SlideShare ist ein Scribd-Unternehmen logo
1 von 1
Downloaden Sie, um offline zu lesen
Results	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
What	
  Is	
  Shape	
  Memory	
  ?	
  Mo4va4on	
  And	
  Objec4ve	
  
Previous	
  studies	
  of	
  the	
  shape	
  memory	
  effect	
  have	
  
been	
   focused	
   on	
   macro-­‐scale	
   (bulk)	
   materials.	
  
Recently	
   people	
   have	
   demonstrated	
   shape	
  
memory	
   of	
   2-­‐D	
   sub-­‐micron	
   surface	
   paHerns	
  
however,	
   no	
   one	
   has	
   inves4gated	
   the	
   ability	
   of	
  
micro	
   scale	
   polymer	
   structures	
   to	
   remember	
   a	
  
shape	
  aLer	
  large	
  3-­‐D	
  deforma4ons.	
  Therefore,	
  the	
  
project	
  goal	
  is	
  to:	
  
	
  
•  Create	
   the	
   world’s	
   first	
   shape	
   memory	
   micro-­‐
par4cle	
  
	
  
	
  
Within	
   a	
   typical	
   shape	
   memory	
   cycle,	
   polymer	
  
networks	
  are	
  deformed	
  into	
  a	
  temporary	
  shape	
  then	
  
brought	
  back	
  to	
  their	
  original	
  shape.	
  In	
  the	
  permanent	
  
shape	
   (top	
   picture),	
   polymer	
   chains	
   between	
   the	
  
crosslinking	
   points	
   (black	
   dots)	
   are	
   in	
   a	
   low	
   energy	
  
state.	
   When	
   a	
   mechanical	
   loading	
   is	
   applied	
   to	
   a	
  
rubbery	
   polymer,	
   the	
   polymer	
   is	
   deformed	
   into	
   a	
  
higher	
   energy	
   state	
   (blue	
   picture).	
   This	
   deformed	
  
shape	
   can	
   be	
   maintained	
   if	
   the	
   polymer	
   is	
   cooled	
  
down	
  into	
  a	
  glassy	
  state,	
  and	
  will	
  remain	
  there	
  even	
  
aLer	
  the	
  load	
  is	
  removed.	
  Upon	
  hea4ng	
  the	
  polymer	
  
back	
   to	
   a	
   rubber,	
   the	
   shape	
   memory	
   polymers	
   will	
  
recover	
  their	
  original	
  low	
  energy	
  shape.
In	
   general,	
   cross-­‐linked	
   polymers	
   are	
   oLen	
   known	
   as	
  
shape	
   memory	
   polymers	
   and	
   can	
   be	
   deformed	
   into	
   a	
  
variety	
  of	
  shapes;	
  yet	
  exhibit	
  the	
  ability	
  to	
  return	
  to	
  their	
  
permanent,	
   low	
   energy	
   shape	
   through	
   s4mula4on	
   by	
   an	
  
external	
  s4mulus	
  such	
  as	
  temperature	
  change.	
  	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
3.5	
  
4	
  
Original	
  Shape	
   Compressed	
   Constrained	
  
Recovery	
  
Unconstrained	
  
Recovery	
  
Micrometers	
  
Shape	
  memory	
  was	
  aCained!	
  
Original	
  Shape	
  
Compressed	
  
Unconstrained	
  
Recovery	
  
	
  
Constrained	
  	
  
Recovery	
  
What	
  Is	
  A	
  Polymer?	
  	
  
End	
  to	
  End	
  Distance	
  
Probability	
  
Polymers	
  are	
  long-­‐chain	
  macromolecules	
  
that	
  consists	
  of	
  repea4ng	
  structural	
  units	
  
with	
  very	
  high	
  molecular	
  weight	
  that	
  are	
  
created	
  through	
  polymeriza4on.	
  
ΔG=ΔH-­‐TΔS	
  
Polymer	
   chains	
   have	
   a	
   preferred	
   end	
   to	
  
end	
   distance,	
   which	
   allows	
   them	
   the	
  
greatest	
   number	
   of	
   conforma4ons	
  
(highest	
  amount	
  of	
  entropy),	
  as	
  indicated	
  
in	
  the	
  middle	
  chain.	
  Chains	
  with	
  a	
  shorter	
  
end	
  to	
  end	
  distances	
  (farthest	
  leL)	
  have	
  a	
  
greater	
   tendency	
   to	
   expand,	
   whereas	
  
chains	
   with	
   longer	
   end	
   to	
   end	
   distances	
  
(rightmost)	
   have	
   a	
   greater	
   tendency	
   to	
  
contract.	
  
	
  
Shape	
  Memory	
  Micropar4cles	
  Adora	
  Yabut,	
  Lewis	
  Cox,	
  Yifu	
  Ding	
  
University	
  of	
  Colorado	
  Boulder	
  
	
  
Conclusion	
  
•  Micropar4cles	
   were	
   exposed	
   to	
   extremely	
   large	
  	
  	
  
3-­‐D	
   deforma4ons,	
   and	
   held	
   in	
   the	
   temporary	
  
shape.	
   Upon	
   hea4ng,	
   recovery	
   of	
   deformed	
  
par4cles	
   was	
   confined	
   by	
   the	
   substrate.	
   ALer	
  
removing	
   them	
   from	
   the	
   substrate	
   we	
   observed	
  
full	
   recovery	
   of	
   the	
   original	
   shape,	
   thus	
  
demonstra4ng	
   for	
   the	
   first	
   4me	
   the	
   concept	
   of	
  
shape	
  memory	
  micro-­‐par4cles.	
  
Acknowledgements	
  
This	
  project	
  was	
  made	
  possible	
  by	
  the	
  YOU’RE@CU	
  
seminar	
  held	
  by	
  Virginia	
  Ferguson	
  and	
  Beverly	
  Louie.	
  
Methods	
  and	
  Experimental	
  Apparatus	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   Dipped	
   a	
   flat	
   silicon	
   wafer	
   into	
   a	
  
aqueous	
  solu4on	
  containing	
  polystyrene	
  
micro-­‐par4cles.	
   Using	
   an	
   op4cal	
  
microscope,	
   the	
   par4cles	
   were	
  
confirmed	
  to	
  have	
  been	
  deposited	
  onto	
  
the	
  wafer.	
  
The	
  deposited	
  par4cles	
  were	
  deformed	
  into	
  a	
  flaHened	
  shape	
  
by	
   using	
   a	
   nanoimprinter.	
   A	
   second	
   piece	
   of	
   silicon	
   with	
   a	
  
treated	
  surface	
  to	
  reduce	
  adhesion	
  was	
  placed	
  on	
  top	
  of	
  the	
  
deposited	
  par4cles,	
  and	
  the	
  two	
  plates	
  were	
  placed	
  within	
  the	
  
imprinter.	
   The	
   environment	
   was	
   then	
   heated	
   to	
   120°C	
  
(significantly	
   above	
   the	
   glass	
   transi4on	
   temperature	
   of	
  
polystyrene:	
  95°C)	
  and	
  the	
  par4cles	
  were	
  allowed	
  to	
  equilibrate	
  
for	
   3	
   minutes.	
   A	
   pressure	
   of	
   15	
   bar	
   was	
   then	
   applied	
   for	
   5	
  
minutes	
  to	
  mold	
  the	
  par4cles	
  into	
  a	
  temporary	
  shape.	
  With	
  the	
  
15	
   bar	
   pressure	
   s4ll	
   being	
   applied,	
   the	
   par4cles	
   were	
   then	
  
cooled	
  back	
  down	
  to	
  35°C	
  	
  (temperature	
  below	
  Tg)	
  in	
  order	
  to	
  
freeze	
   the	
   polymer	
   chains	
   in	
   a	
   glassy	
   state	
   and	
   lock	
   in	
   the	
  
deformed	
  temporary	
  shape.	
  ALer	
  performing	
  the	
  compression,	
  
the	
   par4cles	
   were	
   observed	
   with	
   an	
   op4cal	
   microscope	
   to	
  
confirm	
  deforma4on.	
  	
  
	
  
A	
  por4on	
  of	
  the	
  compressed	
  par4cles	
  
were	
   then	
   placed	
   on	
   a	
   hot	
   stage	
   at	
  
120°C	
   for	
   2	
   minutes	
   to	
   heat	
   them	
  
back	
   above	
   their	
   Tg	
   and	
   induce	
   the	
  
shape	
  recovery.	
  	
  
Atomic	
   Force	
   Microscopy	
   (AFM)	
   consists	
   of	
   a	
  
can4lever	
  with	
  a	
  sharp	
  4p	
  that	
  is	
  used	
  to	
  scan	
  the	
  
par4cle	
   on	
   the	
   surface.	
   The	
   AFM	
   was	
   used	
   to	
  
accurately	
   measure	
   the	
   par4cle	
   heights	
   at	
   each	
  
step	
  of	
  the	
  experiment.	
  
Scanning	
   Electron	
   Microscope	
   (SEM))	
  
is	
  a	
  microscope	
  that	
  produces	
  images	
  
by	
  capture	
  scaHered	
  electrons	
  instead	
  
of	
   light.	
   The	
   SEM	
   provided	
   us	
   with	
  
high	
  resolu4on	
  pictures	
  of	
  par4cles.	
  

Weitere ähnliche Inhalte

Was ist angesagt?

Size effect of nanomaterials part1
Size effect of nanomaterials part1Size effect of nanomaterials part1
Size effect of nanomaterials part1Mugilan Narayanasamy
 
Advances in Characterization Of nanomaterials
Advances in Characterization Of nanomaterialsAdvances in Characterization Of nanomaterials
Advances in Characterization Of nanomaterialstabirsir
 
Nanomaterials
NanomaterialsNanomaterials
NanomaterialsMaya Bhat
 
MECHANICAL & THERMAL PROPERTIES OF NANO COMPOSITES
MECHANICAL & THERMAL PROPERTIES OF NANO COMPOSITESMECHANICAL & THERMAL PROPERTIES OF NANO COMPOSITES
MECHANICAL & THERMAL PROPERTIES OF NANO COMPOSITESArjun K Gopi
 
Fibre structure investigation vignan1
Fibre structure  investigation vignan1Fibre structure  investigation vignan1
Fibre structure investigation vignan1Md Vaseem Chavhan
 
Bismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesBismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesAshish Goel
 
Self organization of nanostructured materials
Self organization of nanostructured materialsSelf organization of nanostructured materials
Self organization of nanostructured materialsNajiya Kpp
 
Unique Properties At The Nanoscale
Unique Properties At The NanoscaleUnique Properties At The Nanoscale
Unique Properties At The NanoscaleLionel Wolberger
 
Nanocrystal synthesis
Nanocrystal synthesis Nanocrystal synthesis
Nanocrystal synthesis Marina Ibrahim
 
Nanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep AluruNanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep AluruAluru Jaideep Reddy
 
Why nano is important
Why nano is importantWhy nano is important
Why nano is importantAshish Goel
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscopeSizan Thapa
 
6 nanomaterials
6 nanomaterials6 nanomaterials
6 nanomaterialsEkeeda
 
Self assembly in photovoltaic devices
Self assembly in photovoltaic devicesSelf assembly in photovoltaic devices
Self assembly in photovoltaic devicesZaahir Salam
 
Nanomaterials dr.surendran prambadath
Nanomaterials dr.surendran prambadathNanomaterials dr.surendran prambadath
Nanomaterials dr.surendran prambadathSurendran Parambadath
 
properties of nanomaterials
properties of nanomaterialsproperties of nanomaterials
properties of nanomaterialsprasad addanki
 
preparation of Nanomaterials
preparation of Nanomaterialspreparation of Nanomaterials
preparation of NanomaterialsDhinesh1996
 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterialsudhay roopavath
 

Was ist angesagt? (20)

Size effect of nanomaterials part1
Size effect of nanomaterials part1Size effect of nanomaterials part1
Size effect of nanomaterials part1
 
Advances in Characterization Of nanomaterials
Advances in Characterization Of nanomaterialsAdvances in Characterization Of nanomaterials
Advances in Characterization Of nanomaterials
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 
MECHANICAL & THERMAL PROPERTIES OF NANO COMPOSITES
MECHANICAL & THERMAL PROPERTIES OF NANO COMPOSITESMECHANICAL & THERMAL PROPERTIES OF NANO COMPOSITES
MECHANICAL & THERMAL PROPERTIES OF NANO COMPOSITES
 
Fibre structure investigation vignan1
Fibre structure  investigation vignan1Fibre structure  investigation vignan1
Fibre structure investigation vignan1
 
Bismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesBismuth Ferrite Nano particles
Bismuth Ferrite Nano particles
 
Self organization of nanostructured materials
Self organization of nanostructured materialsSelf organization of nanostructured materials
Self organization of nanostructured materials
 
Unique Properties At The Nanoscale
Unique Properties At The NanoscaleUnique Properties At The Nanoscale
Unique Properties At The Nanoscale
 
Nanocrystal synthesis
Nanocrystal synthesis Nanocrystal synthesis
Nanocrystal synthesis
 
Nanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep AluruNanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep Aluru
 
Why nano is important
Why nano is importantWhy nano is important
Why nano is important
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscope
 
6 nanomaterials
6 nanomaterials6 nanomaterials
6 nanomaterials
 
Self assembly in photovoltaic devices
Self assembly in photovoltaic devicesSelf assembly in photovoltaic devices
Self assembly in photovoltaic devices
 
Nanomaterials dr.surendran prambadath
Nanomaterials dr.surendran prambadathNanomaterials dr.surendran prambadath
Nanomaterials dr.surendran prambadath
 
properties of nanomaterials
properties of nanomaterialsproperties of nanomaterials
properties of nanomaterials
 
preparation of Nanomaterials
preparation of Nanomaterialspreparation of Nanomaterials
preparation of Nanomaterials
 
INTRODUCTION
INTRODUCTIONINTRODUCTION
INTRODUCTION
 
Magnetic NanoComposites
Magnetic NanoCompositesMagnetic NanoComposites
Magnetic NanoComposites
 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterials
 

Ähnlich wie AdoraYabutShapeMemoryMicroparticles

CRYO ELECTRON MICROSCOPY.pptx
CRYO ELECTRON MICROSCOPY.pptxCRYO ELECTRON MICROSCOPY.pptx
CRYO ELECTRON MICROSCOPY.pptxMuskanWahab
 
Shape Memory Polymer.pptx
Shape Memory Polymer.pptxShape Memory Polymer.pptx
Shape Memory Polymer.pptxRahulsirwani1
 
Lecture 2 MICROSCOPY.pptx
Lecture 2  MICROSCOPY.pptxLecture 2  MICROSCOPY.pptx
Lecture 2 MICROSCOPY.pptxelphaswalela
 
Microscopy
MicroscopyMicroscopy
Microscopytrixie19
 
Recent advancement in microscopic techniques cryoem and super
Recent advancement in microscopic techniques  cryoem and superRecent advancement in microscopic techniques  cryoem and super
Recent advancement in microscopic techniques cryoem and superDanishNigar
 
APPLICATION OF LAYERED AND NON-LAYERED NANO/MICRO PARTICLES IN POLYMER MODIFI...
APPLICATION OF LAYERED AND NON-LAYERED NANO/MICRO PARTICLES IN POLYMER MODIFI...APPLICATION OF LAYERED AND NON-LAYERED NANO/MICRO PARTICLES IN POLYMER MODIFI...
APPLICATION OF LAYERED AND NON-LAYERED NANO/MICRO PARTICLES IN POLYMER MODIFI...Arjun K Gopi
 
nanomaterials and their applications in life
nanomaterials and their applications in lifenanomaterials and their applications in life
nanomaterials and their applications in lifePragyanandSingh4
 
CHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdfCHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdfAyalnehAdinew
 
CHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdfCHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdfAyalnehAdinew
 
CHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdfCHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdfAyalnehAdinew
 
Nanochemistry Basics (B.Tech / B.E. ))
Nanochemistry Basics (B.Tech / B.E. ))Nanochemistry Basics (B.Tech / B.E. ))
Nanochemistry Basics (B.Tech / B.E. ))Afzal Imam
 
characterization of Nanoparticles note.pdf
characterization of Nanoparticles note.pdfcharacterization of Nanoparticles note.pdf
characterization of Nanoparticles note.pdfyusufzako14
 
Characterization of Nanoparticles.
Characterization of Nanoparticles.Characterization of Nanoparticles.
Characterization of Nanoparticles.Manish Rajput
 
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptxNANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptxSriharsha203438
 
Thermal-optical analysis of polymer–liquid crystal microfibers
Thermal-optical analysis of polymer–liquid crystal microfibersThermal-optical analysis of polymer–liquid crystal microfibers
Thermal-optical analysis of polymer–liquid crystal microfibersUniversitasGadjahMada
 

Ähnlich wie AdoraYabutShapeMemoryMicroparticles (20)

CRYO ELECTRON MICROSCOPY.pptx
CRYO ELECTRON MICROSCOPY.pptxCRYO ELECTRON MICROSCOPY.pptx
CRYO ELECTRON MICROSCOPY.pptx
 
Shape Memory Polymer.pptx
Shape Memory Polymer.pptxShape Memory Polymer.pptx
Shape Memory Polymer.pptx
 
A04 06 0108
A04 06 0108A04 06 0108
A04 06 0108
 
A04 06 0108
A04 06 0108A04 06 0108
A04 06 0108
 
Lecture 2 MICROSCOPY.pptx
Lecture 2  MICROSCOPY.pptxLecture 2  MICROSCOPY.pptx
Lecture 2 MICROSCOPY.pptx
 
Microscopy
MicroscopyMicroscopy
Microscopy
 
Recent advancement in microscopic techniques cryoem and super
Recent advancement in microscopic techniques  cryoem and superRecent advancement in microscopic techniques  cryoem and super
Recent advancement in microscopic techniques cryoem and super
 
Electrospinning
ElectrospinningElectrospinning
Electrospinning
 
Nanopolymer
NanopolymerNanopolymer
Nanopolymer
 
APPLICATION OF LAYERED AND NON-LAYERED NANO/MICRO PARTICLES IN POLYMER MODIFI...
APPLICATION OF LAYERED AND NON-LAYERED NANO/MICRO PARTICLES IN POLYMER MODIFI...APPLICATION OF LAYERED AND NON-LAYERED NANO/MICRO PARTICLES IN POLYMER MODIFI...
APPLICATION OF LAYERED AND NON-LAYERED NANO/MICRO PARTICLES IN POLYMER MODIFI...
 
nanomaterials and their applications in life
nanomaterials and their applications in lifenanomaterials and their applications in life
nanomaterials and their applications in life
 
CHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdfCHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdf
 
CHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdfCHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdf
 
CHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdfCHAPTER FOUR edited.pdf
CHAPTER FOUR edited.pdf
 
Nanochemistry Basics (B.Tech / B.E. ))
Nanochemistry Basics (B.Tech / B.E. ))Nanochemistry Basics (B.Tech / B.E. ))
Nanochemistry Basics (B.Tech / B.E. ))
 
1350 ritter[1]
1350 ritter[1]1350 ritter[1]
1350 ritter[1]
 
characterization of Nanoparticles note.pdf
characterization of Nanoparticles note.pdfcharacterization of Nanoparticles note.pdf
characterization of Nanoparticles note.pdf
 
Characterization of Nanoparticles.
Characterization of Nanoparticles.Characterization of Nanoparticles.
Characterization of Nanoparticles.
 
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptxNANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
 
Thermal-optical analysis of polymer–liquid crystal microfibers
Thermal-optical analysis of polymer–liquid crystal microfibersThermal-optical analysis of polymer–liquid crystal microfibers
Thermal-optical analysis of polymer–liquid crystal microfibers
 

AdoraYabutShapeMemoryMicroparticles

  • 1. Results                             What  Is  Shape  Memory  ?  Mo4va4on  And  Objec4ve   Previous  studies  of  the  shape  memory  effect  have   been   focused   on   macro-­‐scale   (bulk)   materials.   Recently   people   have   demonstrated   shape   memory   of   2-­‐D   sub-­‐micron   surface   paHerns   however,   no   one   has   inves4gated   the   ability   of   micro   scale   polymer   structures   to   remember   a   shape  aLer  large  3-­‐D  deforma4ons.  Therefore,  the   project  goal  is  to:     •  Create   the   world’s   first   shape   memory   micro-­‐ par4cle       Within   a   typical   shape   memory   cycle,   polymer   networks  are  deformed  into  a  temporary  shape  then   brought  back  to  their  original  shape.  In  the  permanent   shape   (top   picture),   polymer   chains   between   the   crosslinking   points   (black   dots)   are   in   a   low   energy   state.   When   a   mechanical   loading   is   applied   to   a   rubbery   polymer,   the   polymer   is   deformed   into   a   higher   energy   state   (blue   picture).   This   deformed   shape   can   be   maintained   if   the   polymer   is   cooled   down  into  a  glassy  state,  and  will  remain  there  even   aLer  the  load  is  removed.  Upon  hea4ng  the  polymer   back   to   a   rubber,   the   shape   memory   polymers   will   recover  their  original  low  energy  shape. In   general,   cross-­‐linked   polymers   are   oLen   known   as   shape   memory   polymers   and   can   be   deformed   into   a   variety  of  shapes;  yet  exhibit  the  ability  to  return  to  their   permanent,   low   energy   shape   through   s4mula4on   by   an   external  s4mulus  such  as  temperature  change.     0   0.5   1   1.5   2   2.5   3   3.5   4   Original  Shape   Compressed   Constrained   Recovery   Unconstrained   Recovery   Micrometers   Shape  memory  was  aCained!   Original  Shape   Compressed   Unconstrained   Recovery     Constrained     Recovery   What  Is  A  Polymer?     End  to  End  Distance   Probability   Polymers  are  long-­‐chain  macromolecules   that  consists  of  repea4ng  structural  units   with  very  high  molecular  weight  that  are   created  through  polymeriza4on.   ΔG=ΔH-­‐TΔS   Polymer   chains   have   a   preferred   end   to   end   distance,   which   allows   them   the   greatest   number   of   conforma4ons   (highest  amount  of  entropy),  as  indicated   in  the  middle  chain.  Chains  with  a  shorter   end  to  end  distances  (farthest  leL)  have  a   greater   tendency   to   expand,   whereas   chains   with   longer   end   to   end   distances   (rightmost)   have   a   greater   tendency   to   contract.     Shape  Memory  Micropar4cles  Adora  Yabut,  Lewis  Cox,  Yifu  Ding   University  of  Colorado  Boulder     Conclusion   •  Micropar4cles   were   exposed   to   extremely   large       3-­‐D   deforma4ons,   and   held   in   the   temporary   shape.   Upon   hea4ng,   recovery   of   deformed   par4cles   was   confined   by   the   substrate.   ALer   removing   them   from   the   substrate   we   observed   full   recovery   of   the   original   shape,   thus   demonstra4ng   for   the   first   4me   the   concept   of   shape  memory  micro-­‐par4cles.   Acknowledgements   This  project  was  made  possible  by  the  YOU’RE@CU   seminar  held  by  Virginia  Ferguson  and  Beverly  Louie.   Methods  and  Experimental  Apparatus                                 Dipped   a   flat   silicon   wafer   into   a   aqueous  solu4on  containing  polystyrene   micro-­‐par4cles.   Using   an   op4cal   microscope,   the   par4cles   were   confirmed  to  have  been  deposited  onto   the  wafer.   The  deposited  par4cles  were  deformed  into  a  flaHened  shape   by   using   a   nanoimprinter.   A   second   piece   of   silicon   with   a   treated  surface  to  reduce  adhesion  was  placed  on  top  of  the   deposited  par4cles,  and  the  two  plates  were  placed  within  the   imprinter.   The   environment   was   then   heated   to   120°C   (significantly   above   the   glass   transi4on   temperature   of   polystyrene:  95°C)  and  the  par4cles  were  allowed  to  equilibrate   for   3   minutes.   A   pressure   of   15   bar   was   then   applied   for   5   minutes  to  mold  the  par4cles  into  a  temporary  shape.  With  the   15   bar   pressure   s4ll   being   applied,   the   par4cles   were   then   cooled  back  down  to  35°C    (temperature  below  Tg)  in  order  to   freeze   the   polymer   chains   in   a   glassy   state   and   lock   in   the   deformed  temporary  shape.  ALer  performing  the  compression,   the   par4cles   were   observed   with   an   op4cal   microscope   to   confirm  deforma4on.       A  por4on  of  the  compressed  par4cles   were   then   placed   on   a   hot   stage   at   120°C   for   2   minutes   to   heat   them   back   above   their   Tg   and   induce   the   shape  recovery.     Atomic   Force   Microscopy   (AFM)   consists   of   a   can4lever  with  a  sharp  4p  that  is  used  to  scan  the   par4cle   on   the   surface.   The   AFM   was   used   to   accurately   measure   the   par4cle   heights   at   each   step  of  the  experiment.   Scanning   Electron   Microscope   (SEM))   is  a  microscope  that  produces  images   by  capture  scaHered  electrons  instead   of   light.   The   SEM   provided   us   with   high  resolu4on  pictures  of  par4cles.