SlideShare ist ein Scribd-Unternehmen logo
1 von 24
Downloaden Sie, um offline zu lesen
ÍNDICE 1
EJERCICIOS SOBRE OPERACIONES CON MATRICES
Índice
A. Operaciones básicas con matrices
1. Dadas las matrices siguientes
A =


9 1 1
1 2 1
1 18 1

 , B =


1 1
1 1
1 1

 , C =


10 2 2
2 3 2
2 19 2

 ,
se pide calcular las siguientes operaciones:
a) AB Solución:
AB =


11 11
4 4
20 20


b) Bt
At
Solución:
Bt
At
= (AB)t
=
11 4 20
11 4 20
c) (A + I3)2
Solución:
(A + I3)2
=


102 31 13
14 28 6
30 91 23

 ,
d) A2
+ 2A + I3 Solución:
Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será
entonces la matriz del apartado anterior.
e) AC Solución:
AC =


94 40 22
16 27 8
48 75 40


f ) CA
Solución:
CA =


94 50 14
23 44 7
39 76 23


g) (A + C)2
Solución:
(A + C)2
=


19 3 3
3 5 3
3 37 3


2
=


379 183 75
81 145 33
177 305 129


A OPERACIONES BÁSICAS CON MATRICES 2
h) A2
+ 2AC + C2
Solución:
A2
+ 2AC + C2
=


379 173 83
74 128 34
186 304 146


i) A2
+ AC + CA + C2
Solución:
Como (A + C)2
= (A + C)(A + C) = A2
+ AC + CA + C2
, entonces:
A2
+ AC + CA + C2
=


379 183 75
81 145 33
177 305 129


2. Dadas las matrices siguientes
A =


8 1 1
1 2 2
1 16 1

 , B =


1 1
1 1
1 2

 , C =


9 2 2
2 3 3
2 17 2

 ,
se pide calcular las siguientes operaciones:
a) AB Solución:
AB =


10 11
5 7
18 19


b) Bt
At
Solución:
Bt
At
= (AB)t
=
10 5 18
11 7 19
c) (A + I3)2
Solución:
(A + I3)2
=


83 28 13
14 42 11
27 81 37

 ,
d) A2
+ 2A + I3 Solución:
Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será
entonces la matriz del apartado anterior.
e) AC Solución:
AC =


76 36 21
17 42 12
43 67 52


f ) CA
Solución:
CA =


76 45 15
22 56 11
35 68 38


A OPERACIONES BÁSICAS CON MATRICES 3
g) (A + C)2
Solución:
(A + C)2
=


17 3 3
3 5 5
3 33 3


2
=


307 165 75
81 199 49
159 273 183


h) A2
+ 2AC + C2
Solución:
A2
+ 2AC + C2
=


307 156 81
76 185 50
167 272 197


i) A2
+ AC + CA + C2
Solución:
Como (A + C)2
= (A + C)(A + C) = A2
+ AC + CA + C2
, entonces:
A2
+ AC + CA + C2
=


307 165 75
81 199 49
159 273 183


3. Dadas las matrices siguientes
A =


7 1 1
1 2 3
1 14 1

 , B =


1 1
1 1
1 3

 , C =


8 2 2
2 3 4
2 15 2

 ,
se pide calcular las siguientes operaciones:
a) AB Solución:
AB =


9 11
6 12
16 18


b) Bt
At
Solución:
Bt
At
= (AB)t
=
9 6 16
11 12 18
c) (A + I3)2
Solución:
(A + I3)2
=


66 25 13
14 52 16
24 71 47

 ,
d) A2
+ 2A + I3 Solución:
Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será
entonces la matriz del apartado anterior.
e) AC Solución:
AC =


60 32 20
18 53 16
38 59 60


A OPERACIONES BÁSICAS CON MATRICES 4
f ) CA
Solución:
CA =


60 40 16
21 64 15
31 60 49


g) (A + C)2
Solución:
(A + C)2
=


15 3 3
3 5 7
3 29 3


2
=


243 147 75
81 237 65
141 241 221


h) A2
+ 2AC + C2
Solución:
A2
+ 2AC + C2
=


243 139 79
78 226 66
148 240 232


i) A2
+ AC + CA + C2
Solución:
Como (A + C)2
= (A + C)(A + C) = A2
+ AC + CA + C2
, entonces:
A2
+ AC + CA + C2
=


243 147 75
81 237 65
141 241 221


4. Dadas las matrices siguientes
A =


6 2 1
1 4 4
2 12 1

 , B =


2 1
2 2
1 4

 , C =


7 3 2
2 5 5
3 13 2

 ,
se pide calcular las siguientes operaciones:
a) AB Solución:
AB =


17 14
14 25
29 30


b) Bt
At
Solución:
Bt
At
= (AB)t
=
17 14 29
14 25 30
c) (A + I3)2
Solución:
(A + I3)2
=


53 36 17
20 75 29
30 88 54

 ,
A OPERACIONES BÁSICAS CON MATRICES 5
d) A2
+ 2A + I3 Solución:
Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será
entonces la matriz del apartado anterior.
e) AC Solución:
AC =


49 41 24
27 75 30
41 79 66


f ) CA
Solución:
CA =


49 50 21
27 84 27
35 82 57


g) (A + C)2
Solución:
(A + C)2
=


13 5 3
3 9 9
5 25 3


2
=


199 185 93
111 321 117
155 325 249


h) A2
+ 2AC + C2
Solución:
A2
+ 2AC + C2
=


199 176 96
111 312 120
161 322 258


i) A2
+ AC + CA + C2
Solución:
Como (A + C)2
= (A + C)(A + C) = A2
+ AC + CA + C2
, entonces:
A2
+ AC + CA + C2
=


199 185 93
111 321 117
155 325 249


5. Dadas las matrices siguientes
A =


5 2 1
1 4 5
2 10 1

 , B =


2 1
2 2
1 5

 , C =


6 3 2
2 5 6
3 11 2

 ,
se pide calcular las siguientes operaciones:
a) AB Solución:
AB =


15 14
15 34
25 27


A OPERACIONES BÁSICAS CON MATRICES 6
b) Bt
At
Solución:
Bt
At
= (AB)t
=
15 15 25
14 34 27
c) (A + I3)2
Solución:
(A + I3)2
=


40 32 18
21 77 36
26 74 56

 ,
d) A2
+ 2A + I3 Solución:
Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será
entonces la matriz del apartado anterior.
e) AC Solución:
AC =


37 36 24
29 78 36
35 67 66


f ) CA
Solución:
CA =


37 44 23
27 84 33
30 70 60


g) (A + C)2
Solución:
(A + C)2
=


11 5 3
3 9 11
5 21 3


2
=


151 163 97
115 327 141
133 277 255


h) A2
+ 2AC + C2
Solución:
A2
+ 2AC + C2
=


151 155 98
117 321 144
138 274 261


i) A2
+ AC + CA + C2
Solución:
Como (A + C)2
= (A + C)(A + C) = A2
+ AC + CA + C2
, entonces:
A2
+ AC + CA + C2
=


151 163 97
115 327 141
133 277 255


6. Dadas las matrices siguientes
A =


4 2 1
1 4 6
2 8 1

 , B =


2 1
2 2
1 6

 , C =


5 3 2
2 5 7
3 9 2

 ,
se pide calcular las siguientes operaciones:
A OPERACIONES BÁSICAS CON MATRICES 7
a) AB Solución:
AB =


13 14
16 45
21 24


b) Bt
At
Solución:
Bt
At
= (AB)t
=
13 16 21
14 45 24
c) (A + I3)2
Solución:
(A + I3)2
=


29 28 19
22 75 43
22 60 54

 ,
d) A2
+ 2A + I3 Solución:
Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será
entonces la matriz del apartado anterior.
e) AC Solución:
AC =


27 31 24
31 77 42
29 55 62


f ) CA
Solución:
CA =


27 38 25
27 80 39
25 58 59


g) (A + C)2
Solución:
(A + C)2
=


9 5 3
3 9 13
5 17 3


2
=


111 141 101
119 317 165
111 229 245


h) A2
+ 2AC + C2
Solución:
A2
+ 2AC + C2
=


111 134 100
123 314 168
115 226 248


i) A2
+ AC + CA + C2
Solución:
Como (A + C)2
= (A + C)(A + C) = A2
+ AC + CA + C2
, entonces:
A2
+ AC + CA + C2
=


111 141 101
119 317 165
111 229 245


B CÁLCULO DE DETERMINANTES 8
B. Cálculo de determinantes
7. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
18 5 7 8
18 3 4 4
9 1 1 1
9 2 3 4
, (b)
9 2 2
27 7 7
18 5 4
, (c)
9 2 2
28 8 8
18 5 4
, (d)
19 5 7 8
18 4 4 4
9 1 2 1
9 2 3 4
Solución:
(a) 9, (b) -9, (c) -16 (d) -46
8. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
16 5 7 10
16 3 4 5
8 1 1 1
8 2 3 5
, (b)
8 2 3
24 7 11
16 5 6
, (c)
8 2 3
25 8 12
16 5 6
, (d)
17 5 7 10
16 4 4 5
8 1 2 1
8 2 3 5
Solución:
(a) 8, (b) -16, (c) -21 (d) -53
9. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
14 5 7 12
14 3 4 6
7 1 1 1
7 2 3 6
, (b)
7 2 4
21 7 15
14 5 8
, (c)
7 2 4
22 8 16
14 5 8
, (d)
15 5 7 12
14 4 4 6
7 1 2 1
7 2 3 6
Solución:
(a) 7, (b) -21, (c) -24 (d) -56
10. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
12 8 7 14
12 4 4 7
6 1 1 1
6 3 3 7
, (b)
6 3 5
18 10 19
12 7 10
, (c)
6 3 5
19 11 20
12 7 10
, (d)
13 8 7 14
12 5 4 7
6 1 2 1
6 3 3 7
Solución:
(a) 12, (b) -24, (c) -25 (d) -90
11. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
10 8 7 16
10 4 4 8
5 1 1 1
5 3 3 8
, (b)
5 3 6
15 10 23
10 7 12
, (c)
5 3 6
16 11 24
10 7 12
, (d)
11 8 7 16
10 5 4 8
5 1 2 1
5 3 3 8
Solución:
(a) 10, (b) -25, (c) -24 (d) -84
B CÁLCULO DE DETERMINANTES 9
12. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
8 8 7 18
8 4 4 9
4 1 1 1
4 3 3 9
, (b)
4 3 7
12 10 27
8 7 14
, (c)
4 3 7
13 11 28
8 7 14
, (d)
9 8 7 18
8 5 4 9
4 1 2 1
4 3 3 9
Solución:
(a) 8, (b) -24, (c) -21 (d) -72
13. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
6 8 7 20
6 4 4 10
3 1 1 1
3 3 3 10
, (b)
3 3 8
9 10 31
6 7 16
, (c)
3 3 8
10 11 32
6 7 16
, (d)
7 8 7 20
6 5 4 10
3 1 2 1
3 3 3 10
Solución:
(a) 6, (b) -21, (c) -16 (d) -54
14. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
4 8 7 22
4 4 4 11
2 1 1 1
2 3 3 11
, (b)
2 3 9
6 10 35
4 7 18
, (c)
2 3 9
7 11 36
4 7 18
, (d)
5 8 7 22
4 5 4 11
2 1 2 1
2 3 3 11
Solución:
(a) 4, (b) -16, (c) -9 (d) -30
15. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
2 8 7 24
2 4 4 12
1 1 1 1
1 3 3 12
, (b)
1 3 10
3 10 39
2 7 20
, (c)
1 3 10
4 11 40
2 7 20
, (d)
3 8 7 24
2 5 4 12
1 1 2 1
1 3 3 12
Solución:
(a) 2, (b) -9, (c) 0 (d) 0
16. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
18 5 9 8
18 3 5 4
9 1 1 1
9 2 4 4
, (b)
9 3 2
27 11 7
18 8 4
, (c)
9 3 2
28 12 8
18 8 4
, (d)
19 5 9 8
18 4 5 4
9 1 2 1
9 2 4 4
Solución:
(a) 18, (b) -18, (c) -32 (d) -39
B CÁLCULO DE DETERMINANTES 10
17. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
16 5 7 11
16 3 4 5
8 1 1 1
8 2 3 6
, (b)
8 2 4
24 7 14
16 5 8
, (c)
8 2 4
25 8 15
16 5 8
, (d)
17 5 7 11
16 4 4 5
8 1 2 1
8 2 3 6
Solución:
(a) 16, (b) -16, (c) -20 (d) -81
18. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
14 5 7 14
14 3 4 6
7 1 1 1
7 2 3 8
, (b)
7 2 6
21 7 21
14 5 12
, (c)
7 2 6
22 8 22
14 5 12
, (d)
15 5 7 14
14 4 4 6
7 1 2 1
7 2 3 8
Solución:
(a) 21, (b) -21, (c) -22 (d) -104
19. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
12 8 7 17
12 4 4 7
6 1 1 1
6 3 3 10
, (b)
6 3 8
18 10 28
12 7 16
, (c)
6 3 8
19 11 29
12 7 16
, (d)
13 8 7 17
12 5 4 7
6 1 2 1
6 3 3 10
Solución:
(a) 48, (b) -24, (c) -22 (d) -180
20. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
10 8 7 20
10 4 4 8
5 1 1 1
5 3 3 12
, (b)
5 3 10
15 10 35
10 7 20
, (c)
5 3 10
16 11 36
10 7 20
, (d)
11 8 7 20
10 5 4 8
5 1 2 1
5 3 3 12
Solución:
(a) 50, (b) -25, (c) -20 (d) -180
21. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
8 8 7 23
8 4 4 9
4 1 1 1
4 3 3 14
, (b)
4 3 12
12 10 42
8 7 24
, (c)
4 3 12
13 11 43
8 7 24
, (d)
9 8 7 23
8 5 4 9
4 1 2 1
4 3 3 14
Solución:
(a) 48, (b) -24, (c) -16 (d) -162
B CÁLCULO DE DETERMINANTES 11
22. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
6 8 7 26
6 4 4 10
3 1 1 1
3 3 3 16
, (b)
3 3 14
9 10 49
6 7 28
, (c)
3 3 14
10 11 50
6 7 28
, (d)
7 8 7 26
6 5 4 10
3 1 2 1
3 3 3 16
Solución:
(a) 42, (b) -21, (c) -10 (d) -126
23. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
4 8 7 29
4 4 4 11
2 1 1 1
2 3 3 18
, (b)
2 3 16
6 10 56
4 7 32
, (c)
2 3 16
7 11 57
4 7 32
, (d)
5 8 7 29
4 5 4 11
2 1 2 1
2 3 3 18
Solución:
(a) 32, (b) -16, (c) -2 (d) -72
24. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
2 8 7 32
2 4 4 12
1 1 1 1
1 3 3 20
, (b)
1 3 18
3 10 63
2 7 36
, (c)
1 3 18
4 11 64
2 7 36
, (d)
3 8 7 32
2 5 4 12
1 1 2 1
1 3 3 20
Solución:
(a) 18, (b) -9, (c) 8 (d) 0
25. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
18 8 9 8
18 4 5 4
9 1 1 1
9 3 4 4
, (b)
9 4 2
27 14 7
18 10 4
, (c)
9 4 2
28 15 8
18 10 4
, (d)
19 8 9 8
18 5 5 4
9 1 2 1
9 3 4 4
Solución:
(a) 36, (b) -18, (c) -32 (d) -56
26. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
16 8 9 11
16 4 5 5
8 1 1 1
8 3 4 6
, (b)
8 4 4
24 14 14
16 10 8
, (c)
8 4 4
25 15 15
16 10 8
, (d)
17 8 9 11
16 5 5 5
8 1 2 1
8 3 4 6
Solución:
(a) 64, (b) -32, (c) -40 (d) -105
B CÁLCULO DE DETERMINANTES 12
27. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
14 8 9 14
14 4 5 6
7 1 1 1
7 3 4 8
, (b)
7 4 6
21 14 21
14 10 12
, (c)
7 4 6
22 15 22
14 10 12
, (d)
15 8 9 14
14 5 5 6
7 1 2 1
7 3 4 8
Solución:
(a) 84, (b) -42, (c) -44 (d) -138
28. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
12 8 9 17
12 4 5 7
6 1 1 1
6 3 4 10
, (b)
6 4 8
18 14 28
12 10 16
, (c)
6 4 8
19 15 29
12 10 16
, (d)
13 8 9 17
12 5 5 7
6 1 2 1
6 3 4 10
Solución:
(a) 96, (b) -48, (c) -44 (d) -155
29. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
10 8 9 20
10 4 5 8
5 1 1 1
5 3 4 12
, (b)
5 4 10
15 14 35
10 10 20
, (c)
5 4 10
16 15 36
10 10 20
, (d)
11 8 9 20
10 5 5 8
5 1 2 1
5 3 4 12
Solución:
(a) 100, (b) -50, (c) -40 (d) -156
30. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
8 8 9 23
8 4 5 9
4 1 1 1
4 3 4 14
, (b)
4 4 12
12 14 42
8 10 24
, (c)
4 4 12
13 15 43
8 10 24
, (d)
9 8 9 23
8 5 5 9
4 1 2 1
4 3 4 14
Solución:
(a) 96, (b) -48, (c) -32 (d) -141
31. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
6 8 9 26
6 4 5 10
3 1 1 1
3 3 4 16
, (b)
3 4 14
9 14 49
6 10 28
, (c)
3 4 14
10 15 50
6 10 28
, (d)
7 8 9 26
6 5 5 10
3 1 2 1
3 3 4 16
Solución:
(a) 84, (b) -42, (c) -20 (d) -110
C CÁLCULO DE LA INVERSA DE UNA MATRIZ 13
32. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
4 8 9 29
4 4 5 11
2 1 1 1
2 3 4 18
, (b)
2 4 16
6 14 56
4 10 32
, (c)
2 4 16
7 15 57
4 10 32
, (d)
5 8 9 29
4 5 5 11
2 1 2 1
2 3 4 18
Solución:
(a) 64, (b) -32, (c) -4 (d) -63
33. Calcula los siguientes determinantes usando las propiedades de éstos:
(a)
2 8 9 32
2 4 5 12
1 1 1 1
1 3 4 20
, (b)
1 4 18
3 14 63
2 10 36
, (c)
1 4 18
4 15 64
2 10 36
, (d)
3 8 9 32
2 5 5 12
1 1 2 1
1 3 4 20
Solución:
(a) 36, (b) -18, (c) 16 (d) 0
34. Demuestra, usando las propiedades de los determinantes, que
2a 3b + 2 2c + 5 2e + d + 5
2a b + 2 2c + 3 e + 3
a 1 1 1
a b + 1 c + 2 d + e + 2
= abcd.
35. Demuestra, usando las propiedades de los determinantes, que
a b + c d + e
3a 3b + 4c 3d + 4e
2a 2b + 3c 2d + 2e
= −ace
C. Cálculo de la inversa de una matriz
36. Calcula la inversa de




1 1 2 1
2 3 6 3
1 2 5 3
1 1 2 2



 y comprueba que es:




3 − 1 0 0
− 5 3 − 2 1
2 −1 1 − 1
−1 0 0 1




37. Calcula la inversa de la matriz


−1 2 1
−2 5 3
−1 2 2

 y comprueba que el resultado es


− 4 2 − 1
− 1 1 − 1
−1 0 1


38. Calcula la inversa de




1 1 2 2
2 3 6 5
1 2 5 4
1 1 2 3



 y comprueba que es:




4 − 1 0 − 1
− 5 3 − 2 1
2 −1 1 − 1
−1 0 0 1




39. Calcula la inversa de la matriz


−1 2 1
−2 5 4
−1 2 2

 y comprueba que el resultado es


− 2 2 − 3
0 1 − 2
−1 0 1


C CÁLCULO DE LA INVERSA DE UNA MATRIZ 14
40. Calcula la inversa de




1 1 2 3
2 3 6 7
1 2 5 5
1 1 2 4



 y comprueba que es:




5 − 1 0 − 2
− 5 3 − 2 1
2 −1 1 − 1
−1 0 0 1




41. Calcula la inversa de la matriz


−1 2 1
−2 5 5
−1 2 2

 y comprueba que el resultado es


0 2 − 5
1 1 − 3
−1 0 1


42. Calcula la inversa de




1 1 2 4
2 3 6 9
1 2 5 6
1 1 2 5



 y comprueba que es:




6 − 1 0 − 3
− 5 3 − 2 1
2 −1 1 − 1
−1 0 0 1




43. Calcula la inversa de la matriz


−1 2 1
−2 5 6
−1 2 2

 y comprueba que el resultado es


2 2 − 7
2 1 − 4
−1 0 1


44. Calcula la inversa de




1 1 2 5
2 3 6 11
1 2 5 7
1 1 2 6



 y comprueba que es:




7 − 1 0 − 4
− 5 3 − 2 1
2 −1 1 − 1
−1 0 0 1




45. Calcula la inversa de la matriz


−1 2 1
−2 5 7
−1 2 2

 y comprueba que el resultado es


4 2 − 9
3 1 − 5
−1 0 1


46. Calcula la inversa de




1 1 2 6
2 3 6 13
1 2 5 8
1 1 2 7



 y comprueba que es:




8 − 1 0 − 5
− 5 3 − 2 1
2 −1 1 − 1
−1 0 0 1




47. Calcula la inversa de la matriz


−1 2 1
−2 5 8
−1 2 2

 y comprueba que el resultado es


6 2 − 11
4 1 − 6
−1 0 1


48. Calcula la inversa de




1 1 2 7
2 3 6 15
1 2 5 9
1 1 2 8



 y comprueba que es:




9 − 1 0 − 6
− 5 3 − 2 1
2 −1 1 − 1
−1 0 0 1




49. Calcula la inversa de la matriz


−1 2 1
−2 5 9
−1 2 2

 y comprueba que el resultado es


8 2 − 13
5 1 − 7
−1 0 1


50. Calcula la inversa de




1 1 2 8
2 3 6 17
1 2 5 10
1 1 2 9



 y comprueba que es:




10 − 1 0 − 7
− 5 3 − 2 1
2 −1 1 − 1
−1 0 0 1




51. Calcula la inversa de la matriz


−1 2 1
−2 5 10
−1 2 2

 y comprueba que el resultado es


10 2 − 15
6 1 − 8
−1 0 1


C CÁLCULO DE LA INVERSA DE UNA MATRIZ 15
52. Calcula la inversa de




1 1 2 9
2 3 6 19
1 2 5 11
1 1 2 10



 y comprueba que es:




11 − 1 0 − 8
− 5 3 − 2 1
2 −1 1 − 1
−1 0 0 1




53. Calcula la inversa de la matriz


−1 2 1
−2 5 11
−1 2 2

 y comprueba que el resultado es


12 2 − 17
7 1 − 9
−1 0 1


54. Calcula la inversa de




1 1 2 1
2 3 6 4
1 2 5 4
1 1 2 2



 y comprueba que es:




2 − 1 0 1
− 4 3 − 2 0
2 −1 1 − 1
−1 0 0 1




55. Calcula la inversa de la matriz


−1 2 2
−2 5 5
−1 2 3

 y comprueba que el resultado es


− 5 2 0
− 1 1 − 1
−1 0 1


56. Calcula la inversa de




1 1 2 2
2 3 6 6
1 2 5 5
1 1 2 3



 y comprueba que es:




3 − 1 0 0
− 4 3 − 2 0
2 −1 1 − 1
−1 0 0 1




57. Calcula la inversa de la matriz


−1 2 2
−2 5 6
−1 2 3

 y comprueba que el resultado es


− 3 2 − 2
0 1 − 2
−1 0 1


58. Calcula la inversa de




1 1 2 3
2 3 6 8
1 2 5 6
1 1 2 4



 y comprueba que es:




4 − 1 0 − 1
− 4 3 − 2 0
2 −1 1 − 1
−1 0 0 1




59. Calcula la inversa de la matriz


−1 2 2
−2 5 7
−1 2 3

 y comprueba que el resultado es


− 1 2 − 4
1 1 − 3
−1 0 1


60. Calcula la inversa de




1 1 2 4
2 3 6 10
1 2 5 7
1 1 2 5



 y comprueba que es:




5 − 1 0 − 2
− 4 3 − 2 0
2 −1 1 − 1
−1 0 0 1




61. Calcula la inversa de la matriz


−1 2 2
−2 5 8
−1 2 3

 y comprueba que el resultado es


1 2 − 6
2 1 − 4
−1 0 1


62. Calcula la inversa de




1 1 2 5
2 3 6 12
1 2 5 8
1 1 2 6



 y comprueba que es:




6 − 1 0 − 3
− 4 3 − 2 0
2 −1 1 − 1
−1 0 0 1




63. Calcula la inversa de la matriz


−1 2 2
−2 5 9
−1 2 3

 y comprueba que el resultado es


3 2 − 8
3 1 − 5
−1 0 1


D DIAGONALIZACIÓN DE MATRICES 16
64. Calcula la inversa de




1 1 2 6
2 3 6 14
1 2 5 9
1 1 2 7



 y comprueba que es:




7 − 1 0 − 4
− 4 3 − 2 0
2 −1 1 − 1
−1 0 0 1




65. Calcula la inversa de la matriz


−1 2 2
−2 5 10
−1 2 3

 y comprueba que el resultado es


5 2 − 10
4 1 − 6
−1 0 1


66. Calcula la inversa de la matriz




1 c d f
2 2 c + 1 2 d + b 2 f + e
1 c + 1 d + b + 1 f + e + a
1 c d f + 1




y comprueba que el resultado es:




f − c e − a d − d + a b c + b c + 2 c + 1 d − b c − c − (d − b c) − (f − c e − a d + a b c)
e − a b − b − 2 b + 1 −b − (e − a b)
a + 1 −1 1 −a
−1 0 0 1




67. Calcula la inversa de la matriz


−1 a b
−2 2 a + 1 c + 2 b
−1 a b + 1


y comprueba que el resultado es:


a c − b − 2 a − 1 a − (a c − b)
c − 2 1 −c
−1 0 1


D. Diagonalización de matrices
68. Dada la matriz A =


3 − 1 − 1
1 1 − 1
1 − 1 1

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 2)2
(x − 1), m(2) = 2 m(1) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 2I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
D DIAGONALIZACIÓN DE MATRICES 17
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V2 = dim VS = m(2) = 2 y dim V1 = dim VT =
m(1) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (3, 1, 1)β = 3u1 + 1u2 + 1u3 = (5, 4, 3)
v2 = ( − 1, 1, − 1)β = ( − 1, 0, − 1)
v3 = ( − 1, − 1, 1)β = ( − 1, − 2, − 1)
69. Dada la matriz A =


5 − 2 − 2
2 1 − 2
2 − 2 1

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 3)2
(x − 1), m(3) = 2 m(1) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 3I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V3 = dim VS = m(3) = 2 y dim V1 = dim VT =
m(1) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (5, 2, 2)β = 5u1 + 2u2 + 2u3 = (9, 7, 5)
v2 = ( − 2, 1, − 2)β = ( − 3, − 1, − 2)
v3 = ( − 2, − 2, 1)β = ( − 3, − 4, − 2)
70. Dada la matriz A =


7 − 3 − 3
3 1 − 3
3 − 3 1

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 4)2
(x − 1), m(4) = 2 m(1) = 1.
D DIAGONALIZACIÓN DE MATRICES 18
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 4I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V4 = dim VS = m(4) = 2 y dim V1 = dim VT =
m(1) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (7, 3, 3)β = 7u1 + 3u2 + 3u3 = (13, 10, 7)
v2 = ( − 3, 1, − 3)β = ( − 5, − 2, − 3)
v3 = ( − 3, − 3, 1)β = ( − 5, − 6, − 3)
71. Dada la matriz A =


9 − 4 − 4
4 1 − 4
4 − 4 1

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 5)2
(x − 1), m(5) = 2 m(1) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 5I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V5 = dim VS = m(5) = 2 y dim V1 = dim VT =
m(1) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (9, 4, 4)β = 9u1 + 4u2 + 4u3 = (17, 13, 9)
v2 = ( − 4, 1, − 4)β = ( − 7, − 3, − 4)
v3 = ( − 4, − 4, 1)β = ( − 7, − 8, − 4)
D DIAGONALIZACIÓN DE MATRICES 19
72. Dada la matriz A =


11 − 5 − 5
5 1 − 5
5 − 5 1

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 6)2
(x − 1), m(6) = 2 m(1) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 6I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V6 = dim VS = m(6) = 2 y dim V1 = dim VT =
m(1) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (11, 5, 5)β = 11u1 + 5u2 + 5u3 = (21, 16, 11)
v2 = ( − 5, 1, − 5)β = ( − 9, − 4, − 5)
v3 = ( − 5, − 5, 1)β = ( − 9, − 10, − 5)
73. Dada la matriz A =


13 − 6 − 6
6 1 − 6
6 − 6 1

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 7)2
(x − 1), m(7) = 2 m(1) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 7I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V7 = dim VS = m(7) = 2 y dim V1 = dim VT =
m(1) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
D DIAGONALIZACIÓN DE MATRICES 20
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (13, 6, 6)β = 13u1 + 6u2 + 6u3 = (25, 19, 13)
v2 = ( − 6, 1, − 6)β = ( − 11, − 5, − 6)
v3 = ( − 6, − 6, 1)β = ( − 11, − 12, − 6)
74. Dada la matriz A =


15 − 7 − 7
7 1 − 7
7 − 7 1

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 8)2
(x − 1), m(8) = 2 m(1) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 8I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V8 = dim VS = m(8) = 2 y dim V1 = dim VT =
m(1) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (15, 7, 7)β = 15u1 + 7u2 + 7u3 = (29, 22, 15)
v2 = ( − 7, 1, − 7)β = ( − 13, − 6, − 7)
v3 = ( − 7, − 7, 1)β = ( − 13, − 14, − 7)
75. Dada la matriz A =


17 − 8 − 8
8 1 − 8
8 − 8 1

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 9)2
(x − 1), m(9) = 2 m(1) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 9I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
D DIAGONALIZACIÓN DE MATRICES 21
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V9 = dim VS = m(9) = 2 y dim V1 = dim VT =
m(1) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (17, 8, 8)β = 17u1 + 8u2 + 8u3 = (33, 25, 17)
v2 = ( − 8, 1, − 8)β = ( − 15, − 7, − 8)
v3 = ( − 8, − 8, 1)β = ( − 15, − 16, − 8)
76. Dada la matriz A =


19 − 9 − 9
9 1 − 9
9 − 9 1

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 10)2
(x − 1), m(10) = 2 m(1) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 10I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V10 = dim VS = m(10) = 2 y dim V1 =
dim VT = m(1) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (19, 9, 9)β = 19u1 + 9u2 + 9u3 = (37, 28, 19)
v2 = ( − 9, 1, − 9)β = ( − 17, − 8, − 9)
v3 = ( − 9, − 9, 1)β = ( − 17, − 18, − 9)
77. Dada la matriz A =


4 − 1 − 1
1 2 − 1
1 − 1 2

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 3)2
(x − 2), m(3) = 2 m(2) = 1.
D DIAGONALIZACIÓN DE MATRICES 22
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 3I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 2I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V3 = dim VS = m(3) = 2 y dim V2 = dim VT =
m(2) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (4, 1, 1)β = 4u1 + 1u2 + 1u3 = (6, 5, 4)
v2 = ( − 1, 2, − 1)β = (0, 1, − 1)
v3 = ( − 1, − 1, 2)β = (0, − 2, − 1)
78. Dada la matriz A =


6 − 2 − 2
2 2 − 2
2 − 2 2

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 4)2
(x − 2), m(4) = 2 m(2) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 4I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 2I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V4 = dim VS = m(4) = 2 y dim V2 = dim VT =
m(2) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (6, 2, 2)β = 6u1 + 2u2 + 2u3 = (10, 8, 6)
v2 = ( − 2, 2, − 2)β = ( − 2, 0, − 2)
v3 = ( − 2, − 2, 2)β = ( − 2, − 4, − 2)
D DIAGONALIZACIÓN DE MATRICES 23
79. Dada la matriz A =


8 − 3 − 3
3 2 − 3
3 − 3 2

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 5)2
(x − 2), m(5) = 2 m(2) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 5I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 2I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V5 = dim VS = m(5) = 2 y dim V2 = dim VT =
m(2) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (8, 3, 3)β = 8u1 + 3u2 + 3u3 = (14, 11, 8)
v2 = ( − 3, 2, − 3)β = ( − 4, − 1, − 3)
v3 = ( − 3, − 3, 2)β = ( − 4, − 6, − 3)
80. Dada la matriz A =


10 − 4 − 4
4 2 − 4
4 − 4 2

 se pide responder a las siguientes preguntas:
a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades.
Solución:
pA(x) = (x − 6)2
(x − 2), m(6) = 2 m(2) = 1.
b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 6I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βS = {(1, 1, 0), (1, 0, 1)}.
c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 2I3)(x, y, z)t
= (0, 0, 0)t
}.
Solución:
βT = {(1, 1, 1)}.
d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso.
Solución:
La matriz es diagonalizable porque dim V6 = dim VS = m(6) = 2 y dim V2 = dim VT =
m(2) = 2
e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se
sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de
la base canónica.
D DIAGONALIZACIÓN DE MATRICES 24
Solución:
Usando la definición de la matriz Mββ tenemos que:
v1 = (10, 4, 4)β = 10u1 + 4u2 + 4u3 = (18, 14, 10)
v2 = ( − 4, 2, − 4)β = ( − 6, − 2, − 4)
v3 = ( − 4, − 4, 2)β = ( − 6, − 8, − 4)

Weitere ähnliche Inhalte

Was ist angesagt?

TEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICESTEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICES
elisancar
 
Conjuntos demostraciones
Conjuntos demostracionesConjuntos demostraciones
Conjuntos demostraciones
Rafa Cruz
 
Ejercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalEjercicios resueltos base ortonormal
Ejercicios resueltos base ortonormal
algebra
 
52738988 ejercicios-resueltos-varias-variables
52738988 ejercicios-resueltos-varias-variables52738988 ejercicios-resueltos-varias-variables
52738988 ejercicios-resueltos-varias-variables
Juanjo Vasanty
 
Operaciones con matrices
Operaciones con matricesOperaciones con matrices
Operaciones con matrices
Isabel Linares
 

Was ist angesagt? (20)

Ejercicios resueltos sección 4.6
Ejercicios resueltos sección 4.6Ejercicios resueltos sección 4.6
Ejercicios resueltos sección 4.6
 
Ley del seno y del coseno
Ley del seno y del cosenoLey del seno y del coseno
Ley del seno y del coseno
 
Ud 2 determinantes
Ud 2 determinantesUd 2 determinantes
Ud 2 determinantes
 
TEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICESTEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICES
 
Conjuntos demostraciones
Conjuntos demostracionesConjuntos demostraciones
Conjuntos demostraciones
 
Ejercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalEjercicios resueltos base ortonormal
Ejercicios resueltos base ortonormal
 
Ecuaciones lineales: Concepto, ejercicios y problemas
Ecuaciones lineales: Concepto, ejercicios y problemasEcuaciones lineales: Concepto, ejercicios y problemas
Ecuaciones lineales: Concepto, ejercicios y problemas
 
Asintotas - FIEE UNI 2014 II
Asintotas - FIEE UNI 2014 IIAsintotas - FIEE UNI 2014 II
Asintotas - FIEE UNI 2014 II
 
Taller2
Taller2Taller2
Taller2
 
52738988 ejercicios-resueltos-varias-variables
52738988 ejercicios-resueltos-varias-variables52738988 ejercicios-resueltos-varias-variables
52738988 ejercicios-resueltos-varias-variables
 
Ecuacion de la elipse
Ecuacion de la elipseEcuacion de la elipse
Ecuacion de la elipse
 
Operaciones con matrices
Operaciones con matricesOperaciones con matrices
Operaciones con matrices
 
Tema05 ejercicios resueltos
Tema05 ejercicios resueltosTema05 ejercicios resueltos
Tema05 ejercicios resueltos
 
Determinantes - Ejercicios
Determinantes - EjerciciosDeterminantes - Ejercicios
Determinantes - Ejercicios
 
Ejercicios de integrales triples
Ejercicios de integrales triplesEjercicios de integrales triples
Ejercicios de integrales triples
 
Conjuntos operaciones
Conjuntos operacionesConjuntos operaciones
Conjuntos operaciones
 
Factorización y productos notables 2° a b-c
Factorización y productos notables 2° a b-cFactorización y productos notables 2° a b-c
Factorización y productos notables 2° a b-c
 
Examen resuelto trigonometria
Examen resuelto trigonometriaExamen resuelto trigonometria
Examen resuelto trigonometria
 
Resolución de Problemas aplicados a la ley de los senos y cosenos.
Resolución de Problemas aplicados a la ley de los senos y cosenos.Resolución de Problemas aplicados a la ley de los senos y cosenos.
Resolución de Problemas aplicados a la ley de los senos y cosenos.
 
EJERCICIOS RAZONES TRIGONOMETRICAS DE 37 y 53
EJERCICIOS RAZONES TRIGONOMETRICAS DE 37 y 53EJERCICIOS RAZONES TRIGONOMETRICAS DE 37 y 53
EJERCICIOS RAZONES TRIGONOMETRICAS DE 37 y 53
 

Andere mochten auch

A. funcion o relacion
A. funcion o relacionA. funcion o relacion
A. funcion o relacion
manuelrimachi
 
Presentacion matrices val 1
Presentacion matrices val 1Presentacion matrices val 1
Presentacion matrices val 1
carlos_f_1971
 
Operaciones matrices
Operaciones matricesOperaciones matrices
Operaciones matrices
grueda5
 
Matrices
MatricesMatrices
Matrices
ujgh
 
Algebra lineal juan de burgos - ejercicios propuestos y sus soluciones
Algebra lineal   juan de burgos - ejercicios propuestos y sus solucionesAlgebra lineal   juan de burgos - ejercicios propuestos y sus soluciones
Algebra lineal juan de burgos - ejercicios propuestos y sus soluciones
Academia de Liderazgo AL-UCE
 
1 algebra lineal y vectores aleatorios
1 algebra lineal y vectores aleatorios1 algebra lineal y vectores aleatorios
1 algebra lineal y vectores aleatorios
DAISY PAEZ
 
Relacion Simetrica
Relacion SimetricaRelacion Simetrica
Relacion Simetrica
geogenial
 

Andere mochten auch (20)

Cuadrados Y Raices Cuadradas Tarea 01 05
Cuadrados Y Raices Cuadradas   Tarea 01   05Cuadrados Y Raices Cuadradas   Tarea 01   05
Cuadrados Y Raices Cuadradas Tarea 01 05
 
A. funcion o relacion
A. funcion o relacionA. funcion o relacion
A. funcion o relacion
 
Ejercicios de-despeje
Ejercicios de-despejeEjercicios de-despeje
Ejercicios de-despeje
 
Matrices
MatricesMatrices
Matrices
 
Presentacion matrices val 1
Presentacion matrices val 1Presentacion matrices val 1
Presentacion matrices val 1
 
Resumen de propiedades de matrices y determinantes
Resumen de propiedades de  matrices y determinantesResumen de propiedades de  matrices y determinantes
Resumen de propiedades de matrices y determinantes
 
Matriz unitaria
Matriz unitariaMatriz unitaria
Matriz unitaria
 
Suma y multiplicacion
Suma y multiplicacionSuma y multiplicacion
Suma y multiplicacion
 
Clase # 3 inversa de una matríz y determinantes
Clase # 3 inversa de una matríz y determinantesClase # 3 inversa de una matríz y determinantes
Clase # 3 inversa de una matríz y determinantes
 
Operaciones matrices
Operaciones matricesOperaciones matrices
Operaciones matrices
 
Matrices
MatricesMatrices
Matrices
 
ejercicios resueltos de algebra del cbc guia 2
ejercicios resueltos de algebra del cbc guia 2ejercicios resueltos de algebra del cbc guia 2
ejercicios resueltos de algebra del cbc guia 2
 
Introduccion a la notacion de matrices
Introduccion a la notacion de matricesIntroduccion a la notacion de matrices
Introduccion a la notacion de matrices
 
Algebra lineal juan de burgos - ejercicios propuestos y sus soluciones
Algebra lineal   juan de burgos - ejercicios propuestos y sus solucionesAlgebra lineal   juan de burgos - ejercicios propuestos y sus soluciones
Algebra lineal juan de burgos - ejercicios propuestos y sus soluciones
 
1 algebra lineal y vectores aleatorios
1 algebra lineal y vectores aleatorios1 algebra lineal y vectores aleatorios
1 algebra lineal y vectores aleatorios
 
Ejercicios algebra lineal (matrices)
Ejercicios algebra lineal (matrices)Ejercicios algebra lineal (matrices)
Ejercicios algebra lineal (matrices)
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Espacios vectoriales
Espacios vectoriales Espacios vectoriales
Espacios vectoriales
 
Matriz inversa
Matriz inversaMatriz inversa
Matriz inversa
 
Relacion Simetrica
Relacion SimetricaRelacion Simetrica
Relacion Simetrica
 

Ähnlich wie Matrices, ejercicios resueltos

Teoria y problemas resueltos de productos notables ccesa007
Teoria y problemas resueltos de productos notables ccesa007Teoria y problemas resueltos de productos notables ccesa007
Teoria y problemas resueltos de productos notables ccesa007
Demetrio Ccesa Rayme
 
Problemas resueltos ecuacion de primer grado pre u ccesa007
Problemas resueltos ecuacion de primer grado pre u ccesa007Problemas resueltos ecuacion de primer grado pre u ccesa007
Problemas resueltos ecuacion de primer grado pre u ccesa007
Demetrio Ccesa Rayme
 
Trigonometria bueno
Trigonometria buenoTrigonometria bueno
Trigonometria bueno
bema2015
 
Actividades 1ª evaluación
Actividades 1ª evaluaciónActividades 1ª evaluación
Actividades 1ª evaluación
anategt
 
Actividades 1ª evaluación
Actividades 1ª evaluaciónActividades 1ª evaluación
Actividades 1ª evaluación
anategt
 
Ejercicios con fracciones y números decimales
Ejercicios con fracciones y números decimalesEjercicios con fracciones y números decimales
Ejercicios con fracciones y números decimales
Educación
 

Ähnlich wie Matrices, ejercicios resueltos (20)

Teoria y problemas resueltos de productos notables ccesa007
Teoria y problemas resueltos de productos notables ccesa007Teoria y problemas resueltos de productos notables ccesa007
Teoria y problemas resueltos de productos notables ccesa007
 
Cuatro operaciones aritméticas
Cuatro operaciones aritméticasCuatro operaciones aritméticas
Cuatro operaciones aritméticas
 
Problemas de matematicas
Problemas de matematicasProblemas de matematicas
Problemas de matematicas
 
Problemas de matematicas
Problemas de matematicasProblemas de matematicas
Problemas de matematicas
 
2º semana cs
2º semana cs2º semana cs
2º semana cs
 
Operadores binarios2
Operadores binarios2Operadores binarios2
Operadores binarios2
 
Prob. resueltos cudrilateros
Prob. resueltos cudrilaterosProb. resueltos cudrilateros
Prob. resueltos cudrilateros
 
REPASO NUMERICO
REPASO NUMERICOREPASO NUMERICO
REPASO NUMERICO
 
Problemas resueltos ecuacion de primer grado pre u ccesa007
Problemas resueltos ecuacion de primer grado pre u ccesa007Problemas resueltos ecuacion de primer grado pre u ccesa007
Problemas resueltos ecuacion de primer grado pre u ccesa007
 
Trigonometria bueno
Trigonometria buenoTrigonometria bueno
Trigonometria bueno
 
Ejercicios de trigo
Ejercicios de trigoEjercicios de trigo
Ejercicios de trigo
 
Practica de matrices
Practica de  matricesPractica de  matrices
Practica de matrices
 
Problemas harry nara
Problemas harry naraProblemas harry nara
Problemas harry nara
 
Aritmetica san marco
Aritmetica san marcoAritmetica san marco
Aritmetica san marco
 
OLIMPAMER - TROMPETEROS
OLIMPAMER - TROMPETEROSOLIMPAMER - TROMPETEROS
OLIMPAMER - TROMPETEROS
 
Semana 6
Semana 6Semana 6
Semana 6
 
Operaciones básicas con expresiones algebraicas
Operaciones básicas con expresiones algebraicasOperaciones básicas con expresiones algebraicas
Operaciones básicas con expresiones algebraicas
 
Actividades 1ª evaluación
Actividades 1ª evaluaciónActividades 1ª evaluación
Actividades 1ª evaluación
 
Actividades 1ª evaluación
Actividades 1ª evaluaciónActividades 1ª evaluación
Actividades 1ª evaluación
 
Ejercicios con fracciones y números decimales
Ejercicios con fracciones y números decimalesEjercicios con fracciones y números decimales
Ejercicios con fracciones y números decimales
 

Mehr von Alessandra Chávez Tarazona (7)

Historia de Microsoft
Historia de MicrosoftHistoria de Microsoft
Historia de Microsoft
 
Historia de la Informatica
Historia de la InformaticaHistoria de la Informatica
Historia de la Informatica
 
Matematica basica
Matematica basicaMatematica basica
Matematica basica
 
Silabo de Introducción a las Matemáticas Superiores
Silabo de Introducción a las Matemáticas Superiores Silabo de Introducción a las Matemáticas Superiores
Silabo de Introducción a las Matemáticas Superiores
 
Matrices
Matrices Matrices
Matrices
 
Numeros Complejos
Numeros ComplejosNumeros Complejos
Numeros Complejos
 
Inecuaciones
InecuacionesInecuaciones
Inecuaciones
 

Kürzlich hochgeladen

PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
EduardoJosVargasCama1
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 

Kürzlich hochgeladen (20)

Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 

Matrices, ejercicios resueltos

  • 1. ÍNDICE 1 EJERCICIOS SOBRE OPERACIONES CON MATRICES Índice A. Operaciones básicas con matrices 1. Dadas las matrices siguientes A =   9 1 1 1 2 1 1 18 1   , B =   1 1 1 1 1 1   , C =   10 2 2 2 3 2 2 19 2   , se pide calcular las siguientes operaciones: a) AB Solución: AB =   11 11 4 4 20 20   b) Bt At Solución: Bt At = (AB)t = 11 4 20 11 4 20 c) (A + I3)2 Solución: (A + I3)2 =   102 31 13 14 28 6 30 91 23   , d) A2 + 2A + I3 Solución: Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será entonces la matriz del apartado anterior. e) AC Solución: AC =   94 40 22 16 27 8 48 75 40   f ) CA Solución: CA =   94 50 14 23 44 7 39 76 23   g) (A + C)2 Solución: (A + C)2 =   19 3 3 3 5 3 3 37 3   2 =   379 183 75 81 145 33 177 305 129  
  • 2. A OPERACIONES BÁSICAS CON MATRICES 2 h) A2 + 2AC + C2 Solución: A2 + 2AC + C2 =   379 173 83 74 128 34 186 304 146   i) A2 + AC + CA + C2 Solución: Como (A + C)2 = (A + C)(A + C) = A2 + AC + CA + C2 , entonces: A2 + AC + CA + C2 =   379 183 75 81 145 33 177 305 129   2. Dadas las matrices siguientes A =   8 1 1 1 2 2 1 16 1   , B =   1 1 1 1 1 2   , C =   9 2 2 2 3 3 2 17 2   , se pide calcular las siguientes operaciones: a) AB Solución: AB =   10 11 5 7 18 19   b) Bt At Solución: Bt At = (AB)t = 10 5 18 11 7 19 c) (A + I3)2 Solución: (A + I3)2 =   83 28 13 14 42 11 27 81 37   , d) A2 + 2A + I3 Solución: Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será entonces la matriz del apartado anterior. e) AC Solución: AC =   76 36 21 17 42 12 43 67 52   f ) CA Solución: CA =   76 45 15 22 56 11 35 68 38  
  • 3. A OPERACIONES BÁSICAS CON MATRICES 3 g) (A + C)2 Solución: (A + C)2 =   17 3 3 3 5 5 3 33 3   2 =   307 165 75 81 199 49 159 273 183   h) A2 + 2AC + C2 Solución: A2 + 2AC + C2 =   307 156 81 76 185 50 167 272 197   i) A2 + AC + CA + C2 Solución: Como (A + C)2 = (A + C)(A + C) = A2 + AC + CA + C2 , entonces: A2 + AC + CA + C2 =   307 165 75 81 199 49 159 273 183   3. Dadas las matrices siguientes A =   7 1 1 1 2 3 1 14 1   , B =   1 1 1 1 1 3   , C =   8 2 2 2 3 4 2 15 2   , se pide calcular las siguientes operaciones: a) AB Solución: AB =   9 11 6 12 16 18   b) Bt At Solución: Bt At = (AB)t = 9 6 16 11 12 18 c) (A + I3)2 Solución: (A + I3)2 =   66 25 13 14 52 16 24 71 47   , d) A2 + 2A + I3 Solución: Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será entonces la matriz del apartado anterior. e) AC Solución: AC =   60 32 20 18 53 16 38 59 60  
  • 4. A OPERACIONES BÁSICAS CON MATRICES 4 f ) CA Solución: CA =   60 40 16 21 64 15 31 60 49   g) (A + C)2 Solución: (A + C)2 =   15 3 3 3 5 7 3 29 3   2 =   243 147 75 81 237 65 141 241 221   h) A2 + 2AC + C2 Solución: A2 + 2AC + C2 =   243 139 79 78 226 66 148 240 232   i) A2 + AC + CA + C2 Solución: Como (A + C)2 = (A + C)(A + C) = A2 + AC + CA + C2 , entonces: A2 + AC + CA + C2 =   243 147 75 81 237 65 141 241 221   4. Dadas las matrices siguientes A =   6 2 1 1 4 4 2 12 1   , B =   2 1 2 2 1 4   , C =   7 3 2 2 5 5 3 13 2   , se pide calcular las siguientes operaciones: a) AB Solución: AB =   17 14 14 25 29 30   b) Bt At Solución: Bt At = (AB)t = 17 14 29 14 25 30 c) (A + I3)2 Solución: (A + I3)2 =   53 36 17 20 75 29 30 88 54   ,
  • 5. A OPERACIONES BÁSICAS CON MATRICES 5 d) A2 + 2A + I3 Solución: Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será entonces la matriz del apartado anterior. e) AC Solución: AC =   49 41 24 27 75 30 41 79 66   f ) CA Solución: CA =   49 50 21 27 84 27 35 82 57   g) (A + C)2 Solución: (A + C)2 =   13 5 3 3 9 9 5 25 3   2 =   199 185 93 111 321 117 155 325 249   h) A2 + 2AC + C2 Solución: A2 + 2AC + C2 =   199 176 96 111 312 120 161 322 258   i) A2 + AC + CA + C2 Solución: Como (A + C)2 = (A + C)(A + C) = A2 + AC + CA + C2 , entonces: A2 + AC + CA + C2 =   199 185 93 111 321 117 155 325 249   5. Dadas las matrices siguientes A =   5 2 1 1 4 5 2 10 1   , B =   2 1 2 2 1 5   , C =   6 3 2 2 5 6 3 11 2   , se pide calcular las siguientes operaciones: a) AB Solución: AB =   15 14 15 34 25 27  
  • 6. A OPERACIONES BÁSICAS CON MATRICES 6 b) Bt At Solución: Bt At = (AB)t = 15 15 25 14 34 27 c) (A + I3)2 Solución: (A + I3)2 =   40 32 18 21 77 36 26 74 56   , d) A2 + 2A + I3 Solución: Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será entonces la matriz del apartado anterior. e) AC Solución: AC =   37 36 24 29 78 36 35 67 66   f ) CA Solución: CA =   37 44 23 27 84 33 30 70 60   g) (A + C)2 Solución: (A + C)2 =   11 5 3 3 9 11 5 21 3   2 =   151 163 97 115 327 141 133 277 255   h) A2 + 2AC + C2 Solución: A2 + 2AC + C2 =   151 155 98 117 321 144 138 274 261   i) A2 + AC + CA + C2 Solución: Como (A + C)2 = (A + C)(A + C) = A2 + AC + CA + C2 , entonces: A2 + AC + CA + C2 =   151 163 97 115 327 141 133 277 255   6. Dadas las matrices siguientes A =   4 2 1 1 4 6 2 8 1   , B =   2 1 2 2 1 6   , C =   5 3 2 2 5 7 3 9 2   , se pide calcular las siguientes operaciones:
  • 7. A OPERACIONES BÁSICAS CON MATRICES 7 a) AB Solución: AB =   13 14 16 45 21 24   b) Bt At Solución: Bt At = (AB)t = 13 16 21 14 45 24 c) (A + I3)2 Solución: (A + I3)2 =   29 28 19 22 75 43 22 60 54   , d) A2 + 2A + I3 Solución: Como AI3 = I3A = A se puede utilizar el binomio de Newton y el resultado será entonces la matriz del apartado anterior. e) AC Solución: AC =   27 31 24 31 77 42 29 55 62   f ) CA Solución: CA =   27 38 25 27 80 39 25 58 59   g) (A + C)2 Solución: (A + C)2 =   9 5 3 3 9 13 5 17 3   2 =   111 141 101 119 317 165 111 229 245   h) A2 + 2AC + C2 Solución: A2 + 2AC + C2 =   111 134 100 123 314 168 115 226 248   i) A2 + AC + CA + C2 Solución: Como (A + C)2 = (A + C)(A + C) = A2 + AC + CA + C2 , entonces: A2 + AC + CA + C2 =   111 141 101 119 317 165 111 229 245  
  • 8. B CÁLCULO DE DETERMINANTES 8 B. Cálculo de determinantes 7. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 18 5 7 8 18 3 4 4 9 1 1 1 9 2 3 4 , (b) 9 2 2 27 7 7 18 5 4 , (c) 9 2 2 28 8 8 18 5 4 , (d) 19 5 7 8 18 4 4 4 9 1 2 1 9 2 3 4 Solución: (a) 9, (b) -9, (c) -16 (d) -46 8. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 16 5 7 10 16 3 4 5 8 1 1 1 8 2 3 5 , (b) 8 2 3 24 7 11 16 5 6 , (c) 8 2 3 25 8 12 16 5 6 , (d) 17 5 7 10 16 4 4 5 8 1 2 1 8 2 3 5 Solución: (a) 8, (b) -16, (c) -21 (d) -53 9. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 14 5 7 12 14 3 4 6 7 1 1 1 7 2 3 6 , (b) 7 2 4 21 7 15 14 5 8 , (c) 7 2 4 22 8 16 14 5 8 , (d) 15 5 7 12 14 4 4 6 7 1 2 1 7 2 3 6 Solución: (a) 7, (b) -21, (c) -24 (d) -56 10. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 12 8 7 14 12 4 4 7 6 1 1 1 6 3 3 7 , (b) 6 3 5 18 10 19 12 7 10 , (c) 6 3 5 19 11 20 12 7 10 , (d) 13 8 7 14 12 5 4 7 6 1 2 1 6 3 3 7 Solución: (a) 12, (b) -24, (c) -25 (d) -90 11. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 10 8 7 16 10 4 4 8 5 1 1 1 5 3 3 8 , (b) 5 3 6 15 10 23 10 7 12 , (c) 5 3 6 16 11 24 10 7 12 , (d) 11 8 7 16 10 5 4 8 5 1 2 1 5 3 3 8 Solución: (a) 10, (b) -25, (c) -24 (d) -84
  • 9. B CÁLCULO DE DETERMINANTES 9 12. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 8 8 7 18 8 4 4 9 4 1 1 1 4 3 3 9 , (b) 4 3 7 12 10 27 8 7 14 , (c) 4 3 7 13 11 28 8 7 14 , (d) 9 8 7 18 8 5 4 9 4 1 2 1 4 3 3 9 Solución: (a) 8, (b) -24, (c) -21 (d) -72 13. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 6 8 7 20 6 4 4 10 3 1 1 1 3 3 3 10 , (b) 3 3 8 9 10 31 6 7 16 , (c) 3 3 8 10 11 32 6 7 16 , (d) 7 8 7 20 6 5 4 10 3 1 2 1 3 3 3 10 Solución: (a) 6, (b) -21, (c) -16 (d) -54 14. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 4 8 7 22 4 4 4 11 2 1 1 1 2 3 3 11 , (b) 2 3 9 6 10 35 4 7 18 , (c) 2 3 9 7 11 36 4 7 18 , (d) 5 8 7 22 4 5 4 11 2 1 2 1 2 3 3 11 Solución: (a) 4, (b) -16, (c) -9 (d) -30 15. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 2 8 7 24 2 4 4 12 1 1 1 1 1 3 3 12 , (b) 1 3 10 3 10 39 2 7 20 , (c) 1 3 10 4 11 40 2 7 20 , (d) 3 8 7 24 2 5 4 12 1 1 2 1 1 3 3 12 Solución: (a) 2, (b) -9, (c) 0 (d) 0 16. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 18 5 9 8 18 3 5 4 9 1 1 1 9 2 4 4 , (b) 9 3 2 27 11 7 18 8 4 , (c) 9 3 2 28 12 8 18 8 4 , (d) 19 5 9 8 18 4 5 4 9 1 2 1 9 2 4 4 Solución: (a) 18, (b) -18, (c) -32 (d) -39
  • 10. B CÁLCULO DE DETERMINANTES 10 17. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 16 5 7 11 16 3 4 5 8 1 1 1 8 2 3 6 , (b) 8 2 4 24 7 14 16 5 8 , (c) 8 2 4 25 8 15 16 5 8 , (d) 17 5 7 11 16 4 4 5 8 1 2 1 8 2 3 6 Solución: (a) 16, (b) -16, (c) -20 (d) -81 18. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 14 5 7 14 14 3 4 6 7 1 1 1 7 2 3 8 , (b) 7 2 6 21 7 21 14 5 12 , (c) 7 2 6 22 8 22 14 5 12 , (d) 15 5 7 14 14 4 4 6 7 1 2 1 7 2 3 8 Solución: (a) 21, (b) -21, (c) -22 (d) -104 19. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 12 8 7 17 12 4 4 7 6 1 1 1 6 3 3 10 , (b) 6 3 8 18 10 28 12 7 16 , (c) 6 3 8 19 11 29 12 7 16 , (d) 13 8 7 17 12 5 4 7 6 1 2 1 6 3 3 10 Solución: (a) 48, (b) -24, (c) -22 (d) -180 20. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 10 8 7 20 10 4 4 8 5 1 1 1 5 3 3 12 , (b) 5 3 10 15 10 35 10 7 20 , (c) 5 3 10 16 11 36 10 7 20 , (d) 11 8 7 20 10 5 4 8 5 1 2 1 5 3 3 12 Solución: (a) 50, (b) -25, (c) -20 (d) -180 21. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 8 8 7 23 8 4 4 9 4 1 1 1 4 3 3 14 , (b) 4 3 12 12 10 42 8 7 24 , (c) 4 3 12 13 11 43 8 7 24 , (d) 9 8 7 23 8 5 4 9 4 1 2 1 4 3 3 14 Solución: (a) 48, (b) -24, (c) -16 (d) -162
  • 11. B CÁLCULO DE DETERMINANTES 11 22. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 6 8 7 26 6 4 4 10 3 1 1 1 3 3 3 16 , (b) 3 3 14 9 10 49 6 7 28 , (c) 3 3 14 10 11 50 6 7 28 , (d) 7 8 7 26 6 5 4 10 3 1 2 1 3 3 3 16 Solución: (a) 42, (b) -21, (c) -10 (d) -126 23. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 4 8 7 29 4 4 4 11 2 1 1 1 2 3 3 18 , (b) 2 3 16 6 10 56 4 7 32 , (c) 2 3 16 7 11 57 4 7 32 , (d) 5 8 7 29 4 5 4 11 2 1 2 1 2 3 3 18 Solución: (a) 32, (b) -16, (c) -2 (d) -72 24. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 2 8 7 32 2 4 4 12 1 1 1 1 1 3 3 20 , (b) 1 3 18 3 10 63 2 7 36 , (c) 1 3 18 4 11 64 2 7 36 , (d) 3 8 7 32 2 5 4 12 1 1 2 1 1 3 3 20 Solución: (a) 18, (b) -9, (c) 8 (d) 0 25. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 18 8 9 8 18 4 5 4 9 1 1 1 9 3 4 4 , (b) 9 4 2 27 14 7 18 10 4 , (c) 9 4 2 28 15 8 18 10 4 , (d) 19 8 9 8 18 5 5 4 9 1 2 1 9 3 4 4 Solución: (a) 36, (b) -18, (c) -32 (d) -56 26. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 16 8 9 11 16 4 5 5 8 1 1 1 8 3 4 6 , (b) 8 4 4 24 14 14 16 10 8 , (c) 8 4 4 25 15 15 16 10 8 , (d) 17 8 9 11 16 5 5 5 8 1 2 1 8 3 4 6 Solución: (a) 64, (b) -32, (c) -40 (d) -105
  • 12. B CÁLCULO DE DETERMINANTES 12 27. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 14 8 9 14 14 4 5 6 7 1 1 1 7 3 4 8 , (b) 7 4 6 21 14 21 14 10 12 , (c) 7 4 6 22 15 22 14 10 12 , (d) 15 8 9 14 14 5 5 6 7 1 2 1 7 3 4 8 Solución: (a) 84, (b) -42, (c) -44 (d) -138 28. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 12 8 9 17 12 4 5 7 6 1 1 1 6 3 4 10 , (b) 6 4 8 18 14 28 12 10 16 , (c) 6 4 8 19 15 29 12 10 16 , (d) 13 8 9 17 12 5 5 7 6 1 2 1 6 3 4 10 Solución: (a) 96, (b) -48, (c) -44 (d) -155 29. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 10 8 9 20 10 4 5 8 5 1 1 1 5 3 4 12 , (b) 5 4 10 15 14 35 10 10 20 , (c) 5 4 10 16 15 36 10 10 20 , (d) 11 8 9 20 10 5 5 8 5 1 2 1 5 3 4 12 Solución: (a) 100, (b) -50, (c) -40 (d) -156 30. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 8 8 9 23 8 4 5 9 4 1 1 1 4 3 4 14 , (b) 4 4 12 12 14 42 8 10 24 , (c) 4 4 12 13 15 43 8 10 24 , (d) 9 8 9 23 8 5 5 9 4 1 2 1 4 3 4 14 Solución: (a) 96, (b) -48, (c) -32 (d) -141 31. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 6 8 9 26 6 4 5 10 3 1 1 1 3 3 4 16 , (b) 3 4 14 9 14 49 6 10 28 , (c) 3 4 14 10 15 50 6 10 28 , (d) 7 8 9 26 6 5 5 10 3 1 2 1 3 3 4 16 Solución: (a) 84, (b) -42, (c) -20 (d) -110
  • 13. C CÁLCULO DE LA INVERSA DE UNA MATRIZ 13 32. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 4 8 9 29 4 4 5 11 2 1 1 1 2 3 4 18 , (b) 2 4 16 6 14 56 4 10 32 , (c) 2 4 16 7 15 57 4 10 32 , (d) 5 8 9 29 4 5 5 11 2 1 2 1 2 3 4 18 Solución: (a) 64, (b) -32, (c) -4 (d) -63 33. Calcula los siguientes determinantes usando las propiedades de éstos: (a) 2 8 9 32 2 4 5 12 1 1 1 1 1 3 4 20 , (b) 1 4 18 3 14 63 2 10 36 , (c) 1 4 18 4 15 64 2 10 36 , (d) 3 8 9 32 2 5 5 12 1 1 2 1 1 3 4 20 Solución: (a) 36, (b) -18, (c) 16 (d) 0 34. Demuestra, usando las propiedades de los determinantes, que 2a 3b + 2 2c + 5 2e + d + 5 2a b + 2 2c + 3 e + 3 a 1 1 1 a b + 1 c + 2 d + e + 2 = abcd. 35. Demuestra, usando las propiedades de los determinantes, que a b + c d + e 3a 3b + 4c 3d + 4e 2a 2b + 3c 2d + 2e = −ace C. Cálculo de la inversa de una matriz 36. Calcula la inversa de     1 1 2 1 2 3 6 3 1 2 5 3 1 1 2 2     y comprueba que es:     3 − 1 0 0 − 5 3 − 2 1 2 −1 1 − 1 −1 0 0 1     37. Calcula la inversa de la matriz   −1 2 1 −2 5 3 −1 2 2   y comprueba que el resultado es   − 4 2 − 1 − 1 1 − 1 −1 0 1   38. Calcula la inversa de     1 1 2 2 2 3 6 5 1 2 5 4 1 1 2 3     y comprueba que es:     4 − 1 0 − 1 − 5 3 − 2 1 2 −1 1 − 1 −1 0 0 1     39. Calcula la inversa de la matriz   −1 2 1 −2 5 4 −1 2 2   y comprueba que el resultado es   − 2 2 − 3 0 1 − 2 −1 0 1  
  • 14. C CÁLCULO DE LA INVERSA DE UNA MATRIZ 14 40. Calcula la inversa de     1 1 2 3 2 3 6 7 1 2 5 5 1 1 2 4     y comprueba que es:     5 − 1 0 − 2 − 5 3 − 2 1 2 −1 1 − 1 −1 0 0 1     41. Calcula la inversa de la matriz   −1 2 1 −2 5 5 −1 2 2   y comprueba que el resultado es   0 2 − 5 1 1 − 3 −1 0 1   42. Calcula la inversa de     1 1 2 4 2 3 6 9 1 2 5 6 1 1 2 5     y comprueba que es:     6 − 1 0 − 3 − 5 3 − 2 1 2 −1 1 − 1 −1 0 0 1     43. Calcula la inversa de la matriz   −1 2 1 −2 5 6 −1 2 2   y comprueba que el resultado es   2 2 − 7 2 1 − 4 −1 0 1   44. Calcula la inversa de     1 1 2 5 2 3 6 11 1 2 5 7 1 1 2 6     y comprueba que es:     7 − 1 0 − 4 − 5 3 − 2 1 2 −1 1 − 1 −1 0 0 1     45. Calcula la inversa de la matriz   −1 2 1 −2 5 7 −1 2 2   y comprueba que el resultado es   4 2 − 9 3 1 − 5 −1 0 1   46. Calcula la inversa de     1 1 2 6 2 3 6 13 1 2 5 8 1 1 2 7     y comprueba que es:     8 − 1 0 − 5 − 5 3 − 2 1 2 −1 1 − 1 −1 0 0 1     47. Calcula la inversa de la matriz   −1 2 1 −2 5 8 −1 2 2   y comprueba que el resultado es   6 2 − 11 4 1 − 6 −1 0 1   48. Calcula la inversa de     1 1 2 7 2 3 6 15 1 2 5 9 1 1 2 8     y comprueba que es:     9 − 1 0 − 6 − 5 3 − 2 1 2 −1 1 − 1 −1 0 0 1     49. Calcula la inversa de la matriz   −1 2 1 −2 5 9 −1 2 2   y comprueba que el resultado es   8 2 − 13 5 1 − 7 −1 0 1   50. Calcula la inversa de     1 1 2 8 2 3 6 17 1 2 5 10 1 1 2 9     y comprueba que es:     10 − 1 0 − 7 − 5 3 − 2 1 2 −1 1 − 1 −1 0 0 1     51. Calcula la inversa de la matriz   −1 2 1 −2 5 10 −1 2 2   y comprueba que el resultado es   10 2 − 15 6 1 − 8 −1 0 1  
  • 15. C CÁLCULO DE LA INVERSA DE UNA MATRIZ 15 52. Calcula la inversa de     1 1 2 9 2 3 6 19 1 2 5 11 1 1 2 10     y comprueba que es:     11 − 1 0 − 8 − 5 3 − 2 1 2 −1 1 − 1 −1 0 0 1     53. Calcula la inversa de la matriz   −1 2 1 −2 5 11 −1 2 2   y comprueba que el resultado es   12 2 − 17 7 1 − 9 −1 0 1   54. Calcula la inversa de     1 1 2 1 2 3 6 4 1 2 5 4 1 1 2 2     y comprueba que es:     2 − 1 0 1 − 4 3 − 2 0 2 −1 1 − 1 −1 0 0 1     55. Calcula la inversa de la matriz   −1 2 2 −2 5 5 −1 2 3   y comprueba que el resultado es   − 5 2 0 − 1 1 − 1 −1 0 1   56. Calcula la inversa de     1 1 2 2 2 3 6 6 1 2 5 5 1 1 2 3     y comprueba que es:     3 − 1 0 0 − 4 3 − 2 0 2 −1 1 − 1 −1 0 0 1     57. Calcula la inversa de la matriz   −1 2 2 −2 5 6 −1 2 3   y comprueba que el resultado es   − 3 2 − 2 0 1 − 2 −1 0 1   58. Calcula la inversa de     1 1 2 3 2 3 6 8 1 2 5 6 1 1 2 4     y comprueba que es:     4 − 1 0 − 1 − 4 3 − 2 0 2 −1 1 − 1 −1 0 0 1     59. Calcula la inversa de la matriz   −1 2 2 −2 5 7 −1 2 3   y comprueba que el resultado es   − 1 2 − 4 1 1 − 3 −1 0 1   60. Calcula la inversa de     1 1 2 4 2 3 6 10 1 2 5 7 1 1 2 5     y comprueba que es:     5 − 1 0 − 2 − 4 3 − 2 0 2 −1 1 − 1 −1 0 0 1     61. Calcula la inversa de la matriz   −1 2 2 −2 5 8 −1 2 3   y comprueba que el resultado es   1 2 − 6 2 1 − 4 −1 0 1   62. Calcula la inversa de     1 1 2 5 2 3 6 12 1 2 5 8 1 1 2 6     y comprueba que es:     6 − 1 0 − 3 − 4 3 − 2 0 2 −1 1 − 1 −1 0 0 1     63. Calcula la inversa de la matriz   −1 2 2 −2 5 9 −1 2 3   y comprueba que el resultado es   3 2 − 8 3 1 − 5 −1 0 1  
  • 16. D DIAGONALIZACIÓN DE MATRICES 16 64. Calcula la inversa de     1 1 2 6 2 3 6 14 1 2 5 9 1 1 2 7     y comprueba que es:     7 − 1 0 − 4 − 4 3 − 2 0 2 −1 1 − 1 −1 0 0 1     65. Calcula la inversa de la matriz   −1 2 2 −2 5 10 −1 2 3   y comprueba que el resultado es   5 2 − 10 4 1 − 6 −1 0 1   66. Calcula la inversa de la matriz     1 c d f 2 2 c + 1 2 d + b 2 f + e 1 c + 1 d + b + 1 f + e + a 1 c d f + 1     y comprueba que el resultado es:     f − c e − a d − d + a b c + b c + 2 c + 1 d − b c − c − (d − b c) − (f − c e − a d + a b c) e − a b − b − 2 b + 1 −b − (e − a b) a + 1 −1 1 −a −1 0 0 1     67. Calcula la inversa de la matriz   −1 a b −2 2 a + 1 c + 2 b −1 a b + 1   y comprueba que el resultado es:   a c − b − 2 a − 1 a − (a c − b) c − 2 1 −c −1 0 1   D. Diagonalización de matrices 68. Dada la matriz A =   3 − 1 − 1 1 1 − 1 1 − 1 1   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 2)2 (x − 1), m(2) = 2 m(1) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 2I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}.
  • 17. D DIAGONALIZACIÓN DE MATRICES 17 d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V2 = dim VS = m(2) = 2 y dim V1 = dim VT = m(1) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (3, 1, 1)β = 3u1 + 1u2 + 1u3 = (5, 4, 3) v2 = ( − 1, 1, − 1)β = ( − 1, 0, − 1) v3 = ( − 1, − 1, 1)β = ( − 1, − 2, − 1) 69. Dada la matriz A =   5 − 2 − 2 2 1 − 2 2 − 2 1   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 3)2 (x − 1), m(3) = 2 m(1) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 3I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V3 = dim VS = m(3) = 2 y dim V1 = dim VT = m(1) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (5, 2, 2)β = 5u1 + 2u2 + 2u3 = (9, 7, 5) v2 = ( − 2, 1, − 2)β = ( − 3, − 1, − 2) v3 = ( − 2, − 2, 1)β = ( − 3, − 4, − 2) 70. Dada la matriz A =   7 − 3 − 3 3 1 − 3 3 − 3 1   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 4)2 (x − 1), m(4) = 2 m(1) = 1.
  • 18. D DIAGONALIZACIÓN DE MATRICES 18 b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 4I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V4 = dim VS = m(4) = 2 y dim V1 = dim VT = m(1) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (7, 3, 3)β = 7u1 + 3u2 + 3u3 = (13, 10, 7) v2 = ( − 3, 1, − 3)β = ( − 5, − 2, − 3) v3 = ( − 3, − 3, 1)β = ( − 5, − 6, − 3) 71. Dada la matriz A =   9 − 4 − 4 4 1 − 4 4 − 4 1   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 5)2 (x − 1), m(5) = 2 m(1) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 5I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V5 = dim VS = m(5) = 2 y dim V1 = dim VT = m(1) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (9, 4, 4)β = 9u1 + 4u2 + 4u3 = (17, 13, 9) v2 = ( − 4, 1, − 4)β = ( − 7, − 3, − 4) v3 = ( − 4, − 4, 1)β = ( − 7, − 8, − 4)
  • 19. D DIAGONALIZACIÓN DE MATRICES 19 72. Dada la matriz A =   11 − 5 − 5 5 1 − 5 5 − 5 1   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 6)2 (x − 1), m(6) = 2 m(1) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 6I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V6 = dim VS = m(6) = 2 y dim V1 = dim VT = m(1) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (11, 5, 5)β = 11u1 + 5u2 + 5u3 = (21, 16, 11) v2 = ( − 5, 1, − 5)β = ( − 9, − 4, − 5) v3 = ( − 5, − 5, 1)β = ( − 9, − 10, − 5) 73. Dada la matriz A =   13 − 6 − 6 6 1 − 6 6 − 6 1   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 7)2 (x − 1), m(7) = 2 m(1) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 7I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V7 = dim VS = m(7) = 2 y dim V1 = dim VT = m(1) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica.
  • 20. D DIAGONALIZACIÓN DE MATRICES 20 Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (13, 6, 6)β = 13u1 + 6u2 + 6u3 = (25, 19, 13) v2 = ( − 6, 1, − 6)β = ( − 11, − 5, − 6) v3 = ( − 6, − 6, 1)β = ( − 11, − 12, − 6) 74. Dada la matriz A =   15 − 7 − 7 7 1 − 7 7 − 7 1   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 8)2 (x − 1), m(8) = 2 m(1) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 8I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V8 = dim VS = m(8) = 2 y dim V1 = dim VT = m(1) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (15, 7, 7)β = 15u1 + 7u2 + 7u3 = (29, 22, 15) v2 = ( − 7, 1, − 7)β = ( − 13, − 6, − 7) v3 = ( − 7, − 7, 1)β = ( − 13, − 14, − 7) 75. Dada la matriz A =   17 − 8 − 8 8 1 − 8 8 − 8 1   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 9)2 (x − 1), m(9) = 2 m(1) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 9I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}.
  • 21. D DIAGONALIZACIÓN DE MATRICES 21 d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V9 = dim VS = m(9) = 2 y dim V1 = dim VT = m(1) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (17, 8, 8)β = 17u1 + 8u2 + 8u3 = (33, 25, 17) v2 = ( − 8, 1, − 8)β = ( − 15, − 7, − 8) v3 = ( − 8, − 8, 1)β = ( − 15, − 16, − 8) 76. Dada la matriz A =   19 − 9 − 9 9 1 − 9 9 − 9 1   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 10)2 (x − 1), m(10) = 2 m(1) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 10I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 1I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V10 = dim VS = m(10) = 2 y dim V1 = dim VT = m(1) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (19, 9, 9)β = 19u1 + 9u2 + 9u3 = (37, 28, 19) v2 = ( − 9, 1, − 9)β = ( − 17, − 8, − 9) v3 = ( − 9, − 9, 1)β = ( − 17, − 18, − 9) 77. Dada la matriz A =   4 − 1 − 1 1 2 − 1 1 − 1 2   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 3)2 (x − 2), m(3) = 2 m(2) = 1.
  • 22. D DIAGONALIZACIÓN DE MATRICES 22 b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 3I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 2I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V3 = dim VS = m(3) = 2 y dim V2 = dim VT = m(2) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (4, 1, 1)β = 4u1 + 1u2 + 1u3 = (6, 5, 4) v2 = ( − 1, 2, − 1)β = (0, 1, − 1) v3 = ( − 1, − 1, 2)β = (0, − 2, − 1) 78. Dada la matriz A =   6 − 2 − 2 2 2 − 2 2 − 2 2   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 4)2 (x − 2), m(4) = 2 m(2) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 4I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 2I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V4 = dim VS = m(4) = 2 y dim V2 = dim VT = m(2) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (6, 2, 2)β = 6u1 + 2u2 + 2u3 = (10, 8, 6) v2 = ( − 2, 2, − 2)β = ( − 2, 0, − 2) v3 = ( − 2, − 2, 2)β = ( − 2, − 4, − 2)
  • 23. D DIAGONALIZACIÓN DE MATRICES 23 79. Dada la matriz A =   8 − 3 − 3 3 2 − 3 3 − 3 2   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 5)2 (x − 2), m(5) = 2 m(2) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 5I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 2I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V5 = dim VS = m(5) = 2 y dim V2 = dim VT = m(2) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica. Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (8, 3, 3)β = 8u1 + 3u2 + 3u3 = (14, 11, 8) v2 = ( − 3, 2, − 3)β = ( − 4, − 1, − 3) v3 = ( − 3, − 3, 2)β = ( − 4, − 6, − 3) 80. Dada la matriz A =   10 − 4 − 4 4 2 − 4 4 − 4 2   se pide responder a las siguientes preguntas: a) Calcula el polinomio característico de A y sus raíces dando las multiplicidades. Solución: pA(x) = (x − 6)2 (x − 2), m(6) = 2 m(2) = 1. b) Calcula una base del espacio vectorial S = {(x, y, z) : (A − 6I3)(x, y, z)t = (0, 0, 0)t }. Solución: βS = {(1, 1, 0), (1, 0, 1)}. c) Calcula una base del espacio vectorial T = {(x, y, z) : (A − 2I3)(x, y, z)t = (0, 0, 0)t }. Solución: βT = {(1, 1, 1)}. d) Justifica si la matriz A es diagonalizable y caso de serlo da la matriz diagonal y de paso. Solución: La matriz es diagonalizable porque dim V6 = dim VS = m(6) = 2 y dim V2 = dim VT = m(2) = 2 e) Sean las bases β = {u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0)} y β = {v1, v2, v3}. Se sabe que Mββ = A y se pide que des las coordenadas de los vectores de β respecto de la base canónica.
  • 24. D DIAGONALIZACIÓN DE MATRICES 24 Solución: Usando la definición de la matriz Mββ tenemos que: v1 = (10, 4, 4)β = 10u1 + 4u2 + 4u3 = (18, 14, 10) v2 = ( − 4, 2, − 4)β = ( − 6, − 2, − 4) v3 = ( − 4, − 4, 2)β = ( − 6, − 8, − 4)