L. (1936). Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires
hyperboliques normales. Matematicheskiui Sbornik, 1 (43), 39-71
Weyl, H. (1940). The method of orthogonal projection in potential theory. Duke Mathematical Journal, 7,
411-444.
Wiener, N. (1926). The operational calculus. Mathematische Annalen, 95, 557-584.

7

Weitere ähnliche Inhalte

Was ist angesagt?

The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
Silvius
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
JelaiAujero
 
Newton raphson
Newton raphsonNewton raphson
Newton raphson
baxter89
 

Was ist angesagt? (20)

Fourier transform
Fourier transformFourier transform
Fourier transform
 
The gamma function
The gamma functionThe gamma function
The gamma function
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
Differential Equations
Differential EquationsDifferential Equations
Differential Equations
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
Levenberg - Marquardt (LM) algorithm_ aghazade
Levenberg - Marquardt (LM) algorithm_ aghazadeLevenberg - Marquardt (LM) algorithm_ aghazade
Levenberg - Marquardt (LM) algorithm_ aghazade
 
Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
 
Fractional calculus and applications
Fractional calculus and applicationsFractional calculus and applications
Fractional calculus and applications
 
Application of Differential Equation
Application of Differential EquationApplication of Differential Equation
Application of Differential Equation
 
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a functionLesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
 
Eucledian algorithm for gcd of integers and polynomials
Eucledian algorithm for gcd of integers and polynomialsEucledian algorithm for gcd of integers and polynomials
Eucledian algorithm for gcd of integers and polynomials
 
Differential Equation
Differential EquationDifferential Equation
Differential Equation
 
Applications of Differentiation
Applications of DifferentiationApplications of Differentiation
Applications of Differentiation
 
Unit I discrete mathematics lecture notes
Unit I  discrete mathematics lecture notesUnit I  discrete mathematics lecture notes
Unit I discrete mathematics lecture notes
 
Newton raphson
Newton raphsonNewton raphson
Newton raphson
 

Andere mochten auch

El riesgo de no considerar la gestión de riesgos
El riesgo de no considerar la gestión de riesgosEl riesgo de no considerar la gestión de riesgos
El riesgo de no considerar la gestión de riesgos
Alejandro Domínguez Torres
 

Andere mochten auch (20)

A competency based human resources architecture
A competency based human resources architectureA competency based human resources architecture
A competency based human resources architecture
 
Importancia de la teoría de operadores
Importancia de la teoría de operadoresImportancia de la teoría de operadores
Importancia de la teoría de operadores
 
Education service delivery
Education service deliveryEducation service delivery
Education service delivery
 
El riesgo de no considerar la gestión de riesgos
El riesgo de no considerar la gestión de riesgosEl riesgo de no considerar la gestión de riesgos
El riesgo de no considerar la gestión de riesgos
 
Calidad en el desarrollo de proyectos
Calidad en el desarrollo de proyectosCalidad en el desarrollo de proyectos
Calidad en el desarrollo de proyectos
 
El colapso de los proyectos
El colapso de los proyectosEl colapso de los proyectos
El colapso de los proyectos
 
Regreso a los negocios
Regreso a los negociosRegreso a los negocios
Regreso a los negocios
 
A short note on the history of B-splines
A short note on the history of B-splinesA short note on the history of B-splines
A short note on the history of B-splines
 
Existen los hackers con ética
Existen los hackers con éticaExisten los hackers con ética
Existen los hackers con ética
 
Representaciones de Fibonacci
Representaciones de FibonacciRepresentaciones de Fibonacci
Representaciones de Fibonacci
 
Los hackers con ética
Los hackers con éticaLos hackers con ética
Los hackers con ética
 
Es usted un líder de proyectos
Es usted un líder de proyectosEs usted un líder de proyectos
Es usted un líder de proyectos
 
Liderando proyectos de it
Liderando proyectos de itLiderando proyectos de it
Liderando proyectos de it
 
Modelos curriculares de posgrado en ti
Modelos curriculares de posgrado en tiModelos curriculares de posgrado en ti
Modelos curriculares de posgrado en ti
 
La ingeniera social y la seguridad en ti
La ingeniera social y la seguridad en tiLa ingeniera social y la seguridad en ti
La ingeniera social y la seguridad en ti
 
La ingeniería social y la seguridad en it
La ingeniería social y la seguridad en itLa ingeniería social y la seguridad en it
La ingeniería social y la seguridad en it
 
Acreditación en informática y computación
Acreditación en informática y computaciónAcreditación en informática y computación
Acreditación en informática y computación
 
Un emprendedor nunca deja de capacitarse
Un emprendedor nunca deja de capacitarseUn emprendedor nunca deja de capacitarse
Un emprendedor nunca deja de capacitarse
 
Cambio y conocimiento en los sistemas
Cambio y conocimiento en los sistemasCambio y conocimiento en los sistemas
Cambio y conocimiento en los sistemas
 
Analogías para el desarrollo de ti
Analogías para el desarrollo de tiAnalogías para el desarrollo de ti
Analogías para el desarrollo de ti
 

Ähnlich wie A historical note on schwartz space and test or bump functions

Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2e
Springer
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanics
Springer
 
The history of calculus first draft
The history of calculus first draftThe history of calculus first draft
The history of calculus first draft
Zihan Yu
 
On the lambert w function
On the lambert w functionOn the lambert w function
On the lambert w function
TrungKienVu3
 

Ähnlich wie A historical note on schwartz space and test or bump functions (20)

Mit2 092 f09_lec04
Mit2 092 f09_lec04Mit2 092 f09_lec04
Mit2 092 f09_lec04
 
A Proof of the Riemann Hypothesis
A Proof of the Riemann  HypothesisA Proof of the Riemann  Hypothesis
A Proof of the Riemann Hypothesis
 
Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2e
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanics
 
Cs jog
Cs jogCs jog
Cs jog
 
1807.02591v3.pdf
1807.02591v3.pdf1807.02591v3.pdf
1807.02591v3.pdf
 
physics430_lecture11.ppt
physics430_lecture11.pptphysics430_lecture11.ppt
physics430_lecture11.ppt
 
Frobenious theorem
Frobenious theoremFrobenious theorem
Frobenious theorem
 
Mathematics basics
Mathematics basicsMathematics basics
Mathematics basics
 
project
projectproject
project
 
1.1 Lecture on Limits and Coninuity.pdf
1.1 Lecture on Limits and Coninuity.pdf1.1 Lecture on Limits and Coninuity.pdf
1.1 Lecture on Limits and Coninuity.pdf
 
Seminar on Motivic Hall Algebras
Seminar on Motivic Hall AlgebrasSeminar on Motivic Hall Algebras
Seminar on Motivic Hall Algebras
 
Complex exercises
Complex exercisesComplex exercises
Complex exercises
 
Thesis
ThesisThesis
Thesis
 
11.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-5811.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-58
 
Hbam2011 09
Hbam2011 09Hbam2011 09
Hbam2011 09
 
The history of calculus first draft
The history of calculus first draftThe history of calculus first draft
The history of calculus first draft
 
On the lambert w function
On the lambert w functionOn the lambert w function
On the lambert w function
 
On elements of deterministic chaos and cross links in non- linear dynamical s...
On elements of deterministic chaos and cross links in non- linear dynamical s...On elements of deterministic chaos and cross links in non- linear dynamical s...
On elements of deterministic chaos and cross links in non- linear dynamical s...
 
Top schools in delhi ncr
Top schools in delhi ncrTop schools in delhi ncr
Top schools in delhi ncr
 

Mehr von Alejandro Domínguez Torres

Cómo no crear una oficina de dirección de proyectos
Cómo no crear una oficina de dirección de proyectosCómo no crear una oficina de dirección de proyectos
Cómo no crear una oficina de dirección de proyectos
Alejandro Domínguez Torres
 
The limiting absorption principle for the elastic equations
The limiting absorption principle for the elastic equationsThe limiting absorption principle for the elastic equations
The limiting absorption principle for the elastic equations
Alejandro Domínguez Torres
 
Aplicaciones de los sistemas ecuaciones a la electricidad
Aplicaciones de los sistemas ecuaciones a la electricidadAplicaciones de los sistemas ecuaciones a la electricidad
Aplicaciones de los sistemas ecuaciones a la electricidad
Alejandro Domínguez Torres
 

Mehr von Alejandro Domínguez Torres (20)

Cómo elegir un posgrado webinar
Cómo elegir un posgrado   webinarCómo elegir un posgrado   webinar
Cómo elegir un posgrado webinar
 
La estrategia de Wile E. Coyote para atrapar al Correcaminos
La estrategia de Wile E. Coyote para atrapar al CorrecaminosLa estrategia de Wile E. Coyote para atrapar al Correcaminos
La estrategia de Wile E. Coyote para atrapar al Correcaminos
 
Problemas actuales en la educación
Problemas actuales en la educaciónProblemas actuales en la educación
Problemas actuales en la educación
 
Vida Después de la Universidad
Vida Después de la UniversidadVida Después de la Universidad
Vida Después de la Universidad
 
Cómo no crear una oficina de dirección de proyectos
Cómo no crear una oficina de dirección de proyectosCómo no crear una oficina de dirección de proyectos
Cómo no crear una oficina de dirección de proyectos
 
Después de una carrera técnica
Después de una carrera técnicaDespués de una carrera técnica
Después de una carrera técnica
 
Teoría y tendencias actuales de la administración
Teoría y tendencias actuales de la administraciónTeoría y tendencias actuales de la administración
Teoría y tendencias actuales de la administración
 
Carreras con futuro
Carreras con futuroCarreras con futuro
Carreras con futuro
 
Cómo conseguir empleo
Cómo conseguir empleoCómo conseguir empleo
Cómo conseguir empleo
 
La vida después de la universidad
La vida después de la universidadLa vida después de la universidad
La vida después de la universidad
 
¿Todos los PMPs pueden ser directores de proyectos?
¿Todos los PMPs pueden ser directores de proyectos?¿Todos los PMPs pueden ser directores de proyectos?
¿Todos los PMPs pueden ser directores de proyectos?
 
La profesionalización de la dirección de proyectos
La profesionalización de la dirección de proyectosLa profesionalización de la dirección de proyectos
La profesionalización de la dirección de proyectos
 
El valor profesional y organizacional de la dirección de proyectos
El valor profesional y organizacional de la dirección de proyectosEl valor profesional y organizacional de la dirección de proyectos
El valor profesional y organizacional de la dirección de proyectos
 
The limiting absorption principle for the elastic equations
The limiting absorption principle for the elastic equationsThe limiting absorption principle for the elastic equations
The limiting absorption principle for the elastic equations
 
Aplicaciones de los sistemas ecuaciones a la electricidad
Aplicaciones de los sistemas ecuaciones a la electricidadAplicaciones de los sistemas ecuaciones a la electricidad
Aplicaciones de los sistemas ecuaciones a la electricidad
 
Applications of analytic geometry
Applications of analytic geometryApplications of analytic geometry
Applications of analytic geometry
 
Plan estratégico de la calidad
Plan estratégico de la calidadPlan estratégico de la calidad
Plan estratégico de la calidad
 
Calidad en la empresa - curso
Calidad en la empresa - cursoCalidad en la empresa - curso
Calidad en la empresa - curso
 
Aplicaciones de los números complejos
Aplicaciones de los números complejosAplicaciones de los números complejos
Aplicaciones de los números complejos
 
Recursos humanos y capital humano
Recursos humanos y capital humanoRecursos humanos y capital humano
Recursos humanos y capital humano
 

Kürzlich hochgeladen

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 

Kürzlich hochgeladen (20)

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 

A historical note on schwartz space and test or bump functions

  • 1. A Historical Note on Schwartz Space and Test or Bump Functions Alejandro Domínguez December 2013 Some preliminary definitions The definition of rapidly decreasing functions is as follows. 1 Definition (Rapidly Decreasing Functions) A function  :  is said to be a rapidly decreasing function  A.   C   , B. xi d j  x  dx j  (infinitely differentiable);  M ij , for all integers i, j  0 . Notice that property B in the Definition 1 gives the name to these functions. In fact, this property means that the function and all of its derivatives decrease faster than any polynomial. Also notice that the set of rapidly decreasing functions forms a linear space, called the Schwartz space, denoted by S  , other words: S  ,   . In is the linear space of all complex valued infinitely differentiable functions having all their derivatives decreasing faster than any polynomial. An example of a function belonging to S  , Figure 1. Graph of   x   x e i x 2  is (see Figure 1)   x   xi e x 2 , for all i  0 . for i  0,1, 2, 3, 4 (in black, red, green, pale green, and blue respectively). 1
  • 2. Of course, any complex valued infinitely differentiable function  having a compact support [i.e.,   C0  ,  ] belongs to S  a maximum in ,  . This is so since any derivative of  is continuous and x i j  x  has . Particularly, these last functions are called test functions or bump functions. The linear space of test functions is denoted as D  ,  . Of course this last space is a subspace of S  , . A function of this type is (see Figure 2).  1 2  1 x   x   e , 0,  x  1; x  1. Figure 2. Example of a test or bump function. This is probably one of the simplest examples of a test function; however, it has an awful property. In fact, following an argument similar to that given on p. 16 of (Griffel, 2002), since support of  is the interval  1,1 , then   x   0 about for x  1 and x  1 , so all derivatives vanish at 1 . Hence the Taylor series of  1 is identically zero. But   x   0 for 1  x  1 , so  does not equal its Taylor series. Test functions are thus peculiar functions; they are smooth, yet Taylor expansions are not valid. The above example clearly shows singular behavior at x  1 . Notice that in the theory of distributions, it is not necessary to use explicit formulas for rapidly decreasing functions or test functions: They are used for theoretical purposes only. Another related set of functions are the so-called functions of slow growth. 2 Definition (Functions of Slow Growth) f:  is said to be a function of slow growth  A. f C  , ; B. There exists a B  0 such that d j f  x dx j   as O x 2 B x .
  • 3. The set of functions of slow growth is denoted as N  , polynomial is an element of N  ,  . Moreover, if  . From this definition it is obvious that any f  N  ,  and   S  ,  , then f   S  ,  . It should also be observed that (Lighthill, 1958, p. 15) calls the elements of S  , while the elements of N  ,  good functions,  fairly good functions. The historical note The Schwartz space is called so after the French mathematician Laurent Moise Schwartz (March 5, 1915 – July 4, 2002). This space was actually defined by Schwartz in his paper (Schwartz, 1947-1948). In fact, on p. 10 of this paper it can be read the definition of the Schwartz apace and its relation to the space of test functions: Main Scientists on Schwartz Space and Test or Bump Functions Soit  S  l’espace des fonctions   x1 , x2 , xn  indéfiniment dérivables (au sens usuel), et tendant vers 0 à l’infini plus vite que 2 2 toute puissance de 1 r ( r 2  x12  x2   xn ) ainsi que chacune de leurs dérivées. On peut encore dire que, si   S  , tout produit d’un polynôme par une dérivée de  (ou toute dérivée du produit de  par un polynôme) est une fonction bornée, et réciproquement ; nous dirons pour abréger que  est «à décroissance rapide à l’  ainsi que ses dérivées». L’espace  S  admet évidemment, comme sous-espace particulier, l’espace  D  , des fonctions  indéfiniment dérivables à support compact. Nous introduirons dans  S Portrait 1. Laurent Moise Schwartz (March 5, 1915 – July 4, 2002) (http://wwwhistory.mcs.standrews.ac.uk/Biographies/ Schwartz.html).  une notion de convergence. Des  j   S  convergeront vers o si le produit par tout polynôme de toute dérivées des  j (ou toute dérivée du produit des  j par tout polynôme) converge uniformément vers o dans tout l’espace. On voit que des  j   D  , convergeant vers o dans  D  , convergent aussi vers o dans  S  , mais la réciproque est inexacte. On montre aisément que  D  , considéré comme sous-espace vectoriel de  S  , avec la topologie induite par celle de  S  , est dense dans S  . The method of multiplication of a suitable function by a test function and then integrate the result (as it is the case of the Theory of Distributions) is as old as the beginning of mathematical analysis. On years 1759-1760, the Italian born mathematician Joseph-Louis Lagrange (January 26, 1736 – April 10, 1813) published a paper where this method is used in relation to the integration of the sound wave equation (Lagrange, 1759-1760). On §6 Lagrange established the next problem and a method for finding its solutions: 6. Problème I.  Étant donné un système d’un nombre infini de points mobiles, dont chacun dans l’état d’équilibre soit déterminé 3 Portrait 2. Joseph-Louis Lagrange (January 26, 1736 – April 10, 1813) (http://www-history.mcs.standrews.ac.uk/Biographies/ Lagrange.html).
  • 4. par la variable x , et dont le premier et le dernier, qui répondent á x  0 et à x  a soient supposés fixes, trouver les mouvements de tous les points intermédiaires, dont la loi est contenue dans la d2z d 2z formule 2  c 2 , z étant l’espace décrit par chacun d’eux dt dx durant un temps quelconque t . Qu’on multiplie cette équation par Mdx , M étant une fonction quelconque de x , et qu’on l’intègre en ne faisant varier que x ; il est clair que si dans cette intégrale, prise en sorte qu’elle évanouisse lorsque x  0 , on fait x  a , on aura la somme de toutes les valeurs particulières de la formule d2z d 2z Mdx  c 2 Mdx , qui répondent à chaque point mobile du 2 dt dx système donné. Cette somme sera donc Portrait 3. Norbert Wiener (November 26, 1894 – March 18, 1964) (http://www-history.mcs.standrews.ac.uk/Biographies/ Wiener_Norbert.html). d 2z d 2z Mdx  c  2 Mdx .  dt 2 dx This method was also used by Norbert Wiener on 1926 for solving linear partial differential equations of second order (Wiener, 1926). On pp. 582 Wiener wrote: 8. Operational Solution of Partial Differential Equations. Before we enter in this topic in detail, it is important to consider the nature of the solution of a partial differential equation. Let us consider the linear equation A  2u  2u  2u u u B C 2  D  E  Fu  0 , x 2 xy y x y Portrait 4. Kurt Otto Friedrichs (September 28, 1901 – December 31, 1982) (http://www-history.mcs.standrews.ac.uk/Biographies/ Friedrichs.html). where for simplicity’s sake, we shall suppose that the coefficients have as many derivatives as we shall need in the work which follows. If u satisfies this equation, it must manifestly possess the various derivatives indicated in the equation. As is familiar, however, in the case of the equation of the vibrating string, there are cases where u must be regarded as a solution of our differential equation in a general sense without possessing all the orders of derivatives indicated in the equation, and indeed without being differentiable at all. It is a matter of some interest, therefore, to render precise the manner in which a nondifferentiable function may satisfy in a generalized sense a differential equation. Let G  x, y  be a function positive and infinitely differentiable within a certain bounded polygonal region R on the XY plane, vanishing with its derivatives of all orders on the periphery of R . Then there is a function G1  x, y  such that 4 Portrait 5. Jean Leray (November 7, 1906 – November 10, 1998) (http://www-history.mcs.standrews.ac.uk/Biographies/ Leray.html).
  • 5.   Au xx  Bu xy  Cu yy  Du x  Eu y  Fu  G  x, y  dxdy R   u  x, y  G1  x, y  dxdy R for all u with bounded summable derivatives of the first two orders, as we may show by integration by parts. Thus the necessary and sufficient condition for u to satisfy our differential equation almost everywhere is that  u  x, y  G  x, y  dxdy  0 1 R For every possible G (as the G s for a complete set over any region), and that u possesses the requisite derivatives. Portrait 6. Sergei Lvovich Sobolev (October 6, 1908 – January 3, 1989) (http://www-history.mcs.standrews.ac.uk/Biographies/ Sobolev.html). Other famous mathematicians have also used the method of multiplication of a suitable function by a test function and then integrate the result; e.g., (Leray, 1934), (Sobolev, 1936), (Courant & Hilbert, 1937), (Friedrichs, 1939), (Weyl, 1940), (Schwartz, 1945), (Bochner & Martin, 1948). The test or bump functions   D  , properties have an interesting history:  holding the following two additional     x  dx  1 ;  lim  x;    lim  0 1  x       x  0    n Until the year 1944 these functions does not have a specific name. It was in this year when, in the study of differential operators, the German born and American mathematician Kurt Otto Friedrichs (September 28, 1901 – December 31, 1982) proposed the name “mollifier” (Friedrichs, 1944, pp. 136139). Portrait 7. Richard Courant (January 8, 1888 – January 27, 1972) (http://wwwhistory.mcs.standrews.ac.uk/Biographies/ Courant.html). According to Wikipedia in its entry “Mollifier”, the paper by Friedrichs (http://en.wikipedia.org/wiki/Mollifier - cite_note-Laxref-0) […] is a watershed in the modern theory of partial differential equations. The name of the concept had a curious genesis: at that time Friedrichs was a colleague of the mathematician Donald Alexander Flanders, and since he liked to consult colleagues about English usage, he asked Flanders how to name the smoothing operator he was about to introduce. Flanders was a puritan so his friends nicknamed him Moll after Moll Flanders in recognition of his moral qualities, and he suggested to call the new mathematical concept a “mollifier” as a pun incorporating both Flanders’ nickname and the verb ‘to mollify’, meaning ‘to smooth over’ in a figurative sense. [The Soviet mathematician ] Sergei [Lvovich] Sobolev [October 6, 1908 – January 3, 1989] had previously used mollifiers in his epoch making 1938 paper containing the proof of the Sobolev 5 Portrait 8. David Hilbert (January 23, 1862 – February 14, 1943) (http://www-history.mcs.standrews.ac.uk/Biographies/ Hilbert.html).
  • 6. embedding theorem [Sobolev, S. L. (1938). Sur un théorème d’analyse fonctionnelle. (in Russian, with French abstract), Recueil Mathématique (Matematicheskii Sbornik), 4(46)(3), 471– 497], as Friedrichs himself later acknowledged [Friedrichs, K. O. (1953). On the differentiability of the solutions of linear elliptic differential equations. Communications on Pure and Applied Mathematics VI (3), 299–326]. There is a little misunderstanding in the concept of mollifier: Friedrichs defined as “mollifier” the integral operator whose kernel is one of the functions nowadays called mollifiers. However, since the properties of an integral operator are completely determined by its kernel, the name mollifier was inherited by the kernel itself as a result of common usage. Portrait 9. Hermann Klaus Hugo Weyl (November 9, 1885 – December 9, 1955) (http://www-history.mcs.standrews.ac.uk/Biographies/ Weyl.html). Portrait 10. Salomon Bochner (August 20, 1899 – May 2, 1982) (http://wwwhistory.mcs.standrews.ac.uk/Biographies/ Bochner.html). References Bochner, S. & Martin, W. T. (1948). Several complex variables. Princeton, USA: Princeton University Press Courant R. & Hilbert, D. (1937). Methoden der Mathematischen Physik, II. Berlin, Deutschland: Verlag von Julius Springer (see pp. 469-470). Griffel, D. H. (2002). Applied functional analysis. New York, USA: Dover. Friedrichs, K. O. (1939). On differential operators in Hilbert spaces. American Journal of Mathematics, 61, 523-544. Friedrichs, K. O. (1944). The identity of weak and strong extensions of differential operators. Transactions of the American Mathematical Society, 55, 132–151. Lagrange, J. L. (1759-1760). Nouvelles recherches sur la nature et la propagation du son. Miscellanea Taurinensia, II (Œuvres de Lagrange, Tome Premier (1867), 150-316, Gauthier-Villars, France: Paris. 6
  • 7. Leray, J. (1934). Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathematica, 61, 193-248. Lighthill, M. J. (1958). Introduction to Fourier analysis and generalised functions. Cambridge, United Kingdom: Cambridge University Press. Schwartz, L. (1945). Généralisation de la notion de fonction, de dérivation, de transformation de Fourier, et applications mathématiques et physiques. Annales de l’université de Grenoble, 21, 57-74. Schwartz, L. M. (1947-1948). Théorie des distributions et transformation de Fourier. Annales de l’université e Grenoble, 23, 7-24. Sobolev, S. L. (1936). Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Matematicheskiui Sbornik, 1 (43), 39-71 Weyl, H. (1940). The method of orthogonal projection in potential theory. Duke Mathematical Journal, 7, 411-444. Wiener, N. (1926). The operational calculus. Mathematische Annalen, 95, 557-584. 7